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§1. Introduction

In the stable homotopy theory, the computation of homotopy groups =, (X)
plays a central role, in a sense that it will generate a lot of theories by stimulating
thinkers of homotopy theory. But unfortunately, the problem to determine the groups
is very tough to attack. Ravenel introduced an L,-localization (c¢f. [5]), and =, (L,X)
is much easier to access than =, (X). In fact, some of the computations have been
done (¢f. [6]). Once we know the groups, then it will help to understand the
homotopy category of L,-local spectra. This is one of main problems in the homo-
topy theory. Of course, we get some information on the category of spectra from
them. Readers who have some interest in the stable homotopy theory, I recommend
to consult Ravenel’s books [4] and [5].

One way to compute the homotopy groups m,(L,X) of a spectrum X with
v 'BP(X) =0 (0 <j <n)is to use the Adams-Novikov spectral sequence. The E,-
term of it is an algebraic object Ext}p 5p)(BP,, v, 'BP, (X)), which we denote H*BP,(X).
One of the basic tools for computing those E,-terms is the Bockstein spectral sequence
introduced by Miller, Ravenel and Wilson in their celebrated paper [3]. The E,-
terms of the Bockstein spectral sequences are determined by Ravenel (¢f. [4]) in one
of his 1977 papers. Since then, many computations have been done (¢f. [6]). One
of good points of the Bockstein spectral sequence is, say, that it is easy to access
for a novice to compute it. This is why, T have decided to write down this article
for undergraduate students who know only definition of some elementary algebraic
terms. For this sake, the readers will not be required any knowledge of homotopy
theory. Besides, we will not use a word ‘Hopf algebroid’, though the idea of these
computations based on the theory of Hopf algebroids. Here I prove theorems elemen-
tary. So some of the proofs are more complicated than those used the facts on the
Brown-Peterson spectrum, and results on Hopf algebroids, spectra and the ring spec-
trum. For an undergraduate student, ‘colimit’ also seems hard to understand, and
so I will not use colimits of comodules either here. Moreover some elementary
explanations are added where it seems to be necessary.

As you have read above the homotopy groups are computed by the generalized
Adams spectral sequence. If we give a usual generalized Adams resolution over a
 spectrum X based on a ring spectrum E, then we can show its E,-term being
H*E,(X) by using the result of §3. In this sense, this contains necessary facts to
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understand the homotopy theory. Moreover, the way how to compute it is included,
by which many computations have been done (cf. [6]).

This article is organized as follows:

Cohomology of comodules

Homological algebra

The chromatic spectral sequence

The Bockstein spectral sequence

How to compute the Bockstein spectral sequences

Construction on elements X

7.1 The case where n >0

7.2 The case where n =0

In the next section, we introduce a cohomology H*M of a comodule M. Here H*M
means Ext}(B, M) over the Hopf algebroid (B, P) associated to the Brown-Peterson
spectrtum BP, if Ext groups are defined. Here we did not define Ext groups. We
just define a comodule M, and then define H*M as a cohomology of a cobar complex
over the comodule M. In section 3, we study the basic results of homological
algebra, without using words ‘injective’ nor ‘projective’. For example, H*M is shown
to be equivalent to another cohomology of a complex obtained from a(n injective)
resolution over M. To state the Bockstein spectral sequence, we define comodules
N; and M; in section 4. In section 5, we set up the Bockstein spectral sequence. The
title of the next section indicate what is written in it. In the last section, I present
how to obtain elements by which we can describe generators of the desired module
H*M;.

Nk W

§2. Cohomology of comodules

We begin with preparing some notation. First we define elementary terms:

DEerINITION 2.1. Let K be a commutative ring. We call M a (left) K-module if
1. M is an additive group, and
2. There exists an action ¢: K x M - M such that

(k+k)x =kx + k'x, (kk")x = k(k’'x) and k(x + x") = kx + kx’
for k, ke K and x, x'e M,

where we write kx = @(k, x).
If the second condition is replaced by

x(k + k') = xk + xk', x(kk') = (xk)k' and (x + x')k = xk + x'k

Jor xk = @'(x, k), where ¢': M x K > M, then we call M a right K-module. Besides,
it is a K-bimodule if it is a right and left K-module.

DEFNITION 2.2. Let K be a commutative ring. M is a K-algebra if
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1. M is a module,
2. M is a ring, and
3. there is a relation

k(xx') = (kx)x’

for ke K and x, x'e€ M. Furthermore, a K-algebra is called a K-bialgebra if it
further satisfies

{xx"k = x(x'k),
for ke K and x, x' e M.

DERINITION 2.3. A subset N of a K-module M is called a K-submodule of M
if it is a K-module by the addition and the action of M. A subalgebra of an algebra
is similarly defined.

DErFINITION 2.4. Let K be a commutative ring, M a right K-module and N a left
K-module. Then a tensor preduct M @ N of M and N is defined to be:

M®gN=M x N/R,
where R is a submodule of M x N generated by the elements
x+x,)— -,y y+y)—(y)—(xy) and (xk, y) = (x, ky),
where ke K, x, x’ e M and y, y' € N. We further denote
x®y
for an equivalent class of (x, ).

DerFINITION 2.5. Let K be a commutative ring, and M and N are K-modules.
Then a map f: M — N of K-modules is called a module map if

fe+y)=fx)+ f(y), and f (kx} = kf(x),
for x, ye M and ke K. If M and N are K-bimodﬁles, then we require
J(xk) = f(x)k

for a K-bimodule map f. Furthermore, let M and N be (bi-)algebras. A map
f:M — N is called an (bi-)algebra map if

1. f is a (bi-ymodule map, and

2. flxy)y=f)f(y) for x, ye M.

