On Some Generalizations of M-spaces and Σ -spaces

Shōzō Sasada*

(Received September 10, 1973)

1. Introduction

In our previous paper [9], we have introduced the notion of as-finite collections which is a generalization of locally finite collections, and studied their properties. And now as a continuation of the study, we will bring in the notions of as-M-spaces (resp. as- Σ -spaces) defined in terms of as-finite closed coverings, which are generalizations of M-spaces (resp. Σ -spaces) introduced by K. Morita [6] (resp. K. Nagami [7]). And we will investigate several properties of these spaces.

For a sequence $\{\mathfrak{U}_n\}$ of open (or closed) coverings of a topological space X, we shall consider the following conditions:

- (M) $\left\{ \begin{array}{l} \text{If } \{x_n\} \text{ is a sequence of points of } X \text{ such that } x_n \in \operatorname{St}(x_0, \mathfrak{U}_n)^{(1)} \text{ for each } n \text{ and for some fixed point } x_0 \text{ of } X, \text{ then } \{x_n\} \text{ has a cluster point in } X. \end{array} \right.$
- (2) { If $\{x_n\}$ is a sequence of points of X such that $x_n \in C(x_0, \mathfrak{U}_n)^2$ for each n and for some fixed point x_0 of X, then $\{x_n\}$ has a cluster point in X.

A space X is an M-space [6] if and only if there exists a normal sequence $\{\mathfrak{U}_n\}$ of open coverings of X satisfying the condition (M). A space X is an M^* -space [4] if and only if there exists a sequence $\{\mathfrak{U}_n\}$ of locally finite closed coverings of X satisfying the condition (M). A space X is a Σ -space [7] if and only if there exists a sequence $\{\mathfrak{U}_n\}$ of locally finite closed coverings of X satisfying the condition (Σ) .

In the definitions given above, we can assume without loss of generality that the sequence $\{St(x, \mathfrak{U}_n)\}$ (or $\{C(x, \mathfrak{U}_n)\}$) is decreasing. Then a sequence $\{x_n\}$ satisfying the condition (M) (or (Σ)) is certainly an ac-sequence (cf. Definition 1.1). This fact leads us to introduce the following notions of spaces, where the term "locally finite" in the definitions of M^* -spaces and Σ -spaces is replaced by "as-finite".

DEFINITION 1.1 ([9]). A sequence $\{x_n\}$ of points of X is said to be an ac-sequence if each subsequence of $\{x_n\}$ has a cluster point in X. A collection $\mathfrak{F} = \{F_\alpha | \alpha \in A\}$ of subsets of X is as-finite if and only if $\{\alpha \in A | F_\alpha \cap S \neq \emptyset\}$ is finite for every ac-sequence $\{x_n\}$, where $S = \{x_n | n \in \mathbb{N}\}$.

Evidently, every locally finite collection is as-finite and every as-finite collection is point-finite.

^{*} Laboratory of Mathematics, Faculty of Education, Tottori University, Tottori, Japan.

¹⁾ St $(x, \mathfrak{U}) = \bigcup \{U \in \mathfrak{U} | x \in U\}.$

²⁾ $C(x, \mathfrak{U}) = \bigcap \{U \in \mathfrak{U} | x \in U\}.$

DEFINITION 1.2. A space X is an as-M-space if and only if there exists a sequence $\{\mathfrak{U}_n\}$ of as-finite closed coverings of X satisfying (M).

DEFINITION 1.3. A space X is an as- Σ -space if and only if there exists a sequence $\{\mathfrak{U}_n\}$ of as-finite closed coverings of X satisfying (Σ) .

Obviously, as-M-spaces (resp. as- Σ -spaces) include all M-spaces and M*-spaces (resp. Σ -spaces). In quasi-k-spaces, as-M-spaces (resp. as- Σ -spaces) [9, Corollary 4.1]. And every closed subspace of an as-M-space (resp. as- Σ -space) is also an as-M-space (resp. as- Σ -space).

