Modification of weir notch-mounted screen for litter inflow prevention: Enlargement of mesh size

Hirokazu Haga, Tetsuzu Kubota, Yuko Endo and Go Koshino
量水堰堤ノッチ部の落葉・落枝流入防止スクリーンの改良
－メッシュサイズの拡大－

芳賀弘和1*, 窪田哲哉1, 遠藤祐子1, 古志野豪1

Modification of weir notch-mounted screen for litter inflow prevention:
Enlargement of mesh size

Hirokazu Haga1*, Tetsuzo Kubota1, Yuko Endo1 and Go Koshino1

1鳥取大学農学部生物資源環境学科 (〒680-8553 鳥取市湖山町4-101)
Department of Biological resource and environment, Faculty of Agriculture, Tottori University,
Tottori, 680-8553, Japan
*E-mail: haga@muses.tottori-u.ac.jp

要 旨

既報（芳賀・米原, 2011）で提案した落葉・落枝流入防止スクリーン（旧タイプ）をメッシュサイズの点で改良した。メッシュサイズを1 mm × 1 mm（旧タイプ）から4 mm × 4 mm（新タイプ）に拡大することにより、落葉・枝の流入防止効果を維持しながら、旧タイプで危惧されたスクリーンの目詰まりをなくすことができた。これにより、新タイプのスクリーンでは、水面の上上げがほとんど起こらず、比較的高い水位においてもHw-Hf関係（水位計のデータと越流水深の関係）が1つの直線で近似できることが確認できた。

キーワード：落葉・枝排除スクリーン、メッシュサイズ、水位計、越流水深、水面の上上げ

I. はじめに

量水堰堤は、河川水の流量を精度よく、かつ長期にわたってモニタするために非常に有効な施設である。しかし、森林流域の河川に設置された量水堰堤の越流部では、落葉・枝が流れを閉塞する可能性があり、安定して観測を継続するには落葉・枝の流入を防ぐ対策が必要となる場合がある。

これまで著者らは、鳥取大学・蒜山の森の落葉広葉樹林流域において、直角三角堰（W1）に落葉・枝流入防止スクリーン（旧タイプ）を取り付けて越流水深を観測してきた（芳賀・米原, 2011）。このスクリーンの設置により、落葉・枝の流入を防げたものの、設置期間が長くなるにつれてスクリーンの網が目詰まりし、水面の上上げが起こるという問題を抱えていた（芳賀・米原, 2011）。つまり、旧タイプのスクリーンを取り付けている限り、継続的に水位データを得るには、目詰まりが起こることで生じるHw-Hf関係（水位計のデータと越流水深の関係）の変化を考慮しなければならなかった。

そこで著者らは、スクリーンの目詰まりをなくすために、網のメッシュサイズを1 mm × 1 mmのもの（旧タイプ）から4 mm × 4 mmのもの（新タイプ）に取り替え、水位観測を行うことを試みた。本資料では、旧タイプのスクリーンと新タイプのスクリーンを設置した際に得られるHw-Hf関係を比較し、新タイプのスクリーンが水位観測にもたらす利点について情報を提供することとした。

II. 調査地

調査は、鳥取大学・蒜山の森の22林班にある量水堰堤 W1 で行った (35°18′40.6″N, 133°34′47.3″E)。W1が抱える流域面積は5.9 haであった（芳賀ら, 2011）。流域の地質は大山凝灰角礫岩層、土壌は黒
色火山灰土（田中ら，1981）であり、植生は林床が
チマキザサに覆われたコラウ林であった。流域の下流部右岸側の一部は、ヒノキ人工林（約30年生）
となっていた。
W1は、高さ約3m、幅約8mの堰堤を利用した
直角三角堰であり、90°-V型のノッチが取り付けられ
ていた（芳賀ら，2011）。W1の下流側には、ノッ
チ部の越流水深や流量を実測する時に利用できる観
測用足場が組まれていた。

Ⅲ．方　法
(1) 新タイプの落葉・落枝流入防止スクリーン
新タイプの落葉・落枝流入防止スクリーンは、旧
タイプのそれと比較して、スクリーンの側面を覆う
網の種類とメッシュサイズの点で異なっている。旧
タイプではメッシュサイズ1mm×1mmの農業用
寒冷紗を用いたのに対し、新タイプではメッシュサ
イズ4mm×4mmの農業・園芸用防風ネットを用
いた（写真1）。その他の点（スクリーンの骨格、形
状、及び堰堤への取り付け方法）については両タイプ
とも同じであり、既報（芳賀・米原，2011）を参
照されたい。旧タイプのスクリーンを2010年7月
14日12:00に取り外し、その後約1時間かけて重
機で堰堤に堆積した土砂の一部（幅5m、奥行き6
m、深さ1m）を取り除いた。さらに、その後2週間
(7月28日17:20)、新タイプのスクリーンを設置
した。
(2) Hw-Hf関係
新タイプのスクリーン設置後、1週間に約3回の
頻度で越流水深（Hf）を実測するとともに、その測
定時刻に対応する水位計（圧力式水位センサHM
500-02、センシス製；データロガーCR10X、
Campbell製）のデータ（Hw）を抽出した。それら
のデータをHw-Hfブロット（横軸：水位計のデー
タ、Hw；縦軸：越流水深、Hf）に落とし、Hw-Hf
関係を調べた。さらに、この新タイプのHw-Hf関
係と旧タイプのHw-Hf関係を比較し、両者の違い
を解析した。(3)解析方法
既報（芳賀・米原，2011）では、スクリーンの目
詰まりの程度を考慮し、旧タイプのHw-Hf関係に
ついて第1期間（2009年6月19日16:00～2009
年11月10日14:10）と第2期間（2009年11月10
日14:10～2009年12月25日11:25）に分け
て報告されていた。つまり、第2期間の後、新タイプ
のスクリーンが設置されるまでの期間（第3期間,
2009年12月25日11:25～2010年7月28日
17:20）の測定データは旧タイプのHw-Hf関係に反
映されていなかった。このため、新タイプと旧タイ
プのHw-Hf関係を比較するために先立ち、第2期間
のHw-Hf関係が第3期間に適用可能かどうか確認
する必要があった。そこで、第3期間の測定値を
Hw-Hfブロットに落とし、そのデータブロットが
旧タイプのHw-Hf関係で近似できるかどうか確認
した。
新タイプと旧タイプのHw-Hf関係を比較するた
めに、2010年7月28日17:20～2010年12月14
日15:30の期間（第4期間）に得た新タイプのデー
タをHw-Hfブロット上に落としてみた。この時、旧
タイプのHw-Hf関係を表す近似直線が描かれたHw-
Hfブロットを用いた。さらに、その新タイプのデー
タに対する近似直線を求め、近似直線の傾きについ
て旧タイプと新タイプの違いを分析した。

