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1 Abstarct
b ith(x) 1 ith(c) 1 .
It is known [E or D] that A g(x)e™ Vdx = Zﬂa—l—‘—l—g(c)e 1+0 i where a is the complex number
2 th”((,‘)
with modulus 1.

In this paper we have detailed results including the dependancy of O term.

In [G], we apply the Theorem 1 and
N .
Theorem 2 (below) to estimate the order of Y 2™ (onlogn+hn,

n=l1

2 Lemmas
The following Lemma 1, 2, and 3 runs the same lines as that of [D]. We treat carefully the depen-
dency of O term.

Lemma 1.

Let o, B, a, and d be real numbers such that d#0,0 < a+ 1< . Then we have, for
b—> 001 = oo,

be%i“"“’-"ﬂ)dx:A : e)i:;ﬂ)/ﬁ _1% (a+1)‘ﬂ%'leweim+0 plosn-p__1 }
0 B(ldle i t

Ban?
where N = dbPt, the constant implied by the O is absolute and

1 okl
e? ﬂ”r[ﬁ”—lj ifd>0
A:J.wx(a-l»l)/ﬁeiudu: ﬂ

ety ’
; O

Proof. We setd >0 and u = dtx’.

We have
iat B
bxaeil(nﬂlxﬁ)dx _ e db tu(a+1)/ﬁﬁleiudu
0 Blan B Jo )

We have to prove that the integral L ut e du converges for O<A=(a+1)/p<1.
parts, we have

Integrating by

Al i T aaw A=1{= 3.,
J u/'t lemdu:__._Nl lezN_l_ : J. L{l 26’“du,
N 14 1 N
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The function #*? is monotone decreasing. Applying the second mean value theorem to the real and

imaginary parts, we obtain

.[ W leMdy = —l_lele'-N +O(N*?)
N i

as N — oo , where the constant implied by the O absolute. Then we obtain

e (Pl in e =1 g p*HP
mﬁ(dt)(a”)/ﬁ JNu e du:wﬁ(dl)(a“)/ﬁ -i—(db e +0 B
:ib(a+l)*ﬁ L, o b'”'"i ,

id Bt B(dr)

the constants implied by the O’s are absolute.

Lemma 2. Suppose that the real functions g(x) and h(x) satisfy the following conditions:
Forxe (0,bl and =0, f=2,

I g =Dx*(1+0®), h(@ =a+dP (1 +f&x), as x— 0;
where 6 and f are continuous in (0, b) with 8(0) = f(0) = 0;

2. g(x) is continuous, h(x) twice continuously differentiable, and b’ (x) # 0, where &, B, a, d, and D
are real constants such thatd#0,D #0.
d ( 8(x)

i ‘h‘,‘(;)‘j has a constant sign as x —> 0 and x — b.

Under these conditions, as t — oo, we have, for sufficiently small 5> 0,

b ,
J. g(x)e”h(x)dx
o

iat —(o+1)/ B
= AD e(w)/ﬁ +ol 4 D (Mll),ﬁ ro|l Ll+o
Blldle) Bt tf3

where the constants implied by the O’s and o are absolute.

8(5)
h'(8)

gb)
h'(b)

2

Proof. Without loss of generality, we may suppose d > 0. Consider the function

o(x) = x(d +df (x)"*,

which is continuous and rn-times continuously differentiable in [0, 8] C [0, b], and satisfies @(0) =0, ¢"(0)
=d">0.

It can be assumed that & has been chosen sufficiently small such that ¢ is strictly increasing in [0, 8].
Let ¥ (1) be its inverse function, continuous, n-times continuously differentiable, and strictly increasing in
the interval [0, ¢ (8)] satisfying ¥ (0) = 0, ¥ (0) = d™’.  Then we have

(W) = DY)  (1+0(F ) = Dd~Bu® + 0 (™), ¢))
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where the constant implied by the O is independent of ¢ and .
Devide the interval [0, b] into [0, 6] and [, b]. In the first interval, changing the variable by u =
¢ (x), we have