Now consider a polynomial algebra K[x,, X,,...] over the generators x,’s. Let
E = (e, e,,...) denotes a sequence of non-negative integers e, with e, = 0 except for
a finite number of n. Then we put

xF=x8x5...,
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and so any element ¢ e K[x,, x,,...] is expressed by

E=Y kpx®e K[x,x,5,...]
E
for kye K. Then the addition and the multiplication are given by

E+ & =Y (kp+kp)x® and &&= Y kpkpxEt,
E,F

E

where &' =) pkpx®.
Let Z, denote the ring of integers localized away from the prime p. That is,

Z, = {: eQlreZ,seZ— pZ}. We consider the Z,-algebras

B=2Z,[v,,v,,...] and P =B[t,t,,...],

the polynomial algebras over the generators v; and ¢, with dimension |v,| =2p' — 2 =
|:].
We also consider the Q-algebras

BQ = Q[m;,m,,...] and PQ = BQ[t,,t,,...],

where each gencrator m; has dimension 2p' — 2. The algebra B is supposed to be
embedded in BQ by the formula

n—1

(2.6) v, = pm, — Y, muPl,.
=

In the same way, P is embedded in PQ. Consider further K-algebra maps 7,
ng: BQ —» PQ defined by

"L(’nn) =m,
@7 l,
ﬂR(”%J = 2: nhtf
i+j=n

for n>0. Then PQ is a BQ-(bi)algebra by
bx =y, (b)x and xb = ng(b)x

for b e BQ and x € PQ, where the right hand sides are obtained by the multiplication
of PQ.

We now define a coproduct 4: PQ — PQ ®p, PQ to be a BQ-algebra map given
by the formula

2.8) Yo mAl = Y, mP @t

i+j=n i+jFh=n
Hereafter, we set that

my=1=t,, vy = D
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We also define a counit ¢ PQ — BQ to be a BQ-algebra map satisfying

0 n>0
8(t,.)={1 n—0

Then we see easily the following
ProrosITION 2.9.
en, = lpgg=eng and (e® lpg)d = lpg = (1po ® £)4.
Moreover we have

ProrosiTION 2.10. The coproduct A satisfies the coassociative law. That is,
(4 ® 1pg)d = (1po ® A)4.

Proor. If suffices to show it on each generator ¢, In fact, for any element
EePQ, E=) pkyt® and so

(4 ® 1pg)d(&) = ; k(4 ® 1pg)A(t)* = ; ke(1pg ® A" = (1pg @ H)A(E),
where (4 ® 1p0)A(t)" = (4 ® 1pg)A(t,)° (4 ® 1pg)4(t,)°2... as above.

Since A4 is a BQ-algebra map and PQ ®p, PQ is an integral domain, we see
that 4(1)=1® 1. By (2.8), we see that A(t;)=t; ® 1+ 1®1¢;, and so

A® 1)) =1, @11 +1QL® 1L+ 111, = (Lpy ® AA(t,).

Now suppose (4 ® 1p)4(t;) = (1po ® A)A(t;) for i <n. Apply (4 ® 1p9) on (2.8),
and we compute

Z m{4 ® 1PQ)A(tj)pi = Z ml.A(tj)p" ® tf”j

i+j=n i+jtk=n

M=

)y mAGY @ "

k=0 i+j=n—k
n
k=0 i+

i i+ J n—k
= mitP @ tf'" ® tf
i+jtT+k=n

i ity n-k
mit? @7 @ tf
jti=n—k

On the other hand, apply (1,9 ® 4) on (2.8),
Y mllpg®DAEY = 3 mif @A)

itj=n i+jTh=n

i+j=n—k

Il

M= Ip=

nr(m,_) ® A(tk)pn"k

k

i
o
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= Z 1®mn—kA(tk)pn7k
k=0
2: 1 C) n1i€fi() t£i+f
i+j+k=n

Y, mm)@g' g™

i+jt+k=n

Il

iy pi1+i2 i+
m th @@ tf
iy +iyTjtk=n

It

by (2.7). These show
Z m{d ® lPQ)A(tj)pi = Y. my(lpo ® A)A(tj)pi,

i+j=n i+j=n
which implies (4 ® 1p4)4(t,) = (1po ® A)4(t,) by the inductive hypothesis. g.e.d.

DerFINITION 2.11.  The (right) BQ-module M is a (right) PQ-comodule if there is
a BQ-module map y: M —» M @y PQ such that

v ® lPQ)lp = (1 ® Ay
We call  a structure map of the PQ-comodule M.
As an example of PQ-comodules, we have

PROPOSITION 2.12. The map ng makes BQ a PQ-comodule. That is, ng is a
structure map of the comodule BQ.

Proor. By the same reason as above, it suffices to show that

(nr ® 1PQ)’7R(mn) = (IBQ & A)ng(m,)

for each n>0. Here nr is considered to be the map #5z: BQ - PQ = BQ ®p, PQ
given by nx(x) = 1 ® nx(x). This is shown by a direct computation

(nr ® 1pg)ngp(m,) = (Nx ® 1PQ)< Z m;® th")

i+j=n

=Y <Z mk®tf’k>®tj!’i
it+j=n

k+T=i
k k+1
= Y 1@mtl"et!

k+i+j=n

i+j=n

=(lpe® A)< Y I® mit;’i>

i+ j=n

= (1po ® 4)(nr(m,))
as desired. g.e.d.
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The following is obtained by Hazewinkel [1].
THEOREM 2.13.7  The maps n;, ng, 4, € on BQ and PQ yield the maps on B and P.

