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Mixed Robinson-Shensted Correspondence,
Fomin Version, and
Mixed Knuth Correspondence for (A4, B)-Partially Strict Tableaux

Masao ISHIKAWA

§1. Introduction and Elementary Definitions

In this paper we consider Haiman’s mixed insertion in three different styles. First we
consider the mixed Robinson-Schensted correspondences defined in [Ha] for preparations of
latter sections. We present them in the most generalized form, ie letters in both of top line
and bottom line of a biword may have circles. Secondly we consider Fomin’s generalization
of Robinson-Schensted correspondences and construct the mixed version of Fomin’s
generalization. It will be needed to extend Fomin’s generalization as fixing R-correspondences
cell by cell. Thirdly as an applicatin of the mixed insertion we consider the mixed Knuth
corresondences for (4, B)-partially strict tableaux. (A, B)-partially strict tableaux enable us to
threat the Knuth and dual Knuth correspondences simultaniously. In each cases we treat
ordinary and skew insertions. In the rest of this section we give terminology and elementary
definitions and theorems which are well known. In Section 2 we treat Haiman’s mixed
insertion. In Section 3 we consider the mixed version of Fomin’s generalization. In Section
4 we treat the mixed Knuth correspondence.

We denote the set of positive integers by P, the set of nonnegative integers by N, and
the set of integers by Z. If neP, we write [n]:= {1, 2,---,n}. And we use the notaion in
the book [Mc] concerning partitions.

A (skew) shape (skew diagram) S is a finite subposet of P? which is convex: i.e. a, beS
implies [a, b] = S. A normal shape is one with a unique minimum element (1, 1). We visualize
a shape by a diagram in which points are designated by squares.

is an example of a normal shape.

A normal shape represents the partition whose parts are the length of its rows. For
example the above normal shape is denoted by (5, 3,2). A shape is designated by a set
difference A1\ u of two normal shapes 4 and p, wherein 1 2 p.  For example the shape
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is denoted by (5, 3, 2)\(2, 1). This is called “English” notation and we use only this notation
unless otherwise mentioned. In the diagrams drawn in “English” notation we suppose that
we take the axes down and right. We call each square a cel/ and the vertices of each square
vertices. '

Definition 1.1

Suppose we are given a finite totally ordered set /. We use elements of o/ as letters in
tableaux and biwords. A (skew) reverse plane partition n is a pair which consists of a shape
sh(z) and an order preserving map f: sh(n) — of. A partial (skew) tableau (resp. standard (skew)
tableau) is by definition a (skew) reverse plane partition wherein f is injective (resp. bijective).
If the shape sh(zn) is normal, we omit the word “skew” from these terminologies. We express
(skew) reverse plane partitions or partial (skew) tableaux by filling each cell with the value of
the function f.

Example 1.1
1 1213 117112 1121516
n = 1111213 T= 5161710 o= 314110
1121313 218113 7109
113]4 15 8

n is a skew reverse plane partition and 7 a partial skew tableau. If o = [10], then o is a
standard tableau.

Definition 1.2

Let 7 be a tableau and ae s/ be a letter not in 7. We describe Schensted’s insertion algorithm
as follows. We insert g into the first row of n by replacing the leftmost element of elements
which are greater than a. If every element in the row is smaller than a4, then a is just added
in the end of the row and this procedure terminates. The element replaced by a is inserted
into the second row and so on. The resulting tableau is denoted by n« a and we call this
procedure the Robinson-Schensted insertion by rows. If we change the word row into column in
the foregoing definition, then we obtain the Robinson-Schensted insertion by columns and the
resulting tableau is denoted by a — 7.

Example 1.2
1 3165 11314 11315 1135
218 —4 = 215 4 218 ={216]8
6 [ 12 6 (8 6 |12 4 712
10 10| 12 10 10
Lemma 1.1

Let © be a tableau and a, be of be letters not in n. If we insert a into m by rows, let
(s, t) denotes the newly added cell. If we insert b into n« a by rows, let (s, t') denotes the
newly added cell.
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(1) If a<b then we have s> s and t <t
2) If a>b then we have s<s and t=>t'. B

Definition 1.3

Let 7 and o be partial skew tableaux which share no common parts. We use 7@ ¢ to denote
a partial skew tableau constructed by placing translates of tableaux 7, ¢ so that all cells of ¢
are above and to the right of m. If a is a letter, let the symbol a also stand for a one-cell
tableau containing the letter a. So we sometimes write 7 @ @, where z is a tableau and a a
letter.