) . ©0(5) .
J‘ g(x)elth(.\')dx - J‘ g(\P(u))enh(‘P(u))\P/(u)du
0 0

9(5) . 8 o6
Dd—(aﬂ)/ﬂJ. uaetl(aJru )du+J. glezthl(u)du,
0 0

where, by virtue of (1),
()= g(¥)W' (u)— Dd™*Fy® = 0 ™),

and the constant implied by the O is independent of @ and 8.  We have

81(u) = O(Lto‘Jrl)/ﬁuﬁ_l = lO(uO‘"lj+2 Jas u—0,
oy (u) B

where /(1) = a + P, and the constants implied by the O’s are independent of ocand 8. Thus
P P
b hr s - 5 »
J g(x)em(‘x)dx:-" g(x)e’”(“)dx+J‘ g(x)e’“(")dx
i

_ Dd‘(‘”l)/ﬁj
0

0(5) 5 0(8) , b .
[x lt(a+u )d +.[ gl (M)elrh,(u)du_'_J g(x)elth(A)dx.
]

Now we consider the three integrals, respectively. By Lemma 1, we have, for N = t¢ (6

iat

jat
40(5)”& lt(n+uﬁ)d _ e A— € (a+1)/ﬁ e du.
b ﬁ (a+l)/ﬁ ﬂt(a-{-l)lﬁ

d | glx)
Since A°(x) # 0 on [0, b] and —(m] has a constant sign, we have
J g(x)e”h(‘)dx g(x) d PLOEN
it s (x) dx

_ 1 &b ) _ 8(5) ) _ljbeith(.x)i g(x) di=0 g(b) (%) |1
it| h'(b) () it Js dx\ h'(x) ' (b) h(5)

as f— oo, where the constants implied by the O is absolute.

81(x)
Since ;= dx\ K () has a constant sign, we have

j¢(5)gl(Lt)€”’71(")d 1 (p(a)g'("{) 2 it

it h{ () du
81((P(5)) oM@ _ &0 RO _lJ.(”(‘S)enhl(x)i &) x
i hl(fp(fS)) h{(0) it Jo dx | h(x)

Thus

() ithy (1)
J g (w)e™du| < -
0 t h(p(6))

2 &«p(é))‘: I % ofp(@ )
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Since or= 0, f=2, we have, as t — oo,

9(5) i () 2
we™Wdy=0| = |,
J:) & () B

where the constants implied by the O is independent of ¢, 3, 6, and .
Thus, for sufficiently small fixed §> 0, we have, as t —> oo,

b .
J‘ g(x)etth(x)dx
0

Dd—(a+1)/ﬁJ.q’(‘s)uaen(m“ﬂ)du + 0(_2_]_'_ 0([ jl}
0 i t

fat iat
—(a+1)/ B € € (a+1)/ﬁ—1 in 2
Dd {ﬁt(aﬂ)/ﬁ A= BB J d”}+ 0[ﬁt]

i)

K (b)| {H(0)
where the constants implied by the O’s are independent of &, 3, 6, b, N, and t. The second term of above

£(9)
H'(6)

g(b) l+
W (b)

equation is, as ¢ —> oo,

iat

- e

Dd (a+1)/ B ﬁ (aH)/ﬂJ. M(lx-l—l)/ﬂ —1 mdu
3

. it ; e 1 A-2
Dd™t HWW ("P(‘S)ﬁ) 40| pa P s (10(6)7)
pi A

— DB jiar+iN (w(é))a+lﬁ+0(Dd~(a+l)/ﬁ 1 (t(p(a)ﬁ)**zj

,8 ﬁt(aﬂ)/ﬁ
lﬁ [(oﬁ—l)/,B ﬂ(a+1)/ﬁ
Dd*(a+l)/ﬂ
=0 W .

where N = £ (8)” sufficiently large and the constants implied by the O and o are independent of &, 8, 8, N,
and ¢.

Thus, as t — <, we have

b .
j g(x)ezrh(x)dx
0

_ e " PpY o 1 HOOR
= DA ﬁ(dt)(aﬂ)/ﬁ + O( ﬁt(a+l)/ﬂ ]+ O(ﬁtj+ 0[[h'(b) W (5)

where the constants implied by the O’s are absolute. This completes the proof.

