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1. Introduction

In our previous paper [9], we have introduced the notion of as-finite collections which
is a generalization of locally finite collections, and studied their properties. And now
as a continuation of the study, we will bring in the notions of as-M-spaces (resp. as-
Y-spaces) defined in terms of as-finite closed coverings, which are generalizations of
M-spaces (resp. X-spaces) introduced by K. Morita [6] (resp. K. Nagami [7]). And
we will investigate several properties of these spaces.

For a sequence {1} of open (or closed) coverings of a topological space X, we shall
consider the following conditions:

™) { If {x,} is a sequence of points of X such that x, < St(x,, 2[,)!) for each n and
for some fixed point x, of X, then {x,} has a cluster point in X.

(2) { If {x,} is a sequence of points of X such that x,& C(x,, 2,)?’ for each n and
for some fixed point x, of X, then {x,} has a cluster point in X.

A space X is an M-space [6] if and only if there exists a normal sequence {21,} of open
coverings of X satisfying the condition (M). A space X is an M*-space [4] if and only
if there exists a sequence {U,} of locally finite closed coverings of X satisfying the condi-
tion (M). A space X is a Y-space [7] if and only if there exists a sequence {,} of
locally finite closed coverings of X satisfying the condition ().

In the definitions given above, we can assume without loss of generality that the se-
quence {St(x, 1)} (or {C(x, U,)}) is decreasing. Then a sequence {x,} satisfying the
condition (M) (or (2)) is certainly an ac-sequence (cf. Definition 1.1). This fact leads
us to introduce the following notions of spaces, where the term ‘“locally finite” in the
definitions of M*-spaces and X-spaces is replaced by ‘‘as-finite”.

DerFiNiTION 1.1 ([9]). A sequence {x,} of points of X is said to be an ac-sequence
if each subsequence of {x,} has a cluster point in X. A collection F={F,Jac A} of sub-
sets of X is as-finite if and only if {x€ 4|F,N S+ ¢} is finite for every ac-sequence {x,},
where S={x,|neN}.

Evidently, every locally finite collection is as-finite and every as-finite collection is
point-finite.
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DeriNiTION 1.2, A space X is an as-M-space if and only if there exists a sequence
{W,} of as-finite closed coverings of X satisfying (M).

DerFINITION 1.3, A space X is an as-Y-space if and only if there exists a sequence
{i,} of as-finite closed coverings of X satisfying ().

Obviously, as-M-spaces (resp. as-3-spaces) include all M-spaces and M*-spaces
(resp. X-spaces). In quasi-k-spaces, as-M-spaces (resp. as-X-spaces) are M*-spaces
(resp. 3-spaces) [9, Corollary 4.1].  And every closed subspace of an as-M-space (resp.
as-X-space) is also an as-M-space (resp. as-X-space).

The main results of this paper are as follows:

(I) 1If a space X is a countable sum of closed as-Y-spaces, then X is an as-Y-space
(Theorem 2.6)

(I) If {X,lec A} is an as-finite closed covering of X and each X, is an as-M-space
(resp. as-2-space), then X is an as-M-space (resp. as-Y-space) (Theorem 2.7).

(IIT) Let X be a regular as-X-space with point-countable base. If X has the property
(0*) [9], then X is a metrizable space (Theorem 3.4).

(V) If f: X—>Y is a quasi-perfect mapping, then X is an as-M-space (resp. as-3-
space) if and only if Y is an as-M-space (resp. as-2-space) (Corollary 4.5).

Throughout this paper, topological spaces are assumed to be T-spaces, and map-
pings to be continuous. And N denotes the sct of positive integers. As for terms and
symbols in general topology, see [8] and [9, §2].

2. Some properties of as-M-spaces and as-3-spaces

ExAmMPLE 2.1.  An as-M-space need not be an M*-space.

