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1. Introduction

In this paper we show an interesting property of integers.

We discuss the integers having the following property: Let n = ab be an integer and a any
factor of n, then each integer a + b is a prime.

For example, the integers having this property are 6, 30 and so on.

In fact, since 6 =1 6 =2 - 3, thus we get prime numbers 1 + 6 =7 and 2 + 3 = 5; since 30
=1-30=2-15=3-10=5-6, we get prime numbers 1 +30=31,2+15=17,3+10=13, and
S5+6=11.

We consider the relation between this phenomenon and certain imaginary quadratic fields.

2. Definition of SP-Numbers

Definition. For a positive integer n, let a be any factor of n and b = nla.

The integer n is said to be Sum Prime number (abbreviated SP-number) if and only if
(1) each integer a+ b is a prime, if n =2 (mod 4),
(2) eachinteger (a + b)/2 is a prime, if n=1 (mod 4),
(3) eachinteger (a + b)/4 is a prime, if n =3 (mod 4).

Examples. We list up SP-numbers less than 1000.

(1) When n=2 (mod 4), SP-numbers are as follows:
2,6,10,22,30,42,58,70,78,82,102,130,190,210,310,330,358,
382,442,462,478,562,658,742,838,862,970.

(2) When n=1 (mod 4), SP-numbers are as follows:
5,9,13,21,25,33,37,57,61,73,85,93,105,121,133,145,157,165,
177,193,205,213,217,253,273,277,313,345,357,361,385,393,
397,421,445,457,541,553,565,613,633,661,673,697,733,757,
777,793,817,841,865,877,897,913,933,973,997.

(3) When n =3 (imod 4), SP-numbers are as follows:
7,11,19,27,43,51,67,75,91,115,123,147,163,187,211,235,267,
283,331,355,403,427,435,451,507,523,547,555,595,627,667,
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691,715,723,763,787,795,843,907.
We show the following propositions:

Proposition 1.  For a positive integer n = k’m such that k> 1 and m > | are integers, we
have the following:

(1) The integer n is not a SP-number if n =1 or 2 (mod 4).

@) Ifn=3(mod4)is a SP-number, then m =73 and k is a prime.

Proof.
(1) Forn=2(mod4), k+km=(1+m)kisnotaprime. Son=km isnota SP-number.

Forn=1 (mod 4), I+m is an integer and 1+m
k+km 1+m

—2—k is not a prime.

>1since ¥ =m=1 (mod 4) and m > 1.

Thus

k+km 1+m l+m

(2) Since n=3 (mod 4) is a SP-number,

1

k isaprime. Hence

and kis a prime by k> 1. It follows that m = 3 and & is a prime.

Remark. The examples of the case (2) of Proposition 1 are 27 = 3%.3,75=5%.3,147 =
7% -3 and so on.

Proposition 2. If n =3 (mod 4) is a SP-number, then n =7 or n =3 (mod 8).

Proof. lLetn=ab=3(mod4). Oneofaand b iscongruentto 1 modulo 4 and the other
is congruent to 3 modulo 4. So we may assume thata=1 (mod 4) and b=3 (mod4). We put
a=4k+1and b =4[+ 3, where k and [ are non-negative integers.

Since n = ab is a SP-number, (a + b)/4 =k + [+ 1 is a prime.

ITk+l+1=2thenk=1land/=0,ork=0and/=1. Ifk=1and=0, then we have n
=15. Butn=15isnota SP-number. If k=0and /=1, then we get n =7, which is a SP-
number.

Ifk+1+1isanodd prime, thenk +/iseven. Hencewehavek=/=0(mod2)ork=l=
1 (mod2). Ifk=l=0(mod?2),thenwehavea=1(mod8)andb=3 (mod8). Son=ab=3
(mod8). Ifk=/=1(mod2),thenwehavea=5(mod 8 andb=7(mod8). Thusn=ab=
3 (mod 8).

This completes the proof of Proposition 2.