Proor. To prove this, we introduce an algebra CT for an algebra C:CT is
C[T] as a C-module, and the multiplication is defined by (aT*)(bT’) = ab?”' T, We
note that if f:C—> C’ is an algebra map, then it is extended to be another one
f:CT—- C'T by setting

f(z CiTi) - Z f(Ci)Ti

for ¢;e C.
The formulae (2.6), (2.7) and (2.8) can be rewritten to be:

pm + mp = mv € BQT, ng(m) =mt ¢ PQT and
mA(t) =m(t ® 1)(1 @ 1) € (PQ ®po PO)T.

Here v = Y007 € BT, m = Y ,.omT* € BQT, t = Y .0, T" e P, t @ | =
Yisolty, ® DT e (P @z PTand 1 @ t = Y400l @ t,)T* € (P ®5 P)T. Since
m=1+-, we have b=Y,.,bT e BQT such that mb=1. We then see that
bm = 1. In fact, (bm)(bm) = b(mbym = bm and so (bm)(bm — 1) =0. Now that BQT
is an integral domain and bm # 0, we see that bm = 1.

Turn now to prove the theorem. For 4, multiplying b on the left of mA(t) =
m(t ® 1)(1 ® t) shows the relation 4(t) = ¢t ® 1)(1 ® t). Applying 5z on pm + mp = mv
shows

ngr(pm + mp) = 1r(mo)
prr(m) + ng(mM)p = nr(m)ng(v)
pmt + mtp = mtyg(v)

Multiply b from the left, and we have bpmt + tp = tng(v). Substitute pm = mv — mp
to it, and we get b(mv — mp)t + tp = tng(v), and so vt — pt + tp = tyz(v) by the formula
bm =1. The elements p, t and v are all in PT, and so is #nz(v) as desired. q.e.d.

We use the same notation #u;, ng, 4, ¢ for (B, P), that is, ;, ng: B—> P,
A:P—>P®gP and e: P> B. Then, we immediately have the following

COROLLARY 2.14.
e =lp=eng, (@ 1p)4 = 1p = (1, ® e)4,
(lp®@A4=(4®1p)4 and (1x ® 1p)1g = (1p @ Ng)1ik-
DEeFINITION 2.15. A submodule I of an algebra A is called an ideal of A if 14 < L.

This is trivial, since (B, P) is obtained by the Brown-Peterson spectrum BP, though Hazewinkel showed
it without using the spectrum.
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As an example, we have

LemMA 2.16. Let ay, ..., a, be elements of A. Then I = {)" a;x;|x;€ A} is
an ideal.

The proof is trivial by definition.
DerNiTION 2.17. The ideal I of Lemma 2.16 is denoted by

I=(ay,a,,...,qa,)
and said to be an ideal generated by the elements a,, a,, ..., a,.
Let I, denote an ideal of B generated by p, vy, ..., v,_;. For ngz, we have the
following Landweber’s formula:
LemMMA 2.18. 5x(v,) = v, + v,_ t?" ' — vl t, mod I,_,.

Proor. We notice that (m,,...,m,_,) = (v1,...,0,_5) in PQ. By (2.6) and (2.7),
we sce that

Ta(tn) = Pata) = . a0y

" o on=t fi-1 _ _

i J 1

=p 'Zo mtl_— 2| . mtf; 1ng(0,-;)
=

i=1 \Jj=
n—1 .
= p(tn + m,_ tf" ' + mn) - 212 tirIR(vn—i) - tl nR(vn—l)pl mOd (mb e mn—Z)'
i=

The right hand side is found to be an element of P/(m,,...,m,_,) and so we have
Nr(0,) = pt, + 0, 88" + 0, + £y (v,—;)" mod (V155 Vyz)
by the inductive hypothesis, which shows the desired formula in the lemma. g.e.d.

ProrosiTiON 2.19. PI, = I, P, where PI, = {xng(w)|lx € P,w € I,} and I,P =
{nwx|xe P,wel,}. :

Proor. By Lemma 2.18, nz(v,) = #,(v,) mod I, for each k. Therefore the prop-
osition follows. q.e.d.

CoroLLARY 2.20.  The maps y, ng, 4 and ¢ on (B, P) yield the maps on (B/I,, P/L,).
Proor. By Proposition 2.19,
1,5 P®pP =BQpl,PQyP =B®pPI,®pP
=B®yP ®IP.

Therefore, we see that [, Q; PR®zP =, ®s PRy P+ Bz I,P Q3P + BRzP ®pl,P.
Put I =1, @pPR®gPand J=1,QzPR®zP + BRI, PR®yP + BR®yP ®zI,P and we
obtain
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B/In®BP®BP:(B®BP®BP)/I:(B®BP®BP)/J'

Therefore, P/I, ®zP/l,=(B®pP ®zP)/J. Furthermore, we have f(vx)=vf(x) for
veB, if f is a B-module map. Therefore, if f is one of the above maps, then
fU,M) < I,f(M) for M =B, P. Hence it induces a map on (B/I,, P/I,). g-ed.

DErFINITION 2.21. 4 comodule M is a B-module with coaction y: M — M ®zP
such that \y is a B-module map and satisfies (1 ® e) = 1y and (1, @ Y = (Y ® 1p)¥.