The main results of this paper are as follows:

- (I) If a space X is a countable sum of closed as- Σ -spaces, then X is an as- Σ -space (Theorem 2.6)
- (II) If $\{X_{\alpha} | \alpha \in A\}$ is an as-finite closed covering of X and each X_{α} is an as-M-space (resp. as- Σ -space), then X is an as-M-space (resp. as- Σ -space) (Theorem 2.7).
- (III) Let X be a regular as- Σ -space with point-countable base. If X has the property (ω^*) [9], then X is a metrizable space (Theorem 3.4).
- (IV) If $f: X \to Y$ is a quasi-perfect mapping, then X is an as-M-space (resp. as- Σ -space) if and only if Y is an as-M-space (resp. as- Σ -space) (Corollary 4.5).

Throughout this paper, topological spaces are assumed to be T_1 -spaces, and mappings to be continuous. And N denotes the set of positive integers. As for terms and symbols in general topology, see [8] and [9, §2].

2. Some properties of as-M-spaces and as- Σ -spaces

Example 2.1. An as-M-space need not be an M*-space.

PROOF. Let X be a subspace $\mathbb{N} \cup \{x^*\}$ of Stone-Čech's compactification $\beta \mathbb{N}$ of integers \mathbb{N} , where x^* is a point of $\beta \mathbb{N} - \mathbb{N}$. Then X is a paracompact T_2 -space with G_δ -diagonal which is not metrizable. Assume that X is an M^* -space. Then X is an M-space since it is paracompact. Therefore X is metrizable; this contradicts the above. Hence X is not an M^* -space. To show that X is an as-M-space, put $\mathfrak{F}_n = \{\{x\} | x \in X\}$ for each n. Then $\{\mathfrak{F}_n\}$ is a sequence of closed coverings of X satisfying (M). Since $\{x_n | n \in \mathbb{N}\}$ is finite for every ac-sequence $\{x_n\}$ in X, \mathfrak{F}_n is as-finite. Therefore X is an as-M-space.

Proposition 2.2. Let X be an as- Σ -space. Then X has a sequence $\{\mathfrak{F}_n\}$ of as-finite closed coverings of X satisfying the following conditions (a), (b) and (c):

- (a) $\{\mathfrak{F}_n\}$ satisfies (Σ)
- (b) $C(x, \mathfrak{F}_{n+1}) \subset C(x, \mathfrak{F}_n)$ for each n and for each $x \in X$.
- (c) $C(x, \mathfrak{F}_n) \in \mathfrak{F}_n$ for each n and for each $x \in X$.

PROOF. Let $\{\mathfrak{U}_n\}$ be a sequence of as-finite closed coverings of X satisfying (Σ) . And

let \mathfrak{F}_n be the collection of all finite intersections of elements of $\bigwedge_{i=1}^n \mathfrak{U}_i$, for each n. Then $\{\mathfrak{F}_n\}$ is a sequence of as-finite closed coverings of X satisfying (a), (b) and (c).

PROPOSITION 2.3. Let X be an as-M-space, and let $\{\mathfrak{F}_n\}$ be a decreasing sequence (in the sense of refinement) of as-finite closed coverings of X satisfying (Σ) . Then the followings hold:

- (1) $S(x) = \bigcap_{n=1}^{\infty} St(x, \mathfrak{F}_n)$ is a countably compact closed set for each point x in X.
- (2) For every open set U with $S(x) \subset U$, there exists a positive integer n such that $St(x, \mathfrak{F}_n) \subset U$.

PROOF. (1) Let $\{x_n\}$ be a sequence in S(x). Since $x_n \in St(x, \mathfrak{F}_n)$ for each n, by the condition (M), $\{x_n\}$ clusters at some point y in X. For each n,

$$y \in \overline{\{x_i | i \ge n\}} \subset \overline{\operatorname{St}(x, \mathfrak{F}_n)} = \operatorname{St}(x, \mathfrak{F}_n).$$

$$\therefore \qquad y \in S(x) = \bigcap_{n=1}^{\infty} St(x, \mathfrak{F}_n).$$

Therefore S(x) is a countably compact closed set.