3. A Sufficient Condition for SP-Numbers
In this section we give a sufficient condition for SP-numbers.
We consider only imaginary quadratic fields Q(~/d ), where d is a negative square-free
rational integer.
Let A be the discriminant of Q(+/d ) with

A [4d i d=23(modd),
T ] d if d=1(mod4).
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Let C, be the class group of Q(VZ) , and h, the class number. We say that the exponent
e, of C,is the least positive rational integer n such that " is principal for all ideals  of Q(~/d ).

We have the following theorems.
Theorem 1. Ife,=1and\dl# 1,3, thenldl is a SP-number.
Theorem 2. [fe,=2 and A=0 (mod 4), then |d| is a SP-number.

Theorem 3. Ife,=2,A=5 (mod8), and (1 +1AD/4 is not a square, then |Al=1dl is a SP-
number.

Remark. If A =1 (mod 8), i.e., IAl =7 (mod 8), then |Al = 7 is only SP-number by
Proposition 2, in which case we have ¢, = 1. Henceif ¢, =2 and A= 1 (mod 8), then we have
no SP-numbers.

Proof of Theorem 1. The exponent ¢, = 1 if and only if the class number A, =1. Itis
known that the number of the imaginary quadratic fields Q(~/d ) with h, = 1 is finite. In fact,
these imaginary quadratic fields are in the following nine cases,

d=-1,-2,-3,-7,-11,~19,-43, - 67, - 163.

By our assumption, we assume that d #— 1, - 3.

Ifd=-2,thenldl=1-2and | +2=3isaprime. Henceldl =2 isa SP-number.
Otherwise, |dl = 3 (mod 4) and each idl is a prime. It is easy to check that each
(1 +1dly/4 is aprime. Thus we complete the proof of Theorem 1.

To prove Theorem 2 and 3, we describe some lemmas related to imaginary quadratic fields.
First, we give the following lemma (see Sasaki [2]):

Lemma 1. LetI=[a, b+ o] be a primitive ideal of Q(:/d ) with
N b+ @) <N(w)*. Thenlis principal if and only ifa=1ora=N (b + ).

The number @ is equal to +/d or (1 + +/d Y2 as A=0or 1 (nod 4), respectively.  The
number N () is the norm of ¢, that is, N (¢) = aor”, where «” is the complex conjugate of o

By using Lemma 1, we show the following lemma.

Lemma 2. Let p be an odd prime. If ey =2, (Aj =1, and p < M,, then p* = N (x + ®)

Jor a rational integer x, where (_,) is the Legendre symbol and M, = \[|A|/3 is the Minkowski
bound. P

Proof. By (A) =1, we have p= PP’ and P # P’, where P is the prime ideal and P’ is the
p
conjugate ideal of P.
The first step, we show that if p is odd, (Aj =1, and p < M,, then P* = [p*, x + @] for a
P

rational integer x. The second step, we prove that if e, = 2, then p* = N (x + w).
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We consider the case A =0 (mod 4).
Let P = [p, x; + w], where x, is a non-negative rational integer less than p.
Then we have

Pr= [pz, p (x; + @), (x; + )] = [pz, px, + p, X+ @+ 2x,0)

= [p% px, + po, X + d + 2x, ).

A N N
By (;)zl,wehavexiiO. Since p is odd and 0 < x; < p, we get ged (p, 2x)=1. Hence

there exist rational integers s and t with sp + 2tx; = 1.
Thus

S(px; + pw) + 1 (47 + d + 2x,0)
= (sp+2tx) x; — t (5] —d) + (sp +2tx) @=x; — 1 (x7 +1dl) + @.

By P=[p, x, + ®], we have N (x; + @) = x] + |d| =0 (mod p). Then xi +d| = pc for some
positive rational integer ¢, so we have
s (px; +pw@) +t (3 +d+2x,0) =x, ~ tpc + O
Moreover, we obtain that px, + p@w = tep® + p (x, — tpc + @), and
—espt 4+ 2x, (x) — tpe + @) = — csp2 + 200 2tx\pe + 2x,0
=—cspt 4+ X —d =2t pe + X5+ d + 2x,0 = — esp* + pe = 2tx,pe + X+ d + 2x,0
=—csp® + pe (1 =2mx) +x0+d+200=~ csp2 +pc-sp+ X +d+ 200
=xr+d+2x,0.
Therefore we obtain P* = [p?, x| — tpc + @).
Lety, =x, — tpc (mod p*) and 0 < y, < p*. We get P> = [p*, y, + o).
Similarly, putting P” = [p, x, + @], we can get P?* = [p*, y, + w] and 0 <y, < p’.
Since x; #x,, we have y, #y,. Wemay assume 0 <y, <y,. Sowehavey,=p’—y >y,.
It follows p* > 2y,.