PROPOSITION 2.22. B is a comodule with the coaction ng: B— P. Furthermore,
B/I, is also a comodule with a coaction induced from #p.

Proor. The first statement follows from Proposition 2.12 and Theorem 2.13.
The other also follows from Corollary 2.20 and Propositions 2.9 and 2.10. g.e.d.

DEFINITION 2.23. A cobar complex Q*M consists of B-modules Q°M and B-module
maps called differential d;: QM — Q*'M defined by

QM =Mz PRy QP (s copies of P)

and
ds(m®pl®"'®ps)=W(m)®pl®"'®ps+kg1 mp @ ®A4(p)® - ®ps

—(~lm®p; Q@ ®p;®1
Then we see casily that
LemMMA 224. For each integer s =0, dgyd, = 0.

PrOOF. Let A49: QM — Q"'M for 0 <i<s be a map defined by

APM@p; ® - ®p)=m@Op; @@ A(p) ® @ ps.
Then,

(2.25) d(m® x) =Y(m ® x + i (= D)m® 49 (x) — (- 1fm® x® 1,
i=1
for x=p,® " ®p,eP®g " ®gP (s factors of P). Therefore,

Ay dm @ x) = diy (wm) ®x+ ¥ (~)m@ 40 — (~ Mm@ x® 1)

5

= ®1 - 1@ HWm) ®x— Y. (—im ® 4P()

i=1

FEmOx® 1+ Y (= Dm © 496

(_ 1)i+jm ® AJ(-S+1)A§S)(X) + i (_ 1)i+sm ® Ags)(x) ® 1
i=1
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s+1

—(=DYmOx@1 — (=11 Y (= )m@ 4" (x @ 1)

i=1
—(—D'm@®x®1®1.

The first term is zero by the definition of . The second and fourth terms offset
each other. Similar is the terms of the third and the seventh. By definition, we
see that AS"(x @ 1) =49 (x)® 1 if i <s, and ASP(x® 1) =x® 1 ® 1. This shows
that the sixth term cancels out the eighth an the ninth terms. Thus if we put
X5 = (= 1)"m @ 48"V A9(x), then

s s+l
ds+1ds(m ® X) = Z xi,j
i=1 j=1
s [i-t , s+1
=) <Z Xi, 5+ XppF Xier + ), xi,j)
=1 \j=1 j=it2
s s+1
Here, if j>i+ 1, then AF*IA® = AS*A®, . Therefore we see that 21 ZH X =
i=1 j=i
s i—1
—Y Y x;; Furthermore, x;; = —x;;4; since (4 ® 1)4 = (I ® 4)4. Hence
i=1 j=1
de 1 d(m® x) = 0. g.ed.

By this, we obtain Imd,_; < Ker d; and define the homology of M by
(2.26) H*M = Ker d,/Im d,_,,

for s > 0, where d_, = 0: 0 » Q°M. In the following we will write an element & € H°M
by its representative x € £2°M as follows:

¢ =[x]
In other words, [x] = x + Imd,_;, and so [x] =[y] if and only if

Ize M  such that d_,(z)=x — y.

§3. Homological algebra

We begin with defining a comodule map between comodules:

DermNiTION 3.1, Let (M, ) and (N, yry) be comodules. Then a module map
f:M — N is called a comodule map if the following diagram is commutative:

M - N

(32) lPMJ l'ﬂn

M®zP L2 N®,P.
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PROPOSITION 33. Let 0> L5 M 5 N -0 be a short exact sequence of comodules
and comodule maps. Then we have a long exact sequence.

0-HLSHMBHNSHL > SHLEHMS NS -
Here §: H'"N — H"*'L is defined by (x) = [f,'d.g7 (x)].
Proor. Consider the commutative diagram
0—— QL —L+ oM %2, o'N —— 0

IF T

0 — Qn+1L N Qn+1M _g____) Qn+1N — 0
# #

First check that 6 is a well defined map, and then we can check the proposition
by chasing the above diagram. These are done by an easy diagram chasing. q.e.d.

Consider a sequence of comodules (M,, ¥,) and comodule maps f;: M, — M,,,:

0 » M, So M, Sio o T M, .fs".‘.'

DErFINITION 3.4. We call a sequence above a resolution of M, if it is an exact
sequence and H'M; = 0 for each s, t > 0. A sequence is called a complex if f.,.f. =0
for each s > 0.

An an example of complex, we have the cobar complex 2*M introduced in the
previous section, by virtue of Lemma 2.24.
Consider a submodule n(M) of a comodule M defined by

(M) = {x|xe M, y(x) = x® 1}.
Then we have the following lemma by definition:
LemMMA 3.5. H°M = n(M) for a comodule M.
We further obtain

LemMMa 3.6. Let M and N be comodules and f: M — N a comodule map. Then
f induces a module map

n(f): (M) - n(N),
which is a restriction of f.

PrOOF. By the definition of a comodule map, Yy(f(x)) = (f ® Dy (x) for x € M.
Therefore, if x € n(M) < M, then yy(f(x)) = f(x) ® 1, and so f(x) e n(N) as desired.
g.e.d.

By this lemma, we obtain a complex {n(M,); n(f,)} from a resolution {M,; f;}.

ProrosiTioN 3.7.  Let (M, ) be a comodule and consider a resolution of M. Then
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H°M = Ker (n(f): n(M,) = n(M,11))/Im (n( fe—y): m(M,—y) = n(M)).
Here H*M is defined in (2.26).