Proor. Let X be a subspace NU {x*} of Stone-Cech’s compactification SN of
integers N, where x* is a point of SN-N. Then X is a paracompact T,-space with
G,-diagonal which is not metrizable. Assume that X is an M#*-space. Then X is an
M-space since it is paracompact. Therefore X is metrizable; this contradicts the above.
Hence X is not an M*-space. To show that X is an as-M-space, put S ={x}xeX}
for each n. Then {§,} is a sequence of closed coverings of X satisfying (M). Since
{x,/neN} is finite for every ac-sequence {x,} in X, §, is as-finite. Therefore X is an
as-M-space.

ProrosiTioN 2.2. Let X be an as-X-space. Then X has a sequence {&,} of as-finite
closed coverings of X satisfying the following conditions (a), (b) and (¢):

(@) (.} satisfies ()

(b) CCx, Fpe)C(x, &)  for each n and for each xe X.

© C(x, )T,  for each n and for each x X.

Proor. Let {U,} be a sequence of as-finite closed coverings of X satisfying (3). And
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n
let §, be the collection of all finite intersections of elements of A U,, for each n. Then
=1

{&.} is a sequence of as-finite closed coverings of X satisfying (a), (b) and (c).

ProrosiTiON 2.3. Let X be an as-M-space, and let {§,} be a decreasing sequence
(in the sense of refinement) of as-finite closed coverings of X satisfying (2). Then
the followings hold:

(1) S(x)=;o\ St(x, &) is a countably compact closed set for each point x in

n=1
X.

(2) For every open set U with S(x)C U, there exists a positive integer n such that

St(x, §)cU.

Proor. (1) Let {x,} be a sequence in S(x). Since x, € St(x, §,) for each n, by the
condition (M), {x,} clusters at some point y in X. For each n,

yel{xlizn}cSt(x, ) =Stx, §,).
yeSE)= A Sitx, ).

Therefore S(x) is a countably compact closed set.

(2) If not, then there exists a point x,& St(x, §,)— U for each neN. Since {&}
is decreasing and satisfies (M), {x,} clusters at some point y&S(x). This contradicts
the fact that ye{x,|[neN}cX—-U=X~U. The proof is complete.

The proof of the following proposition is similar to that of Proposition 2.3.

ProrosiTION 2.4. Let X be an as-3-space, and let {&.} be a sequence of as-finite
closed coverings of X satisfying the conditions (a), (b) and (c) in Proposition 2.2. Then
the followings hold:

(1) Cx)= ;O\ C(x, &) is a countably compact closed set for each point x in X.

n=1

(2) For every open set U with C(x)c U, there exists a positive integer n such that
Clx, FHcU.

ProposiTION 2.5. Let X be an as-M-space, let C be a countably compact subset of
X, and let {§,} be a decreasing sequence of as-finite closed coverings of X satisfying
(M).  If {x,} is a sequence of points in X such that x,€St(C, &,) for each n, then {x,}
clusters in X.

Proor. For each n&€N, there exist an element F,e &, and a point v, of X such that
x,&F, and y,€F,NC+#¢. Since C is a countably compact set, {y,} clusters at some
point yo of C and {Fe §,|Fn C= ¢} is finite, by [9, Corollary 3.2]. Put

Uyo)=X—~U{FeFIFNC+¢, yo&F}.
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Then U,(y,) is an open nbd of y,. Now,
Therefore, put A, (yo)=X— U{Feg,y,&F}, and then

Un(yO)CAn(yO)U[U{Fegnu?nc:(p}]

Since yq is a cluster point of {y,}, there exists an increasing sequence {k,} of integers such
that k,=n and y, €U, (y,) for each neN. Then y,, & U{FEF,|F N C=¢}, because

Vi, €C. Consequently, y,, €4,(yo) for each n; this implies that y,&F whenever
I EFEE, Therefore

xkn € St(yk,p ?k,,) e St(yk,,’ %n) C St()’o, g'n)-
By the condition (M), {x,} clusters in X. This completes the proof.

Tueorem 2.6. Let {X,/neN} be a countable closed covering of a space X. If
each X, is an as-X-space, then X is an as-2-space.