Example 1.3

16|
n= a|7] o= 1l6]o] r@o= 5 |12

[2] s 12 4|7
2]

(2}

Definition 1.4
If 7 is a partial (skew) tableau, then trunc_,z (trunc.,n) denotes the restriction of = to those

cells containing letters < a(< a).

Example 1.4
Let © be the partial skew tableau given in Example 1.1. Then

trunc_ g 7 = 5186

Lzs

Definition 1.5

Fix another finite totally ordered set &/’. A biword w is by definition an injective map from a
subset #' of o/’ into 7. Set |w| = |#'| to be the cardinality of %' and call it the length of w.
If # = o/’ and w is a bijection of &/’ onto &/, then we call w a permutation. We denote w by

ui u2 um
W =
Ul 02 ane vm
where each letter u;€ o/’ and v,e.o/ apears at most once and u; <u, <---<u,. The inverse
word w™! of w is the inverse map w™! from the image of w into «/’. If w is as above, we

the two-line array

denote the top and bottom lines of w by W = uu, -y, and W = v,0,- 0,

Example 1.5
The following w is a biword and the inverse word of w is the right one.

(1 3567 8> - <1 2 467 9)
w = w =
726914 7385160
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Definition 1.6
Suppose that w is given in two-line notation as

( Uy Uy 0 Uy )
vl 1)2 sas Dm
We construct a sequence of partial tableaux:

(g’ 0) = (nOa 00)7 (711, 0’1),...,(7[,,,, Crm) = (T[’ 0-)

where vy, v,,...,0, are inserted by rows into the #n’s and uy, u,,...,u, are placed in the o’s
so that n, and o, have the same shape for all k. = is denoted by G« w. ¢ is said to be
the recording tableau and denoted by R: J « w.

Example 1.6
Let w be as in Example 1.5. Then we have

Oew= R:ew=

l«xw,—u
<

3
7

Theorem 1.1

Fix finite totally ordered sets o and of'. Fix neP. The map w— (@ «w, R; @« w) just
defined is a bijection between biword of length n and pairs of partial tableaux having the same
shape which is a parition of n.

Definition 1.7
If the top line of w is 1, 2,...,m, then we denote it only by the bottom line of w and call it
a word.

Let 7 be a partial skew tableau whose i-th row is designated by R; for i = 1, 2,...,1, where
! is the number of rows of z. The row word for n is by definition

w,=RR,_,R,.

Example 1.7
The row word for t in Example 1.1 is

w,=152 8 13 56 10 1 7 12

Next we define the Schiitzenberger’s Jeu de Taquin in accordance with [Sa].

Definition 1.8
Let # be a partial skew tableau of shape A/u. And let ¢ be a cell which is at an outer corner
of . We define a forward slide on n into ¢ as follows.

Set ¢ =(i,j). Let ¢’ be the cell of max {m;_y j, 7;;-,}. Then we slide =, into c. Reset
ci=c.
We continue this procedure until we reach an outer corner of . We denote the resulting
tableau by j (r).
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Let ¢ be a cell which is an inner corner of u. Similarly we define a backword slide on
7 into ¢ to produce the tableau j°(z) by the following.

Set ¢ = (i, j). Let ¢ be the cell of min {m;;, ;, #;;+;}. Then we slide 7, into c. Reset
ci=c.

We continue this procedure until we reach an inner corner of A

Example 1.8
If we perform the forward slide on t defined in Example 1.1 into the cell (3, 4), then we obtain
the following 7. And if we perform the backward slide on 7 into (1, 2), then we obtain the
following 7.

AR 1]6] 7]
= 6 | 10 v = 5|10
REREREE EEREE

—
ot
—_
o

Definition 1.9

Given a partial skew tableau 7, we play jeu de taquin by choosing an arbitrary sequence of
slides that brings # to normal shape ad then applying the slides. The resulting tableau is
denoted by j(xn).