Proor.T First note that the long exact sequence

0 VSN VO SIOR ETG YA
splits into short ones
0K, B5M5BK,,, >0
for n >0 with K, = M and K, = Ker f, = Coker f,_,. Besides,
(3.8) Jo = Gns1 b
Proposition 3.3 produces a long exact sequence
— H'K, - H'M, »> H°K,,,; > H*K, -
Since H°M, = 0 for s > 0 by the definition of a resolution, we have exact sequences
(3.9) 0 HK, % H'M, ™S H°K,,, > H'K, -0
and isomorphisms
(3.10) HK,,, = H*"K,,.
Therefore, noticing that H°M = n(M) by Lemma 3.5, we compute
H'M = H’K | = H'K, (by (3.10))
= H°K,,,/Im h, (by (3.9))
= Ker h,/Im h, (by (3.9))

= Ker n(f)/Im n(f,—;)  (by (3.8))
q.e.d.

LemMma 3.11. Consider a comodule M &g P with coaction 1@ A: M QP —
(M®pP)®pP. Then HHM ®gP =0 for s > 0.

Proor. It suffices to show that d (x) = 0 implies the existence of an element y
such that d,_,(y) = x for each s > 0. Put first x =(m® x,) ® x’ for x’ = x; ® ' ® x,
and compute

ds(x) = ds((m ® xO) ® X’)

=(m® 4(x)) ® x" + ; (=DM ® x0) 4P (x") — (— 1M @ x0) ® x' ® 1

“This is obvious if you use the spectral sequence associated to the double complex M,® £'B.
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as in (2.25). Suppose that d(x) =0 and send this by 1 ® ¢ ® 1 to obtain
0=(m® xo)®x" + 3 (—1)(me(x)) 47 (x") — (— 1} (me(x,)) @ x' ® 1
i=1

= (M ® xo) ® X" + dy_; (me(x,) ® x)

using (¢ ® 1)4(x,) = x, of Corollary 2.14. Now put y = —(mse(xg) ® xy) ® x" =
—me(xy) ® x’ for x” =x, ® - ®x,. Then d(y) =x by the above equality. qg.e.d.

CoroLLARY 3.12. Let
0oMol,®PLL@PSE
be a resolution of M. Then
H*M = Ker n(f,)}/Im n(f,_,).
Furthermore, note that w(f). I, > I ..

Proor. It is enough to show that (M ®zP) = M. Since ym®x) =
m ® A(x) by the definition of the coaction of M @z P, m ® 4(x) = m ® x @ 1 if
m® x e n(M ®gP). Therefore, xe Z, and we see n(M ®zP) = M by identifying
m®1=m. g.ed.

§4. The chromatic spectral sequence

Let M be a comodule and v e B acts on M, that is a multiplication by v induces
a comodule map v: M -> M. In other words, the diagram

M — M

(4.1) PM ‘PMJ

M®yP —=> M®,P
commutes. Then define
4.2) VM = {v'/mlme M,je Z},
satisfying
w(im) = wo)m, (u + w)(©’m) = u@’m) + w(v’'m) and vi(m + m’) = v/m + v’m’
for u, we B and m, m’ e M. By this, v"!M is a B-module.

LemMa 4.3. (¢f. [2]) Suppose that v is a monomorphism. Then v™'M has a
comodule structure so that the inclusion i: M —v™*M is a comodule map.

Proor. We define a coaction y: v M >0 M ®,zP by
(4.4) Y(m) = (Y @ Dp(m),



14 Katsumi SHIMOMURA

where . is a coaction of M. By (4.1), we have a commutative diagram

M —Y s MQEzP

UﬁlM —w—> U_IM ®BP5

so that i M —»v™'M is a module map. This shows that i is a comodule map. It
is easy to be checked that y is an algebra map. In fact,

(1 ® ey (v/m) = (1 @ &) (v ® 1)ye(m)

= (' ® (1 ® &)Yy (m)
= vim
and
W@ DY ('m) = (' ® 1 ® 1) Y3y ® Vifyg(m)
= (' @ 1® 1)(1 ® A)pe(m)
= (1 @A)V’ ® NYy(m)
= (1 ® )y (v'm)
for v/m e v™'M, since they are B-module maps. q.ed.

Then we denote M/(v®) the cokernel of the inclusion it M — »™'M, that is, the
sequence

0-M< v M- M/(v®)—0
is exact.

Lemma 4.5. Let 0> L5 M % N -0 be a short exact sequence such that L and
M are comodules and f:L — M is a comodule map. Then the cokernel N also has
a comodule structure so that the projection g: M — N is a comodule map.

Proor. Define a coaction yy: N> N ®3P of N by

Yn(x) =(g @ DYp(y)  for ye M with g(y) = x.

A diagram chasing shows that this is well defined. In fact, (g ® Dy w) =

(@ DWW (fW) =(g ® D(f® Dy, (u) = 0 for we M such that g(w) = 0, where u with
f(u) = w exists by the exactness.

Then the relations (1 ® &)y = 1y and Yy ® Dy = (1 @ 4)yy follow from those
on Yy, and g is a comodule map by definition. g.ed.

COROLLARY 4.6. Suppose that M is a comodule and a comodule map v: M > M
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is a monomorphism. Then M/(v™) is also a comodule such that the projection v™'M —
M/v*®) is a comodule map.

NoOTATION 4.7. For x e M/(v®), x =m/v’ for me M and j >0, and vix = 0.