Proor. Let {2;;}%; be a sequence of as-finite closed coverings of X, satisfying (2)
(i=1,2,...). Put

Then §, is an as-finite closed covering of X(n=1, 2, ...). To prove that {&,} satisfying

(2), let {x,} be a sequence of points of X such that x, C(x,, &,) for some point x, in
X and for each n=N. Choose an integer k with x, X,, and then for each n=k

xnE C(XO, gn)cc(xm u;cn):C(an ukn)'
Therefore {x,|n=k} clusters in X. The proof is complete.

Tueorem 2.7. Let {X,aeA} be an as-finite closed covering of a space X. If
each X, is an as-M-space (resp. as-2-space), X is also an as-M-space (resp. as-2-space).

Proor. For each ac4d, let {§,,}ix, be a sequence of as-finite closed coverings
of X, satisfying (M) (resp. (2)). Put 6,=U{¥, JecA4}. Then G, is an as-finite closed
covering. Since {X,|as A} is point-finite, {®,} satisfies the condition (M) (resp. (2)).
The proof is complete.

COROLLARY 2.8. Let = COJ &, be a a-locally finite closed covering of a space X.
n=1

If each FE§ is an as-2-space, then X is an as-X-space.

The following corollaries are derived immediately from Hodel’s sum theorems [3;
I, II] and Theorem 2.7.
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COROLLARY 2.9, Let = v G, be a o-locally finite open covering of a space X
1

n=

such that the closure of each element of ® is an as-M-space (resp. as-2-space). Then
X is an as-M-space (resp. as-X-space).

CoROLLARY 2.10. Let G= \3 &, be a o-locally finite open covering of a space
n=1

X, each element of which is an as-M-space (resp. as-3-space) and has compact bounda-
ry. Then X is an as-M-space (resp. as-X-space).

3. Metrization of as-X-spaces

In [10], T. Shiraki proved that every X-space with a point-countable pseudo-base?)
is a o-space. By making slight modifications of the proof of this theorem, we can prove
the following theorem.

TraeorEM 3.1. Every as-X-space X with a point-countable pseudo-base has a o-
as-finite closed net*),

For the proof of this theorem we need the following Lemma.

Lemma 3.2 (A. MisCenko [S]). Let U be a point-countable collection of subsets of
a set X, and Y a subset of X. Then there are at most countably many finite mini-
mal coverings of Y by elements of W, where by a minimal covering we mean a
covering which contains no proper subcovering.

Proor of Theorem 3.1. Let {&,} be a sequence of as-finite closed coverings of X

satisfying the conditions (a), (b) and (c) in Proposition 2.2, and let U be a point-count-
able pseudo-base for X. Let us denote by & ={C,lasA,;} the set of distinct ele-
ments of {C(x, F)lxeX}. Then F,c§; and
(1) @&, is an as-finite closed covering of X.
By Lemma 3.2, the collection of finite minimal coverings of each C;, by elements of U is
at most countable, and it can be denoted by {wj*|keN}. Then M, ={U|U € wj?,
k=N} is countable and hence the collection B;, of all finite unions of sets of I, is also
countable. Therefore we can write

’sBia={Vi1a, Viza,-.., Vj-a,...}.
Put ,;={C,N(X—-Vi*)lac4;}. Then

(2) &, is an as-finite closed collection of X.
Therefore, by (1) and (2),

3) - A collection 11 of open subsets of a space X is called a pseudo-base of X if {»}=n{U|x U e 1} for
each xe X.

4) A collection B of subsets of a space X is called a net for X if for each x& X and open nbd U of x there
exists a BE®B such that x&BC U,
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m=[n\=/1{§;z] U [ }i] Bij]

is g-as-finite closed collection of X.
That 9 is a net for X is proved in the same way as in the proof of [10, Theorem 1.1],
by using Proposition 2.4. This completes the proof.

CoroLLARY 3.3. If X is an as-Y-space with point-countable base, then X is a
developable space.

Proor. Since X has a point-countable base, X is a first countable space. There-
fore, by Theorem 3.1 and [9, Theorem 4.6], X is a o-space. By [I1, Proposition 4],
X is a semi-metrizable space, since X is a first countable o-space. Consequently, by
[2, Theorem 1], X is developable. The proof is complete.