(2) If not, then there exists a point $x_n \in St(x, \mathfrak{F}_n) - U$ for each $n \in \mathbb{N}$. Since $\{\mathfrak{F}_n\}$ is decreasing and satisfies (M), $\{x_n\}$ clusters at some point $y \in S(x)$. This contradicts the fact that $y \in \overline{\{x_n | n \in \mathbb{N}\}} \subset \overline{X - U} = X - U$. The proof is complete.

The proof of the following proposition is similar to that of Proposition 2.3.

PROPOSITION 2.4. Let X be an as- Σ -space, and let $\{\mathfrak{F}_n\}$ be a sequence of as-finite closed coverings of X satisfying the conditions (a), (b) and (c) in Proposition 2.2. Then the followings hold:

- (1) $C(x) = \bigcap_{n=1}^{\infty} C(x, \mathfrak{F}_n)$ is a countably compact closed set for each point x in X.
- (2) For every open set U with $C(x) \subset U$, there exists a positive integer n such that $C(x, \mathfrak{F}_n) \subset U$.

PROPOSITION 2.5. Let X be an as-M-space, let C be a countably compact subset of X, and let $\{\mathfrak{F}_n\}$ be a decreasing sequence of as-finite closed coverings of X satisfying (M). If $\{x_n\}$ is a sequence of points in X such that $x_n \in St(C, \mathfrak{F}_n)$ for each n, then $\{x_n\}$ clusters in X.

PROOF. For each $n \in \mathbb{N}$, there exist an element $F_n \in \mathfrak{F}_n$ and a point y_n of X such that $x_n \in F_n$ and $y_n \in F_n \cap C \neq \phi$. Since C is a countably compact set, $\{y_n\}$ clusters at some point y_0 of C and $\{F \in \mathfrak{F}_n | F \cap C \neq \phi\}$ is finite, by [9, Corollary 3.2]. Put

$$U_n(y_0) = X - \bigcup \{ F \in \mathfrak{F}_n | F \cap C \neq \phi, y_0 \in F \}.$$

Then $U_n(y_0)$ is an open nbd of y_0 . Now,

$${F \in \mathfrak{F}_n | F \cap C \neq \phi, \ y_0 \in F} = {F \in \mathfrak{F}_n | y_0 \in F} - {F \in \mathfrak{F}_n | F \cap C = \phi}.$$

Therefore, put $A_n(y_0) = X - \bigcup \{F \in \mathfrak{F}_n | y_0 \in F\}$, and then

$$U_n(y_0) \subset A_n(y_0) \cup [\cup \{F \in \mathfrak{F}_n | F \cap C = \phi\}].$$

Since y_0 is a cluster point of $\{y_n\}$, there exists an increasing sequence $\{k_n\}$ of integers such that $k_n \ge n$ and $y_{k_n} \in U_n(y_0)$ for each $n \in \mathbb{N}$. Then $y_{k_n} \in U_n(y_0) \in V_n$, because $y_{k_n} \in C$. Consequently, $y_{k_n} \in A_n(y_0)$ for each n; this implies that $y_0 \in F$ whenever $y_{n_k} \in F \in \mathfrak{F}_n$. Therefore

$$x_{k_n} \in \operatorname{St}(y_{k_n}, \mathfrak{F}_{k_n}) \subset \operatorname{St}(y_{k_n}, \mathfrak{F}_n) \subset \operatorname{St}(y_0, \mathfrak{F}_n).$$

By the condition (M), $\{x_n\}$ clusters in X. This completes the proof.

THEOREM 2.6. Let $\{X_n | n \in \mathbb{N}\}$ be a countable closed covering of a space X. If each X_n is an as- Σ -space, then X is an as- Σ -space.

PROOF. Let $\{\mathfrak{U}_{ij}\}_{j=1}^{\infty}$ be a sequence of as-finite closed coverings of X_i satisfying (Σ) (i=1, 2, ...). Put

$$\mathfrak{U}'_{ij} = \{X\} \cup \mathfrak{U}_{ij}$$
 and $\mathfrak{F}_n = \bigwedge_{i, j \leq n} \mathfrak{U}'_{ij}$.