Lemma 3. Suppose that the real functions g(x) and h(x) satisfy the following conditions:
Forxe (c, b],
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L g)=DU+0®)hx)=a+dx-c) +f(x),as x — 0;

2. g(x) is continuous and h(x) is twice continuously differentiable and h(x) # 0, where a, d, and D
are real constants such that d # 0, D # 0. The function 0 and f are continuous in (c, b) with 0 (c) =
flo=0
i(i@_
dx\ h'(x)

Under these conditions, as t — oo, we have, for sufficiently small 6> 0,

jhas a constant sign as x —> ¢ and x — b.

b .
J g(x)ezih(x)dx

:AD%JF(;%]WG}O[(

where the constants implied by the O’s are absolute.

g
H'(b)

8(c+0).
W (c+6)

})

Proof. Substituting x by x — ¢, and putting ot =0, B =2, in Lemma 2, we obtain Lemma 3.

Lemma 4. Suppose that the real functions g(x) and h(x) satisfy the following conditions:
Forx € [a, ¢),
I. gx)=DU+00), kx)=a+dx-c)P( +f(x),asx — 0;
2. g(x)is continuous and h(x) is twice continuously differentiable and h" (x) #0, where a, d, and D are
real constants such that d#0,D#0. The function 8 and f are continuous in (a, ¢) with 0 (c) =f(c) =0,
d | d(x)
e

Under these conditions, we have, for sufficiently small 6> 0,

J has a constant sign as x — a and x — c.

(3 .
J‘ g(x)elth(x)dx

as t — oo, where the constants implied by the O’s and o are absolute.

g(c—§)

h(c—96)

g(a)
h'(a)

+

2

Proof. Substituting x by ¢ — x, in Lemma 2, we obtain Lemma 4.

3 Theorems

Theorem 1 (cf. [T: lemman 4.7, E]). Suppose that the real function g(x) is continuous and h(x) is
twice continuously differentiable on [a, bl, and h’(c) = 0 at just one point ¢ with a < ¢ < b, g(c) # 0,
and h"(¢) # 0.

Moreover, E B (x)

sufficiently small §> 0,

d (g(X)

jhas a constant sign as x = ¢ + 0 and x = ¢~ 0. Then we have for all
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J.:g(x)e”h("')dx =2 /mg(c) exp(lth(c) +—in sgn(h"(c))j

Y| _8© +0( jw [!g(c DINFEDINEON |g<b>lJ
NEETI I 5" @] o)

ast —> oo Of b —> oo, where the constants implied by the O’s and o are absolute.

Proof. By the mean value theorem, we obtain
h(x)=h(c)+(x—c)h’(c)+ %(x -0’ h(),

1 ” 2 h”(é)
=h{c)+—h —c) —=,
() 5 (e)x—=c) (o)
where £ is the number between ¢ and x.

Since A(x) is twice continuously differentiable, we have

KOl 1@, £ = 1 20 = i)
r()|,.,, R (x—c)? )

h"(&)
h”(¢)
fle)=0. Also we set 8 (x) continuous with 8(c) = 0 by g(x) being continuous. Applying Lemma 3 and
4 with =0, B=2, a=h(c) and d = h"(c)/2, we obtain

where & is continuous function of x. Thus we can set =1+ f(x), continuous function such that

b : b o b -
J. g(x)enh(x)dx — J g(x)e”"(")dx +J g(x)e”h(”clx
a a A

o]

+0[[ L |8e=0)

h'(c~8)
where the constants implied by the O’s and o are absolute.

8(b)
(D)

)

gle+9)
h(c+6)

F)

g(a)
h'(a)

This completes the theorem.

Theorem 2 ([cf.[Gr-Ko] [T: lemma 2.4])  Suppose g'(x) is monotone with g(x) > 0 and g'(x) < 0.
Suppose f(x) has twice continuously differentiable on [a, b] and also that f(x) is monotone. Let H; and
H, be such that H; < f'(x) S Hyand H=H,~H; + 2¢ (= 2). Then for any €> 0, we have

. b N
Z g(n)e2mf(n) —- Z g(x)eZn'l(_/(,\)—m.\)dx + O(g([l) log H),

nela,b) Hi—e<m<H,+e¥4

where the constant implied by the O is an absolute constant.

Proof. The proof runs along the same lines as [T].
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a

g ] b if (x b mif(x
Y g™ = [ g™ - g awiove, @

H=d

where ¢; = g(b)e”™? — g(a)e”™ .
Integration by parts shows that

[ s
= f(gxx) +2mif (2)g(0)e”™ MR-+ (0 W ()]
= [0 217 1800) oy + ) +letaes
where I, < 1. Since g’(x) is monotone,

Ing’(x)e

1 b ’ 1 1
< E-[T Ig (X)ldx < 5(|g(b) - g(a)l) < E(]g(b)l + lg(a)l)

And

j b277:if’(x)g(x)esz OP(xyde =Y .[ g(x)em I EmR) proy e (3)

mz0 7
Ifm < H,~¢gor H; + £ < m, then F'(x) — m is monotonic and non-zero on [, b].

