フルテキストファイル | |
著者 | |
キーワード | Indefinite orthogonal group
moment map on symplectic vector space
canonical quantization
irreducible (g K)-module
K-type formula.
|
抄録 | The main aim of this paper is to show that one can construct (𝔤,K)-modules of O(p,q) associated with the finite-dimensional representation of 𝔰𝔩2 by quantizing the moment map on the symplectic vector space (ℂp+q) ℝ and using the fact that (O(p,q),SL2(ℝ)) is a dual pair. Then one obtains the K-type formula, the Gelfand–Kirillov dimension and the Bernstein degree of them for all non-negative integers m satisfying m + 3 ≤ (p + q)/2 when p,q ≥ 2 and p + q is even. In fact, one finds that the Gelfand–Kirillov dimension is equal to p + q − 3 and the Bernstein degree is equal to 4(m + 1)(p + q − 4)!/((p − 2)!(q − 2)!).
|
出版者 | World Scientific Publishing
|
資料タイプ |
学術雑誌論文
|
ISSN | 0129167X
|
EISSN | 17936519
|
掲載誌名 | INTERNATIONAL JOURNAL OF MATHEMATICS
|
巻 | 32
|
号 | 2
|
開始ページ | 2150009
|
発行日 | 2021-02
|
出版者DOI | |
著者版フラグ |
著者版
|
著作権表記 | Electronic version of an article published as INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32(2). https://doi.org/10.1142/S0129167X21500099. (C) World Scientific Publishing Company https://www.worldscientific.com/worldscinet/ijm
|
掲載情報 | Hashimoto Takashi. (g, K)-module of O(p, q) associated with the finite-dimensional representation of sl(2). INTERNATIONAL JOURNAL OF MATHEMATICS. 2021. 32(2). doi:10.1142/s0129167x21500099
|
部局名 |
附属教育研究施設
|
言語 |
英語
|
Web of Science Key ut | WOS:000626096300001
|