Then \mathfrak{F}_n is an as-finite closed covering of X(n=1, 2, ...). To prove that $\{\mathfrak{F}_n\}$ satisfying (Σ) , let $\{x_n\}$ be a sequence of points of X such that $x_n \in C(x_0, \mathfrak{F}_n)$ for some point x_0 in X and for each $n \in \mathbb{N}$. Choose an integer k with $x_0 \in X_k$, and then for each $n \ge k$

$$x_n \in C(x_0, \mathfrak{F}_n) \subset C(x_0, \mathfrak{U}'_{kn}) = C(x_0, \mathfrak{U}_{kn}).$$

Therefore $\{x_n | n \ge k\}$ clusters in X. The proof is complete.

THEOREM 2.7. Let $\{X_{\alpha} | \alpha \in A\}$ be an as-finite closed covering of a space X. If each X_{α} is an as-M-space (resp. as- Σ -space), X is also an as-M-space (resp. as- Σ -space).

PROOF. For each $\alpha \in A$, let $\{\mathfrak{F}_{\alpha,n}\}_{n=1}^{\infty}$ be a sequence of as-finite closed coverings of X_{α} satisfying (M) (resp. (Σ)). Put $\mathfrak{G}_n = \bigcup \{\mathfrak{F}_{\alpha,n} | \alpha \in A\}$. Then \mathfrak{G}_n is an as-finite closed covering. Since $\{X_{\alpha} | \alpha \in A\}$ is point-finite, $\{\mathfrak{G}_n\}$ satisfies the condition (M) (resp. (Σ)). The proof is complete.

COROLLARY 2.8. Let $\mathfrak{F} = \bigcup_{n=1}^{\infty} \mathfrak{F}_n$ be a σ -locally finite closed covering of a space X. If each $F \in \mathfrak{F}$ is an as- Σ -space, then X is an as- Σ -space.

The following corollaries are derived immediately from Hodel's sum theorems [3; I, II] and Theorem 2.7.

Corollary 2.9. Let $\mathfrak{G} = \bigcup_{n=1}^{\infty} \mathfrak{G}_n$ be a σ -locally finite open covering of a space X such that the closure of each element of \mathfrak{G} is an as-M-space (resp. as- Σ -space). Then X is an as-M-space (resp. as- Σ -space).

COROLLARY 2.10. Let $\mathfrak{G} = \bigcup_{n=1}^{\infty} \mathfrak{G}_n$ be a σ -locally finite open covering of a space X, each element of which is an as-M-space (resp. as- Σ -space) and has compact boundary. Then X is an as-M-space (resp. as- Σ -space).

3. Metrization of as-Σ-spaces

In [10], T. Shiraki proved that every Σ -space with a point-countable pseudo-base³⁾ is a σ -space. By making slight modifications of the proof of this theorem, we can prove the following theorem.

Theorem 3.1. Every as- Σ -space X with a point-countable pseudo-base has a σ -as-finite closed net⁴).

For the proof of this theorem we need the following Lemma.

Lemma 3.2 (A. Miščenko [5]). Let $\mathfrak U$ be a point-countable collection of subsets of a set X, and Y a subset of X. Then there are at most countably many finite minimal coverings of Y by elements of $\mathfrak U$, where by a minimal covering we mean a covering which contains no proper subcovering.

Proof of Theorem 3.1. Let $\{\mathfrak{F}_n\}$ be a sequence of as-finite closed coverings of X satisfying the conditions (a), (b) and (c) in Proposition 2.2, and let \mathfrak{U} be a point-countable pseudo-base for X. Let us denote by $\mathfrak{F}'_i = \{C_{i\alpha} | \alpha \in A_i\}$ the set of distinct elements of $\{C(x, \mathfrak{F}_i) | x \in X\}$. Then $\mathfrak{F}'_i \subset \mathfrak{F}_i$ and

(1) \mathfrak{F}'_i is an as-finite closed covering of X.