By p < M,, we have p* <41dl/3. Ify, = |dl, then we get p* > 2y, = 21d|, which contra-
dicts to p* < 41dl/3. Therefore we get y, < Idl.

n vl vl ~ . . A
Setx=y,, weobtain P =[p~,x+ w]. Therefore we have proved that if p is odd, [—) =1,
and p < M,, then P* = [p*, x + w] for a positive rational integer x. P
Furthermore by e, = 2, we obtain that P* is a principal ideal.
Since x < Idl, we get
NG+ o =x+ld = (di- 1D +ldl=tdF =1dl + 1 <1d* = N (w)*.
Thus N (x + @) < N (0)*.

Therefore by Lemma 1, we obtain p* = N (x + ).

Next we consider the case A= 1 (mod 4).
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Let P = [p, x, + o], where x, is a non-negative rational integer less than p. We have
P =[p*, p (0 + @), (x, + )]
=[p?, px; + po, -1 +1d)A4+Q2x, + 1) o).

If ged (p, 2x, + 1) # 1, then we get 2x, + 1 = p since x, <p. Hence we have

— — 2 - 2 d
N(x,+co)=N(—p-—.l-+a)J:(P 1) P 1 1+ _p +ld
2 2 2 4 4

A
Since N (x; + w) =0 (mod p), we have d=0 (mod p), which contradicts to [——) =]1. There-
P
fore we get ged (p, 2x,+ 1) =1. By the same reason as in the case A =0 (mod 4), we obtain P*

=[p’, y; + ], where y, = x, — tpc (mod p?), and pc = xi + x, + (1 + Id|)/4. Similarly, we have
P2 =[p, y, + al.

We may assume y,; < y,.

Since p = 3and p <M, =./|d| /3 , we have |d| > 27.

If y, = (Id| - 3)/4, then we have p* > 2y, = (Id| - 3)/2 by y, = p* -y, > y,, which leads to a
contradicton. Therefore y, < (Id] - 3)/4.

Setx =y,, we obtain P*=[p*, x+ @]. Therefore we have proved thatif p is odd, [A] =1,
and p < M,, then P> = [p*, x + @] for a non-negative rational integer x. p
Furthermore by e, = 2, we obtain that P* is a principal ideal.
Since x < ({dI - 3)/4, we get

N(x+a))=x2+x+—1-a|—d-i—

<(zd|4—3)2+ -3, 1+l :[1;|d1}2 .

Hence N (x + @) < N ().
Therefore by Lemma 1, we obtain p* = N (x + ).
Thus we complete the proof of Lemma 2.

Remark. By p®=N (x + w), we have X’ < p*,i.e., x<p. Hence we get x =x;.
Furthermore we show the following lemma.

Lemma 3. Letldl=ab=2 (mod 4) be a square-free rational integer and p a prime.  If

A
a+b=0(nodp), then p is odd and [;] -

Proof. We puta+ b =pc, where ¢ = 1 is arational integer. Since a + b is odd, we get
p#2.

By ldl = ab = a (pc — a) = acp — &*, it follows a® = d (mod p). So we have (2a)’ =
A(mod p). If a=0 (mod p), then we have b =0 (mod p) since a + b=0 (mod p). Hence |d|
=0 (mod p*), which contradicts to d being square-free. Therefore we get a# 0 (mod p).
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Thus we obtain (A) =1, which completes the proof of Lemma 3.
p
By the same lines as in the proof of Lemma 3, we can prove the following two lemmas.