The following theorem is proven in [Sc].

Theorem 1.2 (Schiitzenberger)
Let n be a partial skew tableau. Let ©' be a partial tableau of a normal shape obtained

from nw by a sequence of slides. Then n' is unique-in fact. n' is the insertion tablesu for w,,
e =0w,. R

Example 1.9
Let 7 be as in Example 1.1. Then

5 6|7|12|
10
13

O =0cw =

[o i = B

—
(33

As an easy corollary of the theorem we obtain the following.

Corollary 1.1
Let 7 be a partial tableau and a a letter not in z. Then we have

j(n@a)=n<—a‘ and j@a®n)=a—n. N

Definition 1.10

Let P be any finite poset. For k a positive integer, set ¢, (P) (resp. a,(P)) to be the size of
the largest number of elements which is the union of k chains (resp. antichains). Now, let
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2(P) = ¢x(P) — - (P) and 1 (P) = a,(P) — @, (P). Then A(P)=(4,(P), ,,(P),...) and p=
(u1(P), u(P),...) are partitions.

The following theorem is proven in [GK].

Theorem 1.3 [GK]
Let P be any finite poset. Then u(P) is equal to the cojugate of A(P). W

Definition 1.11
Let w be a biword. Suppose that w is given in two-line notation as

<u1 U, um)
W=
Uy Uy o Uy
A poset P(w) induced from w is by definition a subposet of N? composed of (u;, v;) for
i=12,..m
We cite a theorem from [Gr].

Theorem 1.4 (Greene)
Let w be a biword. Let A denote the shape of @« w. Then for cach k, we have

G(PW)) = A, + Ay + -+ A4
aPW)=A1+++4 B

§2 Mixed Robinson-Schensted Correspondence

We treat Haiman’s mixed insertion in this section. We cite a lemma (Lemma 2.1) from
[Ha] but the proof will be different. Corollary 2.5 will be important to prove a theorem in
Section 3. In the latter part of this section we consider Stanley-Sagan’s skew insertion in
mixed version. The best reference for this section is [Ha].

Fix a finite totally ordered set .o/ throughout this section. A pair (U, C) of subsets of
of is called a division of o/ if it satisfies

Uy C = (disjoint union)

Henceforth, we fix a division (U, C) of o, and we call elements of U uncircled letters and
elements of C circled letters.

Example 2.1
U={1,234,56, 14,15, 16, 17, 18, 19}
C = {°7,°8,°9, °10, °11, °12, °13, °20, °21, *22}

is a division of [22]. As in this example we express the elements of C with circles since it is
easy to distinguish them at first glance.

Example 2.2
The definition of (skew) reverse plane partitions, partial (skew) tableaux and standard (skew)
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tableaux are as in Definition 1.1.  We designate ciricled letters with circles as well. For example

1236 [10}17
°7 1°8 |1°9 |°11| 18
= (12115116 | 19
°13 {°20 |°21 [°22
14

is a partial tableau.
Next we define Haiman’s mixed insertion.

Definition 2.1 [Ha]
Let 7 be a partial tableau, and let xe .o/ be a letter which is not in . We define INSERT (%)
as follows.

If xeU, insert x into the first row of =n; if xeC, insert x into the first column of n. If
the bumped element is uncircled, then we insert the element into the row immediately below,
or if the bumped element is circled, then we insert the element into the column immediately
to its right. Continue until an insertion takes place at the end of a row or column, bumping
no new element. This procedure terminates in a finite number of steps.

Similarly we define INSERT y ,(x) by swapping U and C in the foregoing definition.
Namely uncircled letters are inserted into the column immediately to its right and circled
letters are inserted into the row immediately below.

If we apply INSERTy ¢ (x) to #, then we denote the resulting partial tableau by

m

m«"x. Similarly if we apply INSERT y ¢ (x) to =, we denote the resulting partial tableau
by x -»"nx.

Example 2.3
Let 7 be the partial tableau given in Example 2.2. Then n«<™4 and 5 »™n are as follows.

