File | |
Authors | |
Keywords | non-differentiable
exponential sums
M¨obius function
|
Abstract | Fröberg [2] said that he believes f(x) = ∑∞ n=1 μ(n) / n einx being non-differentiable everywhere by computer computation, where i = √−1 and μ(n) is the Möbius function. In this paper, we show in Theorem 1.1 that for any interval in [0, 2π] there exists a positive Lebesgue measurable (L1-measurable) set such that f'(x) is not L2-measurable on its interval.
|
Publisher | 鳥取大学教育支援・国際交流推進機構教育センター
|
Content Type |
Departmental Bulletin Paper
|
ISSN | 24337862
|
NCID | AA12841878
|
Journal Title | 鳥取大学教育支援・国際交流推進機構教育センター紀要
|
Current Journal Title |
Tottori University Education Center bulletin
|
Volume | 16
|
Start Page | 37
|
End Page | 41
|
Published Date | 2020-03-31
|
Text Version |
Publisher
|
Rights | 注があるものを除き、この著作物は日本国著作権法により保護されています。 / This work is protected under Japanese Copyright Law unless otherwise noted.
|
Citation | 後藤和雄. On the non-differentiability of special exponential sums with M¨obius weight; n=1 μ(n) n einx. 鳥取大学教育支援・国際交流推進機構教育センター紀要. 2020, 16, 37-41.
|
Department |
Affiliated Institutes
|
Language |
English
|