By Lemma 3.2, the collection of finite minimal coverings of each $C_{i\alpha}$ by elements of $\mathfrak U$ is at most countable, and it can be denoted by $\{\omega_k^{i\alpha}|k\in\mathbb N\}$. Then $\mathfrak U_{i\alpha}=\{U|U\in\omega_k^{i\alpha},k\in\mathbb N\}$ is countable and hence the collection $\mathfrak B_{i\alpha}$ of all finite unions of sets of $\mathfrak U_{i\alpha}$ is also countable. Therefore we can write

$$\mathfrak{B}_{i\alpha} = \{ V_1^{i\alpha}, V_2^{i\alpha}, ..., V_j^{i\alpha}, ... \}.$$

Put $\mathfrak{L}_{ij} = \{C_{i\alpha} \cap (X - V_j^{i\alpha}) | \alpha \in A_i\}$. Then

(2) \mathfrak{L}_{ij} is an as-finite closed collection of X.

Therefore, by (1) and (2),

³⁾ A collection $\mathfrak U$ of open subsets of a space X is called a *pseudo-base* of X if $\{x\} = \bigcap \{U \mid x \in U \in \mathfrak U\}$ for each $x \in X$.

⁴⁾ A collection \mathfrak{B} of subsets of a space X is called a *net* for X if for each $x \in X$ and open nbd U of x there exists a $B \in \mathfrak{B}$ such that $x \in B \subset U$.

$$\mathfrak{N} = \left[\bigcup_{n=1}^{\infty} \mathfrak{F}'_{n} \right] \cup \left[\bigcup_{i, j=1}^{\infty} \mathfrak{Q}_{ij} \right]$$

is σ -as-finite closed collection of X.

That \mathfrak{N} is a net for X is proved in the same way as in the proof of [10, Theorem 1.1], by using Proposition 2.4. This completes the proof.

Corollary 3.3. If X is an as- Σ -space with point-countable base, then X is a developable space.

PROOF. Since X has a point-countable base, X is a first countable space. Therefore, by Theorem 3.1 and [9, Theorem 4.6], X is a σ -space. By [11, Proposition 4], X is a semi-metrizable space, since X is a first countable σ -space. Consequently, by [2, Theorem 1], X is developable. The proof is complete.

Theorem 3.4. Let X be a regular as- Σ -space with point-countable base. If X has the property (ω^*) (cf. [9]), then X is a metrizable space.

PROOF. By Corollary 3.3, X is a developable space, and therefore X is a subparacompact space. Hence, by [9, Proposition 6.2], X is paracompact. Consequently X is metrizable. The proof is complete.

Corollary 3.5. Every collectionwise normal as- Σ -space X with point-countable base is metrizable.

4. Mapping theorems

THEOREM 4.1. Let $f: X \to Y$ be a quasi-perfect mapping from X onto Y.

- (a) If X is an as-M-space, then so is Y.
- (b) If X is an as- Σ -space, then so is Y.
- PROOF. (a) Let $\{\mathfrak{F}_n\}$ be a decreasing sequence of as-finite closed coverings of X satisfying the condition (M). Put $\mathfrak{Q}_n = f(\mathfrak{F}_n)$, and then, by [9, corollary 5.2], $\{\mathfrak{Q}_n\}$ is a decreasing sequence of as-finite closed coverings of Y. For each sequence $\{y_n\}$ with $y_n \in \operatorname{St}(y, \mathfrak{Q}_n)$, there exists an element F_n of \mathfrak{F}_n for each n such that $\{y, y_n\} \subset f(F_n)$. Pick up a point x_n in $f^{-1}(y_n) \cap F_n \neq \phi$ for each n, and then $x_n \in \operatorname{St}(f^{-1}(y), \mathfrak{F}_n)$. By Proposition 2.5, $\{x_n\}$ clusters in X because $f^{-1}(y)$ is countably compact. Since f is continuous, $\{y_n\}$ also clusters in Y. Hence Y is an as-M-space.
- (b) Let $\{\mathfrak{F}_n\}$ be a sequence of as-finite closed coverings of X which has been constructed in the proof of Proposition 2.2. Put $\mathfrak{L}_n = f(\mathfrak{F}_n)$, and then $\{\mathfrak{L}_n\}$ is a sequence of as-finite closed coverings of Y by [9, Corollary 5.2]. To show that $\{\mathfrak{L}_n\}$ satisfies (Σ) , let $\{y_n\}$ be a sequence of points of Y such that $y_n \in C(y, f(\mathfrak{F}_n))$ for some point y in Y and for each n. Put