Lemmad4. Letldl=ab=1 (mod4) be a square-free rational integer and p a prime. If
a+b =( (mod p), then p is odd and A =1.
p
Lemma 5. Letldl = ab=3 (mod 8) be a square-free rational integer and p a prime. If
a+b

=0 (mod p), then p is odd and [—é =1.
p

Using the above lemmas we prove Theorem 2 and 3.

Proof of Theorem 2. First, we consider the case of |d| = ab =2 (mod 4).
To prove that Id| is a SP-number, we assume that a + b is not a prime and p is the least
prime which divides a + b. Let ¢ = (a + b)/p.

By Lemma 3, we obtain that p is odd and (A) =1.
We have a + b = 1 + ldl, because p

l+ldl-(a+b)=1+ab-a-b=(a-1)(b-1)=20.

Hence we get p* < a+b = 1 +1dl.

Since e, =2, we have ldl 2. Hence ld]l = 6, it follows 1 + Idl <4 1d|/3. Thus we get
pr<4ldi3, ie., p<.|A|/3 =M,.

Therefore by Lemma 2, we obtain p* = N (x + @) = x* + |d| for a positive rational integer x.

If x=1,then p® =1 +Id|, thatis, |dl = p*~ 1= (p + 1) (p — 1) = 0 (mod 4) as p # 2, which
leads to a contradiction.

Thus we get x> 1 and

a+b=pczp'=x+1dl>1+Id.

So we have a + b > 1 + |dl, which contradictstoa+ b = 1 + ldl.

Therefore a + b is a prime.

Second, we consider the case of ldl = ab =1 (mod 4).

By the same way as mentioned above, assume that (a + b)/2 = pc, where p is the least prime
divisor of (a + b)/2.

By Lemma 4, p is odd and (é—j =1.

P
Since e, =2, we have |dl# 1. Hence ld| = 5, it follows

atb _ 1+|d|

2 2

<1+[di<il—d~1.
3

Thus we get p < M,.

By Lemma 2, we obtain p* = N (x + @) = x* + |d| for a positive rational integer x.

By the same reason as above, we have x> 1. Sop*=x*+Idl> 1 +1dl.

Hence we get a + b > (a + b)/2 = p* > 1 + |d|, which leads to a contradiction. This
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completes the proof of Theorem 2.
Furthermore we prove Theorem 3 by the same lines as in the proof of Theorem 2.

Proof of Theorem 3. Assume that |d| = ab and (a + b)/4 = pc, where p is the least prime
divisor of (a + b)/4.

By Lemma 5, p is odd and (A) =1.
p
Since e, =2, we have [d1# 3, 11, 19. Hence ldl > 19.

We have
- a+15mS 1+ld _ [_[Z{_M
PENTLT 3T SN T
By Lemma 2, we have p* = N (x + @) = x> + x + (1 + |d1)/4.
So we have
a+b=pc = p=Rrx+ 1+|d| . 1+{d|,
4 4 4

because (1 + |d})/4 is not a square, we have x # 0.
Therefore we get (a + b)/4 > (1 +1dD/4,1.e.,a+ b> 1 +1dl, which leads to a contradiction.
This completes the proof of Theorem 3.

4. Numerical Observation of SP-Numbers

In section 3, we give a sufficient condition by Theorem 1, 2, and 3. It is known that there
are only finitely many imaginary quadratic fields with e, = 2 (see Chowla [3] or Weinberger
[4]). Butit seems that there are many SP-numbers.

In section 2, we list up SP-numbers less than 1000. In the list there are 123 SP-numbers;
if n =2 (mod 4), there are 27 SP-numbers, if n = 1 (mod 4), there are 57 SP-numbers, and if n =
3 (mod 4), there are 39 SP-numbers.

There are 2728 SP-numbers less than 100000.

The following table shows the number of SP-numbes and prime numbers less than x.

[ | SP-numbers 1 prime numbers

100 31 25
1000 123 168
10000 532 1229
100000 2728 9592

By the above table, it seems that there are less SP-numbers than prime numbers. In fact
we observe that there are less SP-numbers than prime numbers if n = 257.
Are there infinitely many SP-numbers ?
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