Moreover f*(x)/(f (x) — m) is monotonic and g(x) is monotonely decreasing. By applying the second
mean value theorem to the real and imaginary parts, we have

j g(x)e2m(f(x)~mx)f (x)dx = _‘[ o(x) 7 §X) d(ezn'i(f(_x)~mx))

< 2g(a)[ j <dg(a)log(H, +&).

~ml

Thus if m > H, + ¢, the above is 2 Therefore we have

m—H,

H,
<4g(a) —t
m>§2+s m(m—H,)

J (x)e27rl(f(x) :m)f (x)dx
m>H2+£ m

=4g(a) Z { IH - %} <4g(a)log(H, +&)<4g(a)logH.

mzHy+e | T~ 415

We have the similar upper bound for the terms with m < H, —

g Y

m<H-& m(HZ m)

J. g(x)e2m(f(x) mx)f (x)dx

m<Hl-£ m

<4g(a)log(H, —€)<dg(a)logH.
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Therefore

b .
Z l g(x)e27rz(f(x)~mx)f/(x)dx

m<Hy—e,mzH,+e mda

<cyg(a)logH,

where l¢;l <8.
We integrate the remaning terms by parts to get

1 (? . 1
I= ¥ | af eV ax= 3 .
Hy—g<m<Hy+e,mz0 M va Hy—g<m<H, +&,m=0 2mim

2 |:g(x)627ri(f(x)—mx) T

H|~e<m<Hy+&,m#0 2mim

J.bg(x)e~27rimxd627rif(x)
a

a

b . . i
J. (g/<x)e—2mmx _ g(x)zmme—mex )62mf(x)dx

Hi—e<m<H,+&,m#0 2rimJa

Since
2mi(f(x)=mx) P
g(x)e 1 1
{—2———] sg(ig(b>|+|g(a>|) y o —
H—e<m<Hy+e,m#0 um a H~g<m<Hp+g,m#0 mi
and
1 (b oni A
. J. g'(x)e' mmerMf(x)dx
H\—e<m<H,+&,m#0 27im Ja
1 1
<—(lg®)|+g(a)] > —
2 ( )Hl —e<m<Hy+e,m#0 mrn
Thus
b 2ri( f(x)—mx) 1
=3 [ awe de+(g)+lg@le, Y =,
H|—g<m<Hy+e,m#0%4 Hy—~e<m<Hy+e,mz0 T
where lc, < 1.
Therefore
1 2 (x)-mx) pr 4
> ge Fxdx @
m#0 a

b N
=cyg(a)log H+ Yy L g(x)eXF M) g 4 (Ig(b)| + Ig(a)|)c4 Yy L

Hy~£<m< Hy+£,m#0 H)—e<m<Hy+g,mz0 TN

Therefore by (2), (3), and (4)
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b . b s b . ,
Zg(n)ez’“f(”) :J‘ g(x)eZIrzf(.x)dx_'_ z J. g(x)eZIU(f(,\)—m,\)dx
a a

Hy—e<m<H,+g,m#0
)

+c,8(a)log H + ¢ (|g(a)| + ’g(b)l) log H + ¢ (lg(a)l + Ig(b)

n=a

where |c5|< 1, |eg| < 3.

This completes the proof.

Reference

[B] N.G.deBruijn, Asymptotic Methods in Analysis, Dover, 1970.

[D] J. Diendonné, Infinitestimal Calculus, Hermann, 1971, (pp. 115-119).

[E] A.Erdélyi, Asymptotic Expansions, Dover, 1956.
Chap. 2, Sec. 2.9, The method of Stationary phase.

[G] XK. Goto, Application of the saddle point method to trigonometric series, preprint.

[Gr-Ko] S. W. Graham and G. Kolesnik, Van der Corput’s Method’s of Exponential Sums, London Mathematical
Society, Lecture Notes Series 126.

[T] E.C. Titchmarsh, The Theory of the Riemann zeta-function, Oxford, 1951.