$$L_n = \overline{\{y_i | i \ge n\}}.$$

Then $L_n \subset C(y, f(\mathfrak{F}_n))$ because $\{C(y, f(\mathfrak{F}_n))\}$ is decreasing. Now let x be a fixed point of $f^{-1}(y)$. Then

(3)
$$f^{-1}(L_n) \cap C(x) \neq \phi$$
, for each $n \in \mathbb{N}$.

The reason is as follows: Assume that $f^{-1}(L_k) \cap C(x) = \phi$ for some $k \in \mathbb{N}$. Since $f^{-1}(L_k)$ is a closed set, by Proposition 2.4, there exists an integer l such that $f^{-1}(L_k) \cap C(x, \mathfrak{F}_l) = \phi$. Put $m = \max\{k, l\}$, and then

$$f^{-1}(L_m) \cap C(x, \mathfrak{F}_m) = \phi.$$

By Proposition 2.2 (c), we can put $F = C(x, \mathfrak{F}_m) \in \mathfrak{F}_m$, and therefore $L_m \cap f(F) = \phi$. Since $y \in f(F)$,

$$L_m \cap C(y, f(\mathfrak{F}_m)) = \phi.$$

This contradicts the fact that $L_n \subset C(y, f(\mathfrak{F}_n))$ for each n. Hence (3) is valid. From (3) and countable compactness of C(x), we obtain

$$\left[\bigcap_{n=1}^{\infty} f^{-1}(L_n)\right] \cap C(x) \neq \phi.$$

Therefore $\bigcap_{n=1}^{\infty} L_n \neq \phi$. This implies that $\{y_n\}$ clusters in Y. Hence Y is an as- Σ -space. The proof is complete.

Recently, J. M. Atkins and F. G. Slaughter, Jr. ([1], [12]) established pull-back theorems for several spaces, such as metrizable spaces, Σ -spaces and M-spaces, etc. So, in the same way, we shall establish pull-back theorems for as-M-spaces and as- Σ -spaces. According to J. M. Atkins and F. G. Slaughter, Jr. [1], a continuous mapping f from

According to J. M. Atkins and F. G. Slaughter, Jr. [1], a continuous mapping f from X onto Y is said to be decomposable provided that $Y = Y_0 \cup [\bigcup \{Y_j | j = 1, 2, ...\}]$ where $f^{-1}(y)$ is countably compact for $y \in Y_0$ and Y_j is discrete as a set of points in Y for $j \in N$, and a closed mapping f from X onto Y is said to be almost quasi-perfect if f is decomposable and also Bdry $f^{-1}(y)$ is countably compact for y in Y. It follows immediately from the definitions that a quasi-perfect mapping is almost quasi-perfect.

THEOREM 4.2. Let $f: X \rightarrow Y$ be an almost quasi-perfect mapping from X onto Y. If Y and all the fiberes of f are as-M-spaces, then X is an as-M-space.

