フルテキストファイル | |
著者 |
鈴木 宏和
Faculty of Engineering, Tottori University / Center for Research on Green Sustainable Chemistry, Tottori University
研究者総覧
KAKEN
Taketani, Tatsunari
Department of Engineering, Graduate School of Sustainability Science, Tottori University
Tanabiki, Misaki
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University
Ohara, Misaki
Department of Engineering, Graduate School of Sustainability Science, Tottori University
Kobayashi, Jyumpei
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University
|
キーワード | extra-cytoplasmic function sigma factor
IS4
IS701
IS1634
ISLre2
stress-induced transposition
thermophile
transposable element
|
抄録 | Geobacillus kaustophilus HTA426 is a thermophilic bacterium whose genome harbors numerous insertion sequences (IS). This study was initially conducted to generate mutant genes for thermostable T7 RNA polymerase in G. kaustophilus; however, relevant experiments unexpectedly identified that the organism transposed multiple IS elements and produced derivative cells that expressed a silent gene via transposition. The transposed elements were diverse and included members of the IS4, IS701, IS1634, and ISLre2 families. The transposition was relatively active at elevated temperatures and generated 4–9 bp of direct repeats at insertion sites. Transposition was more frequent in proliferative cells than in stationary cells but was comparable between both cells when sigX, which encodes an extra-cytoplasmic function sigma factor, was forcibly expressed. Southern blot analysis indicated that IS transposition occurred under growth inhibitory conditions by diverse stressors; however, IS transposition was not detected in cells that were cultured under growth non-inhibitory conditions. These observations suggest that G. kaustophilus enhances IS transposition via sigX-dependent stress responses when proliferative cells were prevented from active propagation. Considering Geobacillus spp. are highly adaptive bacteria that are remarkably distributed in diverse niches, it is possible that these organisms employ IS transposition for environmental adaptation via genetic diversification. Thus, this study provides new insights into adaptation strategies of Geobacillus spp. along with implications for strong codependence between mobile genetic elements and highly adaptive bacteria for stable persistence and evolutionary diversification, respectively. This is also the first report to reveal active IS elements at elevated temperatures in thermophiles and to suggest a sigma factor that governs IS transposition.
|
出版者 | Frontiers Media
|
資料タイプ |
学術雑誌論文
|
外部リンク | |
ISSN | 1664302X
|
掲載誌名 | FRONTIERS IN MICROBIOLOGY
|
巻 | 12
|
発行日 | 2021-03-24
|
出版者DOI | |
著者版フラグ |
出版社版
|
著作権表記 | (C) 2021 Suzuki, Taketani, Tanabiki, Ohara, Kobayashi and Ohshiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
|
掲載情報 | Suzuki Hirokazu, Taketani Tatsunari, Tanabiki Misaki, et al. Frequent Transposition of Multiple Insertion Sequences in Geobacillus kaustophilus HTA426. FRONTIERS IN MICROBIOLOGY. 2021. 12. doi:10.3389/fmicb.2021.650461
|
部局名 |
工学部・工学研究科
|
言語 |
英語
|
Web of Science Key ut | WOS:000637302700001
|