That is, the notation of fraction /> means that the fraction would be zero if the
denominator is reduced away. Now we define the chromatic spectral sequence intro-
duced in [3].

DErFINITION 4.8. Put N? = B/I,. Suppose inductively that a comodule N is de-
fined. Then put M: = v,} N5 and define N:*' to fit into the exact sequence

0= NP 5 ME — N5+ - 0,
Here M® = v, 1 .N? is defined in (4.13) later.

Note that N? = B/I, is a comodule with the coaction induced from the right
unit #z: B— P by Proposition 2.22.

Here the following four lemmas show the fact that B-modules Ni and M; are
all comodules with coaction induced from 5z. The proofs of them are inductively
given after a comodule M; is defined in (4.13) below so that Nj < M is a comodule
map.

Lemma 4.9. For any element x of Nj, there exists an integer k >0 such that
Iiyx=0. Here I¥Y, x={a,...aqx|q;e I,,,,0 <i <k}

By virtue of this lemma, consider a B-submodules Nj(k) defined by
Ni(k) = {x|x e N&, If, ;x = 0}.

Lemma 4.10. Nj(k) is a comodule such that the inclusion Ni(k) = N: is a comodule
map.

LemMma 4.11. N; = U, o Ni(k).

LemMMA 4.12. There exists an integer l(k) such that vPie: NS — NS is an injective
comodule map.

Now we define

(4.13) M; = | o) N; k),
k>0

where v(k) is an injective map of Lemma 4.12.
Lemma 4.14. M; is a comodule such that Ni— M} is a comodule map.
Now the short exact sequences 0 — N¥— M?$ — N5*' 5 0 induce long ones
— H'NS - H'MS — H'N:* 5 HYINS o,

Therefore, if we know modules H'M: and the maps é for each s, t, we will obtain -
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a module H**'N?. In fact, by the exact sequence 0 — HON** — HOM:S™ we get HONS*
from H°M:*'. Then suppose that we have H'N?, and consider the exact sequence
H'N: S HPUNS™Y o ™ML and we obtain H'™"'N:™1 Proceed these steps, and we
obtain H*"'NP. We will denote these process by

HtM,S, = Hs—i-thO,

and call it a chromatic spectral sequence®.

Now we will prove the above lemmas. First we assume that we have these
lemmas for N} and M. for 0 <i<s. In fact, if i =0, then I,x =0 for any x € N°.
Therefore, Lemmas 4.9 follows. Since N? = N?2(1), Lemmas 4.10 and 4.11 is trivial.
For Lemma 4.12, take [(1) =0. Then Lemma 2.18 shows the lemma for i=1.
Lemma 4.14 follows from Lemma 4.3 by taking v = v,. Therefore, the first step of
the induction is shown.

Proor or LEmMMA 4.9. Take an element x of Ni. Then we have an element y
in M7 which is sent to x by the map M:™* — N5. By definition, we have y = v%,,_,z
for some integer @ and an clement z of N¥ ™', Here since x =0 if a > 0, we may
assume that a < 0. By the inductive hypothesis, we have an integer k' > 0 such that
I¥s1z=0, and so I¥,, ;y=0. Now put k= —a+ k. Then I*¥, x=0. In fact,
consider w=a,...aa;,y...qz for el f 1 <j<i,and =0, ifi<j<n+s.
Then if i > k’, then w=0 since I¥,,_;z=0. If i <k, then v, _, divides a,-:-a,
and so w=wo,{. x=0, since v,{;_x=z=0eN;. Thus we have proved the
lemma. g.e.d.

Proor oF LEmMMA 4.10. Consider the diagram

inc

Nty —— N;

It suffices to show that Im (s o inc) « Nj(k) ®z P. In fact, ¥ o inc is pulled back to
the dotted arrow. Since any element a of I, acts on the maps f as af(x) = f(ax),
we see that a(y o inc)(x) = (Y o inc)(ax) = 0 for aeI¥,,. g.e.d.

Proor or LemMa 4.11. This follows immediately from Lemma 4.9. g-e.d.

Proor or Lemma 4.12. We can show by induction that if x = y mod(p, a), then
P =y mod(p’, a”’). Therefore, we obtain the lemma by setting I(k) = p*.
g.e.d.

piti=1

Proor orF Lemma 4.14. This is easily checked by (4.13), Lemma 4.11 and
Lemma 4.3. g.e.d.

tUsually, a spectral sequence is constructed more systematic, but we need not here such a general
spectral sequence.
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§5. The Bockstein spectral sequence
By using Notation 4.7, an element x of M, is written by

x/ve(n) .. egts-l-_sl—l)

for xe B and an integer e(i)>0 for n<i<n+s, and besides it is zero if the
denominator is reduced away. Therefore we obtain an exact sequence

0o MASM S M0, (p(x) = x/v,)
for each integer n > 0, and it yields an long exact one

S HMSTE DS HROME S HRME S HEMETE S,

By this exact sequence, we can compute H*M: from H*M:.;. We call this the
Bockstein spectral sequence'’.

LemMa 5.1, (cf. [3, Remark 3.117) If we have a commutative diagram
s

kags * k Un k k+1pg5—1
Ml %, B , B H¥ ML

” g g “

s— kpgs Un kpgs S gkt
n+1 —} H M H Mn H Mn+1>

and every element x € B has an integer j such that vix =0, then H*M} = B*.

This is proved by an induction on j using a diagram chasing. But here 1 will
give a proof using the Five Lemma.

