File | |
Title Alternative | 鞍点法を用いた∫g(x) e^ith(x)dxの評価式
|
Authors | |
Abstract | It is known [E or D] that ∫g(x)e^ith(x)dx = √(2π)α/√(t|h''(c)|)g(c)e^ith(c)(1+O(1/t)), where a is the complex number with modulus 1. In this paper we have detailed results including the dependancy of O term. In [G], we apply the Theorem 1 and Theorem 2(below) to estimate the order of ∑e^(2πih(αn logn+βn)).
|
Publisher | 鳥取大学教育学部
|
Content Type |
Departmental Bulletin Paper
|
ISSN | 03715965
|
NCID | AN00174585
|
Journal Title | 鳥取大学教育学部研究報告. 自然科学
|
Current Journal Title |
鳥取大学教育学部研究報告. 自然科学
|
Volume | 47
|
Issue | 2
|
Start Page | 81
|
End Page | 89
|
Published Date | 1998-09-10
|
Text Version |
Publisher
|
Rights | 注があるものを除き、この著作物は日本国著作権法により保護されています。 / This work is protected under Japanese Copyright Law unless otherwise noted.
|
Citation | 鳥取大学教育学部研究報告. 自然科学. 1998, 47(2), 81-89
|
Department |
Faculty of Regional Sciences/Graduate School of Regional Sciences
|
Language |
English
|