1121341017 112(3]6 10|17
6 [°7 [°81°9 |I°11 5 1°8 ]°9 |°111{ 18
ne"4= 1°12(15 1 16 | 18 [°22 S5"g = T4 I5 16| 19
°131 19 [°20 [°21 °12 1°20 |°21 |°22
14 013
13

Next we define the conversion.

Definition 2.2 [Ha]
Let = be a partial tableau, and x any letter in n. Let yed be a letter not in n. The
operation of converting x into y in n is defined as follows.

First we replace x by y. The resulting tableau is not in general a partial tableau, so we
repeat the following procedure until it becomes a partial tableau.
Let the letters in the cells adjecent to the cell of y, and which are immediately to its feft,
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above, the its right and beneath, be y,, y,, y3 and y,, respectively.

Y2

il Y |Ys

v

Then one of the following two cases can occur.
(1) y,>yory,>yIf y, >y, we swap y and y,, otherwise we swap y and y,.
(2 y>y;or y>y, Il y;<y,, we swap y and y,, otherwise we swap y and y,.
Once case (1) occurs, only case (1) can continue to occur, once case (2) occurs, only case (2)
can continue to occur.
The resulting partial tableau in which x is converted into y in 7z is denoted by m(x — y).

Example 2.4
Let n be a partial tableau given in Example 2.2. Then

1l2]31)6 10|17
4 1°8 |99 |11 ] 18
(22 >4 = |°7 [o12] 16| 19
°13 | 15 [°20 |°21
14

It is easy to see that the procedure of conversion is reversible. i.e.

[rx—=Y]y—->x)==n

The following lemma is from [Ha], but the proof is different. We use a result of
Schiitzenberger or Thomas which is Theorem 3.9.7 in [Sa].

Lemma 2.1 [Ha]

Let 7 be a partial tableau with exactly one circled letter °x which is the greatest letter in
7. Let a be a uncircled letter which is not in m, and — oo an uncircled letter less than a and
all letters of m. Then we have

[rema](°x > —o0) = [z (°x « —o0)] «"a.
Proof.
It is enough to show

nema=[{n(’x > —o0)} «™a}(— 0 > °x).

Set b to be the greatest letter of a and all uncircled letters in 7. Let ¢ denote the cell which
contains °x. We remove the cell ¢ from 7, and we obtain a partial tableau which is denoted
by «. Then we slide « into ¢ and we obtain a partial skew tableau which is denoted by

’

o. Obviously if we slide « into the cell (1, 1), then we obtain o again.
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1]3]4]os 13 9 114 ﬂ
n= 2638 a= |26 o= 12138
5 110] 5 | 10 51610

We treat two cases.
(1) above and to the right of ¢, (2) equal to ¢ or below and to the left of c.

Case (1):

When we insert a into the partial tableau «, the new cell added to « is

In o we place °x in the cell which is immediately below ¢ and we supplement an
appropriate number of cells containing uncircled letters x;, x,,...,X,, to its left if needed. Here
The resulting partial skew tableau is denoted

we suppose that b < x; < X, <- < X, < °X.
If we slide ¢’ into the cell (1, 1), the resulting partial tableau is denoted by ¢. 7 is

by ¢'.

the same as ¢ except the letters x, X5,..., Xp-

obtain n(°x — — o0).

We write this as oq.

If we fill the cell (1, 1) of o with — oo, we
Similary if we fill the cell (1, 1) of ¢’ with — oo,
we obtain a partial tableau and we denote this partial tableau by ¢,.

1]alo 1] 3 9 —oo[ 1[40
o= |213]38 o= |2|6 o= [2]31]s
5 [6 10 5 [10]° 51610
Ty o2 | g Ty | To Ty | T2 | °g

From the assumption ¢ «<™a is the same

letters are not bumped in the process of ¢ «™a.
same as w «™a except the letters x,, X,,..., Xp-

(2, 1), we obtain o.