Proor. For brevity, put A= H*MELL, A’ = HFUMESTE, A(f) = {x|xe H*MS, v)x =0}
and B(j) = {x|x € B, vjx =0}. Then we have a commutative diagrams

A —2 A() =2 A()) _S Ly

A —2 HMS — s H*MS %, q,

and

4 —"— B(j) —— B()) > A’

|

A—2 go 2, g, 4

 Originally, this is considered for the mod p spectral sequence. In this sequence with n = 0, it contains
all differentials of the original Bockstein spectral sequence, where v, = p.
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Comparing these diagrams with the diagram of Lemma 5.1 produces another commu-
tative one:

A —2 BT’) LN BT') A
A —2— A(j) —2 A(j) —— 4.

This splits into two commutative diagrams:

0 —— Im ¢, —— B(j) —=— 1,B(j) — 0

T

0 —— Ime, —— A(j) —2— v,4(j) — 0,
and
0 —— v,B(j) —— B(j—1) —— A’

Ungjj gj—lJ

0 —— 0, A(j) —— A(j—1) — A,

Here g; is defined by g,(x) = g(x) for g: B* > H*M; of Lemma 5.1, i’s are the inclusions
and i”s are also found to be inclusions since vi'(v,x) =0 for v,x € v,B(}).

Since B(1) = A, we see that g, is an isomorphism. Now suppose that g;_, is
an isomorphism. Then by the Five Lemma in the last diagram, we see that v,g;
is an isomorphism. Again the Five Lemma in the diagram before the last shows
that g; is an isomorphism. Thus we obtain isomorphisms g; inductively. Note that
H*M; = U; A(j) and B*=U,B(j) since any element x of H*M: and B* satisfies a
condition that there exists an integer k such that v¥* = 0. Furthermore g is obtained
from g;’s, and we see the desired lemma. q.e.d.

§6. How to compute the Bockstein spectral sequences

Now we will show how to compute the Bockstein spectral sequence. In order
to explain it, we prepare the following comodules. First consider an ideal I(j),
generated by p, vy, ..., U,_, vJ_;. That is,

I(j)y=1,_{+ @) for n>0 and j>0

and I(1), =1, Define N(j);, and M(j);, in the same manner as defining N and
M;, inductively by

NG = B/} M(j)=vi N and 0 N(j) < M(j), = NG =0,
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so that the diagram
0 —— N(j—1)} &—— M-, —— N(G—-I" —— 0

0 —— NGB =—— MG, —— NG — 0

pj pj Pj

0 — N; 5 M e — NS+t — 0

commutes, in which v,’s are monomorphisms induced from v,: N(j — 1) - N(j)? and
the other vertical arrows p;s are epimorphisms induced from the one p;: N( j)? — N?
inductively. Note that

Ny =N; and M(1); =M.
Furthermore, these definitions give us inclusions
EN(E e N; and 1 MOYT < M;
defined by )
1(x) = x/vi.
We also introduce a notation:
d(x)=y mod I(j), for x e ’M:S.1,

if d(%) =y in Q*'M());7} for some £ such that py(X) = x.

Now we will present how to compute the Bockstein spectral sequences. Suppose
first that we have determined the structure of H'M$;!. Then find elements % € Q'M;,
y(x) € QM with v, fy(x), and an integer a(n) >0 for each [x]e H'M:;] so that

pi(®) = x, di(%) = v;Py(x) mod I(a(x) + Lss.
and
ConDITION 6.1. The set {[y(x)]|[x] € H'M; {1, y(x) # 0} is linearly independent.

Note that there may be some x such that dy(%) = 0 mod I(j), for any j > 0. In
this case we put

a(x) = oo.
Besides, y(x) is a cocycle, that is,
dip (Y(x)) = 0€ Q7 2M;5 S,

since 0 = d,;,d;(%) = v%d,;,,(y(x)) mod I(a(x) + 1),4,, and I(1),,; = I,+;. The con-
struction of an element X will be stated in the next section.
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Now suppose again that we find X for all x, satisfying the condition 6.1, and put
(6.2) B = (—BO Cla(x)<[X]I[x] e H'M}7}>,
Jj>

where
C(j) = k(n),/(v} if j < oo, and C(00) = K(n),/k(n),,

and C(j)<x,» denotes a direct sum of modules generated by x,/v] isomorphic to C(}).
For the generator of C(o0){y;», we use a convention that it consists of y,/vf for
all k> 0. Here, K(n), and k(n), are well known symbol relating to the Morava
K-theories such as

k) = Z), k(W)y = F,[v,] and K(n), = v,'k(n), (vo = p).
LEMMA 6.3. B’ defined above fits into the commutative diagram of Lemma 5.1.

Proor. We will show the following statements:

1. B'c H'M:,
2. Im g, < H'M;,
3. v, B - B.

The first one follows from d,(X/vi™) = dy(%)/vs™ = v2®y(x)/v8* = 0. For the
second, we compute @,([x]) = [x]/v, = va® ' [X]/v®, since p;(%) = x implies X =
xmod I,,;. The last one is obvious by definition. g-ed.

LEMMA 6.4. The sequence
HlM;f_'_} % Bl Bl HH—IM;;}
is exact for each i = 0.