THEOREM 3.4. Let X be a regular as-X-space with point-countable base. If X
has the property (w*) (cf. [9]), then X is a metrizable space.

Proor. By Corollary 3.3, X is a developable space, and therefore X is a subpara-
compact space. Hence, by [9, Proposition 6.2], X is paracompact. Consequently X
is metrizable. The proof is complete.

CorOLLARY 3.5. Every collectionwise normal as-3-space X with point-countable
base is metrizable.

4. Mapping theorems

TueoreM 4.1, Let f: X—Y be a quasi-perfect mapping from X onto Y.
(@) If X is an as-M-space, then so is Y.
(b) If X is an as-3 -space, then so is Y.

Proor. (a) Let {§,} be a decreasing sequence of as-finite closed coverings of X
satisfying the condition (M). Put 8,=£(§,), and then, by [9, corollary 5.2], {€,} is
a decreasing sequence of as-finite closed coverings of Y. For each sequence {y,} with
Yy €3t(y, £,), there exists an element F, of §, for each n such that {y, y,} < f(F,). Pick
up a point x, in f~!(y,) N F,#¢ for each n, and then x,&St(f~1(y), §,). By Proposi-
tion 2.5, {x,} clusters in X because f~(y) is countably compact. Since f is continuous,
{y.} also clusters in Y. Hence Y is an as-M-space.

(b) Let {&.} be a sequence of as-finite closed coverings of X which has been construct-
ed in the proof of Proposition 2.2. Put ,=f(&,), and then {€,} is a sequence of as-
finite closed coverings of Y by [9, Corollary 5.2]. To show that {,} satisfies (2), let
{v.} be a sequence of points of Y such that y,&C(y, f(§,)) for some point y in Y and for
each n. Put
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Then L,c C(y, f(§,)) because {C(y, f(F,)} is decreasing. Now let x be a fixed point
of f~1(y). Then

3 S7HL) N C(x)# ¢, for each neN.

The reason is as follows: Assume that f~1(L,)NC(x)=¢ for some keN. Since
UL, is a closed set, by Proposition 2.4, there exists an integer [ such that f~{(L,)nN
C(x, §)=¢. Put m=max{k, I}, and then

JHL)NCx, Fn) =0

By Proposition 2.2 (c), we can put F=C(x, &,)<€ &, and therefore L, N f(F)=¢. Since
yefF),

Lm ﬂ C(y’ f(%nz)) = qs’

This contradicts the fact that L, C(y, f(§,)) for each n. Hence (3) is valid.
From (3) and countable compactness of C(x), we obtain

LA EIINCE .

Therefore ;% L,+¢. This implies that {y,} clusters in Y. Hence Y is an as-3-space.
n=1

The proof is complete.

Recently, J. M. Atkins and F. G. Slaughter, Jr. ([1], [12]) established pull-back the-
orems for several spaces, such as metrizable spaces, Y-spaces and M-spaces, etc. So,
in the same way, we shall establish pull-back theorems for as-M-spaces and as-Y-spaces.

According to J. M. Atkins and F. G. Slaughter, Jr. [1], a continuous mapping f from
X onto Yis said to be decomposable provided that Y=Y, U[U{Y;lj=1, 2, ...}] where
S~1(y) is countably compact for ye Y, and Y, is discrete as a set of points in Y for jEN,
and a closed mapping f from X onto Y is said to be almost quasi-perfect if f is decom-
posable and also Bdry f~(y) is countably compact for y in Y. It follows immediately
from the definitions that a quasi-perfect mapping is almost quasi-perfect.

THEOREM 4.2. Let f: X—Y be an almost quasi-perfect mapping from X onto Y.
If 'Y and all the fiberes of f are as-M-spaces, then X is an as-M-space.

Proor. Since Y is an as-M-space, there is a decreasing sequence {&,} of as-finite
closed coverings of Y satisfying (M). Let Y=Y,U[U{Y;ljeN}] illustrate that f is
decomposable. We can assume without loss of generality that Ys are pairwise
disjoint for j=0 and Int f~1(y)#¢ for ye Y, (j=1). And, for j=1 and yY,, there
exists a decreasing sequence {D;,,}7; of as-finite closed coverings of f~1(y) satisfying
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(M), because f~!(y) is an as-M-space. Now, set
) R,=X~ U{lntf~(Wye Y, 1= =k},
® C={RJULU{D,,ilyeY), 1< j<k}].