X1 X250005 Xy

]

11419 1134 —oof 11419
g = 2138 = 21618 Go= | 2]13}|8
516110 5110 ° 516110
Ty | T2 | °x Ty | X2 T | T2 | °x

Set c = Da.
Set o' =0 ' Da.
So it is easy to see that j(o') is equal to m <™a except the letters

]

as m+«™a except the letters x,, X,,...,X,, and these
By j(06) = ¢ «™a, j(g) is the
If we slide ¢’ into the cell

=]

oy «™a is equal to j(a, @ a). If we put o, = @y, @ a, j(0,) is the same as j{ay ® a) except the
letters x,, X,,...,%, and °x. If we slide ¢’ into the cells (1, 4y), (1, Ay — 1),--,(1, 2) in this
order and then slide into the cell (2, 1), it is easy to see the resulting tableau is the same as
j(oo) except the letter —oo. Here we assume that the shape of = is . We denote the result
after this procedure by ¢, then ¢” is the same as j(o,) except the letter —co. So ¢” is the
same as g, +"a except the letter — co.

Consequently if we slide ¢” into the cell (1, 1), the resulting tableau is the same as
(g < a)(~ oo — °x) except the letters x,, x,,...,X,. Since j(¢") is independent of the order of

slides, we have

ze"a=[{nlx > — o)} <"a](— 0 - °x).
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And this prove the lemma in Case (1).
Case (2):

We place °x in the cell immediately to the right of the cell ¢ in «" and supplement an
appropriate number of cells containing uncircled letters x, x,,...,x,, to the above of °x if
needed. Here we also suppose that b <x; <x, <--<x,<°%x. We denote the resulting
partial skew tableau by ¢’ and we can proceed in the same way as Case (1). W

Remark 2.1
Under the same assumption as in LEMMA 1, we have

[a->"7](°x > —o0) =a—->"[n(°x - — 0)].

And we conclude the following claim immediately from LEmMMA 1.
Let ©n be a partial tableau and °x be the least letter of the circled letters in m. Let a be an
uncircled letter not in m and — oo an uncircled letter less than a and all letters in n.  Then we have

[ <"a](*x » —o0) =[7(°x > —c0)] «"a
[a->"7](°x > —0) = a=>""[n(°x - — 0)].

Proof.
By the lemma we have

[(trunc .. 7m) «™a](°x > — o) = [(trunc ., 7) °x - — o0)} «"a.

And it is trivial that the other parts in [z «™a](°x > —oc0) are the same as those in
[7(°x - —0)] «"a. A

Fix another set of alphabets &' and its division (U’, C’). We defined biwords and
permutations in Definition 1.4.

Example 2.5
(1 2 3 °4 5 6 °7 8 9 10 °11 12 °13 °14>
“\14 13 °5 12 °6 2 11 °9 1 °8 °4 °7 °10 3
is a permutation if o = .o/’ =[14]. And
. <1 2 3 °4 °5 ° °7 °8 °9 °10 °11 12 13 14)
w =
9 6 °14 °11 3 5 12 10 8 °13 7 °4 °2 1

Definition 2.3
Let

ul u2 “us um
W=
Uy 1)2 o Uy
be a biword. We define the mixed insertion tableau of w as follows:

Construct a sequence of partial tableaux @ =z, n,,...,%n,, = n: for each i =1, 2,...,m form =,
from x,_; by performing INSERTy ,(v) on =, if u; is a uncircled letter, or performing
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INSERT ¢, (v;) on m;_y if u; is a circled letter. The resulting partial tableau n is denoted
by @ «™w. And the recording partial tableau is denoted by R: @ «"w.

Example 2.6
Let w be the permutation in Example 2.5. Then

IRIEIIEIR 1 ]2 [oa for Puous|
2 lo5 | 12 3|6 |12
G"w= 3 (°8 RO«"w=151]9
°6 | 11 8 | 10
o7 °14

Theorem 2.1

Fix sets of alphabets «f’ and their divisions (U’, C') and (U, C) respectively. Fix a positive
integer neP. The map w— (B «"w, R: @ «"w) just defined is a bijection between biwords of
length n and pairs of partial tableaux such that they have the same shape which is a partition of n.

