File
Title Alternative
鞍点法を用いた∫g(x) e^ith(x)dxの評価式
Authors
Abstract
It is known [E or D] that ∫g(x)e^ith(x)dx = √(2π)α/√(t|h''(c)|)g(c)e^ith(c)(1+O(1/t)), where a is the complex number with modulus 1. In this paper we have detailed results including the dependancy of O term. In [G], we apply the Theorem 1 and Theorem 2(below) to estimate the order of ∑e^(2πih(αn logn+βn)).
Publisher
鳥取大学教育学部
Content Type
Departmental Bulletin Paper
ISSN
03715965
NCID
AN00174585
Journal Title
鳥取大学教育学部研究報告. 自然科学
Current Journal Title
鳥取大学教育学部研究報告. 自然科学
Volume
47
Issue
2
Start Page
81
End Page
89
Published Date
1998-09-10
Text Version
Publisher
Rights
注があるものを除き、この著作物は日本国著作権法により保護されています。 / This work is protected under Japanese Copyright Law unless otherwise noted.
Citation
鳥取大学教育学部研究報告. 自然科学. 1998, 47(2), 81-89
Department
Faculty of Regional Sciences/Graduate School of Regional Sciences
Language
English