Ⅳ．結果と考察
第3期間のデータをHw-Hfブロットに落とし
た結果、旧タイプの第2期間に得られた関係式で概ね
近似できた（図1a）。厳密には、Hwが0.27mの付
近、あるいは0.38mの付近においてデータブロッ
トが第2期間の近似式から10%程度離れることも
あった。しかし、Hwが0.348mを境にしてHw-Hf関
係が大きく変わるという第2期間の特徴は現実に
現れていた。よって、第3期間に対しても第2期間
と同じHw-Hf関係が適用できると判断した。
新タイプのスクリーンを取り付けた後、スクリー
ンの周辺の水面や水中には落葉・落枝が停滞し
ていることが見られたが、スクリーンの側面に落葉・落枝
が張り付いている状況は見られなかった。また、土
砂や落葉・枝落の破片等による粒状物質がスクリーンの目詰まりを起こしている状況も見られなかった。新タイプのスクリーンを設置した第4期間のH_w-H_f関係は、次のように近似できた。

\[\text{H}_f = 0.9223 \text{H}_w - 0.1892 \]

ここで、H_fとH_wの単位はいずれもmである。

この直線は、旧タイプの第1期間の低水位のもの（傾き0.93, 切片-0.1915）と比べてほとんど同じであった。しかし、第1期間ではH_wが0.2905mを超えると別の近似直線を適用する必要があったが（芳賀・米原, 2011）、新タイプではその必要がなく、これは大きな相違点であった。このことは、目詰まりがもたらす水面の変化の影響がなかったことを意味している。すなわち、従来のメッシュサイズを1mm×1mmから4mm×4mmに拡大することによって、落葉・枝落の流入防止効果を維持しながら、スクリーンの設置に伴って危惧されていた水面の増大がほとんど起こらなかったことを意味している。なお、第4期間の近似式はH_wが0.34m未満の範囲で得たデータが基になっているため、それよりも高い水位でのスクリーンの効果は不明である。

しかし、新タイプのスクリーンを設置した後、比較的大きな出水が6回（最大でH_wが0.45mに達する出水もあった）2010年8月25日）あったが、スクリーンの目詰まりは起こっておらず、式(1)による外挙を行っても大きな問題はないものと考えられる。

V. おわりに

直角三角堰に取り付けた落葉・枝落流入防止スクリーンが越流の水面を増大させないように、メッシュサイズを1mm×1mm（旧タイプ）から4mm×4mm（新タイプ）へと拡大した。新タイプのスクリーンを用いた結果、スクリーンの網は目詰まりする結果はなかった。また、旧タイプを用いた際には、H_w-H_f関係を2本の直線で近似することが目詰まりによってその関係が変化していたが、新タイプでは期間を通じて1本の直線で近似できた。これらのことから、水位観測を継続する上でスクリーンのメンテナンスに要する労力を減らすとともに、水位計のデータを越流検知に変換する作業を単純化することを意味している。もちろん、場所によっては流量規模や堰堤の構造が異なるため、今回ののような結果が他の流域においても得られるとは限らない。しかしこ本資料で示した4mm×4mmというメッシュサイズは、他の流域においてスクリーンを設置する際の一つの目安になると考えられる。

謝辞

調査では、蒜山の森のスタッフの皆さんにご協力いただきました。特に、松原研一さんには雨の中にも関わらず量水堰堤の土砂を重機でかき出していただく
た。植木小百合さんには、蒜山地域の降雨情報を頻繁に寄せただくなど、その他の多くの面で心強い支援を受けた。福富昭吾さんには、量水堰堤付近において作業の邪魔になっていた倒木や掛木を上手く除去していただいた。ここに記して謝意を表します。

引用文献
芳賀弘和・米原朱音（2011）量水堰堤ノッチ部に取り付けた落葉・落枝流入防止スクリーンが水位観測に与える影響。広葉樹研究14: 25-28

芳賀弘和・米原朱音・清水笑子・山中貴裕・辻本佳奈（2011）蒜山の森・W1量水堰堤における水位一流量曲線。広葉樹研究所14: 21-24

田中一夫・奥村武信・井上昌・下野澄（1981）広葉樹林における水源から養機能に関する研究（I）。鳥取大学農学部演習林報告13: 37-48。