Proor. By Lemma 6.3, we have a commutative diagram
6

kA fs—1 P k Un k k+1pgs—1
H*M: B B HEH Mo

o

HM3D —2 H*M3 —— H'Mj —— H*'ML,

an easy diagram chase shows the exactness of H'M:7! % B'23 B\ and that the se-
quence B'3 Bi —» HM'MST! is zero.
Now suppose that 6(¢) =0 for & e B, and put

é = Z ix[i]/vr(:(x) + Z )uy,j[y]/vrjl.

for A,ek(n), and u, ;e Z,. Furthermore, by the definition of 9§, d;(%) = v¥™@y(x)
gives rise to

S(LXY/03) = [y(x)].
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Then,
8(&) =Y [Ayx)]

Here [1,y(x)] =0 if v,|4,. Otherwise, A, € Z,, and so 1, =0 by Condition 6.1.
Therefore,

E= Y AL + Y gy L5)/vi,

Onldx

and so we have an element

(= 3 (/o) IR0 + 3, L5710

Onldsx
satisfying v,({) = €. g.e.d.
Lemmas 6.3 and 6.4 with Lemma 5.1 shows the following
THEOREM 6.5. Let B' be the submodule obtained from H'M:.} by (6.2). Then,
HM? = B

By this theorem, if we determine H*Mp, then we could obtain H*M;_; and so
H*M} theoretically. For H*Mp, it is computed by Ravenel [4] only for n < 3, and
for n=13 and p>3 (¢f. [6]).

§7. Construction on elements ¥
Now suppose that [x] e H'MS;i. Then
d(x)=0 modl/,,,.

First find elements [x] such that [x] is not written as [x] = [y?] for any cochain
ye QM. We denote a set of such elements by R’. That is,

R = H'M;;1 - S,
for
§'={[x] e H'M: |3y e @'M$:1, such that [x] = [y*]}.

Suppose further that a computation for [x] € R shows
(7.1) di(x) = v89y(x) £ 0 mod I(1 + a(x)),s-
Let G,,, be a set of representatives of generators of H*'M;1], that is,
H™MMT = Z,<[g]lg € Givy ).
7.1. The case where n > 0
In this case, p’-th power of (7.1) turns into

di(x"’) = v “@y(x)”"  mod I(p’ + pa(x)),+:-
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Then we see that [y(x)”’] e H'' M2, since d,y (y(x)') = dpy (p(x)P = 0. If p(x)* e
Gity, just put

Xj = x?.
If y(x)”’ ¢ G4y, then there would be a generator [y']e H*'M:;! such that [y'] =

[y(x)*’]. Then there exists a cochain we @M3;} such that d,(w) = y(x)’ — y’. So
put

x} = x? — pPlay,
Usually, you would find a cochain x’ e Q'‘M5} such that
di(x) = 0™y’ mod I(a(x) + 1),44

with a(x’} < p’a(x). Then, put

no_ o aplalx)—a(x’),.r
xj = Xj U, X .

If there is no such x’, then put

I
—Xj.

Furthermore, if there is an element such that d,(x") = v3*"y(x/) mod I(1 + a(x")),+,.
Then put

(3) . 7 a(xy)y—a(x"') "
X}V =X — v, x”.

Here di(x]) = vi*)y(x{) mod I(1 + a(x{)),+,. Otherwise,

Continue this process, we will get a sequence of elements

’ ” k
xp, xiy o, X,

for each x € R* and j. If it ends at x{™, then we put
x; = x{™.

We have, so far, no example that this process does not end.

We notice that if y(x;)’s are dependent, this process must be continued. In fact,
if there is an relation )’ Ay(x;) =0, then y(x;) = —Y,.;4Jy(x,), which indicates the
existence of x” =3, ,; A4.x, such that di(x") = y(x;). Therefore, if this process ends,
then Condition 6.1 is automatically satisfied. Therefore, we just put

B = k(n),{(x;|x € R, j > 0.

Note that we also use another way, which is described below. It is the way
starting from i = 0.
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7.2. The case where n =0

We begin with considering the case where i =0. In this case, the p/-th power
of (7.1) must be

do(x™) = p*xP1y(x)  mod(pt**),
by the binomial theorem. In fact,
do(xP) = ﬂR(xpj) — x¥
= (x + do(x))" — x*’

= (e + Py () — x”

Z PN i ;
— Z;l ( i>xp lpla(x)y(x)l'

The other part of construction is the same as above, and we obtain x; for x € R°.

For greater i, take x € H'M$™!. Then there is a sequence Q:p, a, ..., a,; for
a; = vf* such that f(w) = x for we Hv;'B/(Q) and f: H'v,*B/(Q) - H'MS™!. Suppose
further that we have an element h e H'M? and x’ € R° such that x = x’h’ for h'e
H'v;'B/(Q) with pr(h’) = h, where pr: Hv;'B/(Q) » H'M? is the projection. Let Q;
denote the sequence p’, ay, ..., a,_;. If there is an element h]e H'v;'B/(Q;) such
that pr(hj) = b’ for the projection pr: H'v;'B/(Q;) » H'v;*B/(Q), we put

R
X; = xjh1+j+a(x)'

Here x; is the element obtained from x’ given as above. If we can not find such
h;, just put

x; = xih'.
Note that if
di(W) = p*®y(h) mod(p***™),

then
Py (x )b if j + a(x)) < a(h),
di(x;) = < p/r P y(x)h' + x;y(h") if j + a(x’) = a(k’), and
pxiy(h) otherwise.

Usually, this will yield the generators, but we cannot say that the elements
constructed in this way satisfy the condition 6.1.
As noticed above, this method is also applied to the case where n > 0.
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