Then €, is an as-finite closed covering of X, because {/~'(»lyeY;} is a discrete col-
lection in X. Therefore,

Or=f"'BIAE,,

is an as-finite closed covering of X,
To show that {6,} satisfies the condition (M), let {x,} be a sequence of points of X
such that x, € St(x, ,) for some fixed point x in X and for each neN. Then,

(6) %, & St(x, f~UF) N St(x, €,) for each neN.

Case I: There is a subsequence {x,,} of {x,} such that f(x, )’s are distinct for distinct

k. Therefore,

123

J@xu) € FISUx, f7H(Fu )= SUf(x), Fo)
CSt(f(x), & (k=1,2,..).

By the condition (M), {f(x,,)} has a cluster point in Y. Since f is closed mapping and
f(xy,)’s are distinct, {x,,} clusters in X. Therefore {x,} has a cluster point in X.

Case 2: Case 1 does not hold, that is, there are a subsequence {x, } of {x,} and a
point y in Y with f(x,,) =y for each keN. If yeY,, then {x,.} has a cluster point in
S71(y) because f~!(y) is countably compact. So, let y&Y,.. Then yeY; for some
jz1. If x, €Bdry f~1(y) for infinitely many integers k, then {x,.} has a cluster point
in Bdry f~1(y) because Bdry f~1(y) is countably compact. Therefore we may assume
that

@) Xy & Int f~1(y) (J=n <ny<--).
From (4), (5), (6) and (7), we obtain
xeSt(x,,, €,)=St(x,,, D;,n) (for each k=N).

Consequently, xe f~!(y) and x,, €St (x, D;,,,). Hence {x, } has a cluster point in

S7Y(y)cX. This shows that X is an as-M-space. The proof is complete.

CoroLLARY 4.3. Let f: X—>Y be a quasi-perfect mapping from X onto Y. Then
X is an as-M-space if and only if Y is an as-M-space.

THEOREM 4.4, Let f: X—Y be an almost quasi-perfect mapping from X onto Y.
If Y and all the fibres of f are as-Z-spaces, then X is an as-2-space.
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Proor. Case 1: f is a quasi-perfect mapping. Let {§,} be a sequence of as-finite
closed coverings of Y satisfying the conditions (2), (b) and (c) in Proposition 2.2.
Put £,=7"1(F,), and then {8,} is a sequence of as-finite closed coverings of X by [9,
Theorem 5.3]. To show that {€,} satisfies (2), let {x,} be a sequence of points of X
such that x,eC(x, f~1(&,)) for some point x in X and for each nN. Then f(x,)<
C(f(x), &), and therefore {f(x,)} has a cluster point in Y. Since f is a closed mapping
and f~!(y) is countably compact for each y< Y, {x,} has a cluster point in X.

Case 2: general case. (The proof of this case is the same as that of [1, Theorem
52 (d)]. Let Y=Y u[u{Y,] j=1, 2, ...}] illustrate that f is decomposable, where
Yy’s are pairwise disjoint for j=0 and Intf~i(y)#¢ for yeY,(j=1). For each
yeY;(jz1), we pick up a point x, of Int f~!(y), and set

Xo=X—-U{lnt f~{(»)—{x,}lyeY, jz1}.

Then X, is a closed subset of X and f|X,: Xo— Y is a quasi-perfect mapping from X,
onto Y. By Case |, X, is an as-Y-space. Put X,=f"YY)=U{f"‘'(nlyeY;} for
jz 1. Then X; is an as-2-space by virtue of the fact that X is a discrete union of as-

Y-gpaces. By Theorem 2.6, X =© X; is an as-d-space. The proof is complete.
j=0

CorROLLARY 4.5. Let f: XY a quasi-perfect mapping from X onto Y. Then X
is an as-X-space if and only if Y is an as-3-space.
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