PROOF. Since Y is an as-M-space, there is a decreasing sequence $\{\mathfrak{F}_n\}$ of as-finite closed coverings of Y satisfying (M). Let $Y = Y_0 \cup [\cup \{Y_j | j \in \mathbb{N}\}]$ illustrate that f is decomposable. We can assume without loss of generality that Y_j 's are pairwise disjoint for $j \ge 0$ and Int $f^{-1}(y) \ne \phi$ for $y \in Y_j (j \ge 1)$. And, for $j \ge 1$ and $y \in Y_j$, there exists a decreasing sequence $\{\mathfrak{D}_{j,y,k}\}_{k=1}^{\infty}$ of as-finite closed coverings of $f^{-1}(y)$ satisfying

(M), because $f^{-1}(y)$ is an as-M-space. Now, set

(4)
$$R_k = X - \bigcup \{ \text{Int } f^{-1}(y) | y \in Y_i, \ 1 \le j \le k \},$$

(5)
$$\mathfrak{E}_k = \{R_k\} \cup [\cup \{\mathfrak{D}_{i,v,k} | y \in Y_i, \ 1 \le j \le k\}].$$

Then \mathfrak{C}_k is an as-finite closed covering of X, because $\{f^{-1}(y)|y\in Y_j\}$ is a discrete collection in X. Therefore,

$$\mathfrak{G}_k = f^{-1}(\mathfrak{F}_k) \wedge \mathfrak{E}_k,$$

is an as-finite closed covering of X.

To show that $\{\mathfrak{G}_n\}$ satisfies the condition (M), let $\{x_n\}$ be a sequence of points of X such that $x_n \in \operatorname{St}(x, \mathfrak{G}_n)$ for some fixed point x in X and for each $n \in \mathbb{N}$. Then,

(6)
$$x_n \in \operatorname{St}(x, f^{-1}(\mathfrak{F}_n)) \cap \operatorname{St}(x, \mathfrak{E}_n)$$
 for each $n \in \mathbb{N}$.

Case 1: There is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $f(x_{n_k})$'s are distinct for distinct k. Therefore,

$$f(x_{n_k}) \in f[\operatorname{St}(x, f^{-1}(\mathfrak{F}_{n_k}))] = \operatorname{St}(f(x), \mathfrak{F}_{n_k})$$
$$\subset \operatorname{St}(f(x), \mathfrak{F}_k) \qquad (k = 1, 2, \dots).$$

By the condition (M), $\{f(x_{n_k})\}$ has a cluster point in Y. Since f is closed mapping and $f(x_{n_k})$'s are distinct, $\{x_{n_k}\}$ clusters in X. Therefore $\{x_n\}$ has a cluster point in X.

Case 2: Case 1 does not hold, that is, there are a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and a point y in Y with $f(x_{n_k}) = y$ for each $k \in \mathbb{N}$. If $y \in Y_0$, then $\{x_{n_k}\}$ has a cluster point in $f^{-1}(y)$ because $f^{-1}(y)$ is countably compact. So, let $y \notin Y_0$. Then $y \in Y_j$ for some $j \ge 1$. If $x_{n_k} \in \text{Bdry } f^{-1}(y)$ for infinitely many integers k, then $\{x_{n_k}\}$ has a cluster point in Bdry $f^{-1}(y)$ because Bdry $f^{-1}(y)$ is countably compact. Therefore we may assume that

(7)
$$x_{n_k} \in \text{Int } f^{-1}(y) \qquad (j \le n_1 < n_2 < \cdots).$$

From (4), (5), (6) and (7), we obtain

$$x \in \operatorname{St}(x_{n_k}, \mathfrak{C}_{n_k}) = \operatorname{St}(x_{n_k}, \mathfrak{D}_{j,y,n_k})$$
 (for each $k \in \mathbb{N}$).

Consequently, $x \in f^{-1}(y)$ and $x_{n_k} \in \text{St } (x, \mathfrak{D}_{j,y,n_k})$. Hence $\{x_{n_k}\}$ has a cluster point in $f^{-1}(y) \subset X$. This shows that X is an as-M-space. The proof is complete.

COROLLARY 4.3. Let $f: X \rightarrow Y$ be a quasi-perfect mapping from X onto Y. Then X is an as-M-space if and only if Y is an as-M-space.

Theorem 4.4. Let $f: X \to Y$ be an almost quasi-perfect mapping from X onto Y. If Y and all the fibres of f are as- Σ -spaces, then X is an as- Σ -space.

PROOF. Case 1: f is a quasi-perfect mapping. Let $\{\mathfrak{F}_n\}$ be a sequence of as-finite closed coverings of Y satisfying the conditions (a), (b) and (c) in Proposition 2.2. Put $\mathfrak{L}_n = f^{-1}(\mathfrak{F}_n)$, and then $\{\mathfrak{L}_n\}$ is a sequence of as-finite closed coverings of X by [9, Theorem 5.3]. To show that $\{\mathfrak{L}_n\}$ satisfies (Σ) , let $\{x_n\}$ be a sequence of points of X such that $x_n \in C(x, f^{-1}(\mathfrak{F}_n))$ for some point x in X and for each $n \in \mathbb{N}$. Then $f(x_n) \in C(f(x), \mathfrak{F}_n)$, and therefore $\{f(x_n)\}$ has a cluster point in Y. Since f is a closed mapping and $f^{-1}(y)$ is countably compact for each $y \in Y$, $\{x_n\}$ has a cluster point in X.

Case 2: general case. (The proof of this case is the same as that of [1, Theorem 5.2 (d)]. Let $Y = Y_0 \cup [\bigcup \{Y_j | j=1, 2, ...\}]$ illustrate that f is decomposable, where Y_j 's are pairwise disjoint for $j \ge 0$ and $\text{Int } f^{-1}(y) \ne \phi$ for $y \in Y_j$ $(j \ge 1)$. For each $y \in Y_j$ $(j \ge 1)$, we pick up a point x_y of $\text{Int } f^{-1}(y)$, and set

$$X_0 = X - \bigcup \{ \text{Int } f^{-1}(y) - \{x_y\} | y \in Y_j, j \ge 1 \}.$$

Then X_0 is a closed subset of X and $f|X_0: X_0 \to Y$ is a quasi-perfect mapping from X_0 onto Y. By Case 1, X_0 is an as- Σ -space. Put $X_j = f^{-1}(Y_j) = \bigcup \{f^{-1}(y) | y \in Y_j\}$ for $j \ge 1$. Then X_j is an as- Σ -space by virtue of the fact that X_j is a discrete union of as- Σ -spaces. By Theorem 2.6, $X = \bigcup_{j=0}^{\infty} X_j$ is an as- Σ -space. The proof is complete.

Corollary 4.5. Let $f: X \rightarrow Y$ a quasi-perfect mapping from X onto Y. Then X is an as- Σ -space if and only if Y is an as- Σ -space.

References

- [1] J. M. Atkins and F. G. Slaughter, Jr., Pull-back theorems for closed mappings, to appear.
- [2] R. W. Heath, On spaces with point-countable bases, Bull. Acad. Polon. Sci. Ser. Sci. Math., 13 (1965), 393–395.
- [3] R. E. HODEL, Sum theorems for topological spaces, Pacific J. Math., 30 (1969), 59-65.
- [4] T. Ishii, On closed mappings and M-spaces I, Proc. Japan Acad., 43 (1967), 752-756.
- [5] A. Miščenko, Spaces with point-countable base, Soviet Math. Dokl. 3 (1962), 855-858.
- [6] K. Morita, Products of normal spaces with metric spaces, Math. Ann., 154 (1964), 365-382.
- [7] K. NAGAMI, Y-spaces, Fund. Math., 65 (1969), 169-192.
- [8] J. Nagata, Modern general topology, Wiley (Interscience), New York (1968).
- [9] S. SASADA, A generalization of locally finite collections, J. Fac. Educ. Tottori Univ., Nat. Sci., 23 (1972), 164–178.
- [10] T. Shiraki, M-spaces, their generalizations and metrization theorems, Sci. Rep. Tokyo Kyoiku Daigaku, Ser. A, 11 (1971), 57–67.
- [11] F. SIWIEC and J. NAGATA, A note on nets and metrization, Proc. Japan Acad., 44 (1968), 623-627.
- [12] F. G. Slaughter, Jr., Some new results on inverse images of closed mappings, Pacific J. Math., to appear.

		1
		i
		-
		!
g .		
ø		
	r	
•		
. .		