Let w be a biword. Let x be a letter in the bottom (resp. top) line of w and ye o/ be
a letter not in the bottom (resp. top) line of w. We indicate the word wherein x is replaced
by y by w(x —»%y) (resp. w(x —»'y)). In the case of top line we rearrange the biword so that
the top line of w is in increasing order.

Theorem 2.2 (Haiman) ‘
Let w be a biword and °x be the least letter of the circled letters in the bottom line of w. Let
— o0 be an uncircled letter less than all letters in the bottom line of w. Then we have

B e"[w(x =" — 0)] = [@ «"w](°x > — o)
R:G«"[w(x->?—0)]=R: G «"w '

Proof.
We use induction on length of a word m. It is clear if m =0. Put w=wa, where

W,=<u1 wy um-1>
Uy Uy = Uy

and a =(u,, v,). And let 7 = «™w'. First we assume that u, is uncircled.

(Case 1) v, = °x:

Assume that in 7 «™°x, °x is in the cell (k, 1). Let a; < a, <--- < a,_; be the letters in
the first row above it in #. Then these are uncircled letters since °x is the least letter of
uncircled letters in 7. The first k letters in the first column in 7 «™°x are ay, dy,..., 01,
°x and the first k letters in the first column in 7 «™ —c0 are — o0, dy, d3,...,0_¢. They

have the same parts in other fields since the subsequent bumping process is identical in 7 «™°x
and 7 «™ —oo0. So it is easy to verify

De"wx—> —w)]=n«"—0w =[@<"w](°x > — ).

And the other identity is trivial.
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(Case 2) a # °x:

If v, is circled, then v, > °x. So the process to insert v, into n and the process to
convert °x to —oo in # have no influence to each other. So the claim is clear. If v, is
uncircled, then we can easily prove the claim by Remark 1.

In the case that u, is circled, we can prove in the same way. W

Corollary 2.1 [Ha]

Let w be a biword and °x be a circled letter in the bottom line of w. Let y be a circled
letter which is greater or less than the same circled letters in the bottom line of w as °x, but
may differ from °x in its order relation to the uncircled letters. Then

De"[wx =°y)] = [B<"w](x > °y)
R:G«"[wx—="°)]=R:@«"w '

Proof.

Let °b; < °b, < -+ < °b, be the circled letters less than °x in the bottom line of w. Successively
convert (°by » — by), (°by > — by),....,(°h, = — b)), where — b, > — b, > ... > — b, are less than
all elements in the bottom line of w. Theorem 2.1 applies at each stage. Now convert
(°x— —o0)(—oc0 —-°y). Finally convert (° —b,—by), (°~by_;—=b_1),...,(°~b;—b,). Since
these conversions involve only letters less than (x—) and (y—), they commute with
Cx—°y. N

Corollary 2.2
Let w be a biword. Let °xy, °X,,...,°x; (resp. °yy, “Va,...,° V) be all the circled letters in the
top (resp. bottom) line of w. Set

W=wxy =" = x ) (°x5 = = x5) - Ox = — x ) (Cyy 2P — y )y o — ya)Cy =0 — ),

where — x> — Xy > - > — X (resp. — yy > — y, > > — ) are uncircled letters which are
less than all the uncircled letters in the top (resp. bottom) line of w. Then

B <"wlCyi = = y)Cy2a—= =y (n—= =) =0 w
[R:O"w](®xy > —x)(*X%, > —x3) x> —x)=R: O w

Proof.
Set w' =w(y; =¥ — y)Cy, >~ y,) -y, = — y)]. By Theorem 2.1 we have

De"w =[0 "Wy - —y)y2=> =y = — W)

w” may have circled letters only in the top line. So @ «™w” corresponds to the Haiman’s

” " 1

, uy uy o Uy,
wh= ” 1 n ]

vy vy e U,

For each k, if u; is uncircled, then v} is inserted by ordinary Schensted’s row insertion, or if

left-right insertion. Set

uy is circled, then v is inserted by ordinary Schensted’s column insertion. Set a,, a,,...,q,

7”3

(resp. by, b,,...,b,—,) to be the v’s in which the corresponding u;’s are uncircled (resp.
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circled). Then we have
@ «mw =j(bm—r @ bm—r—l @ @ bl @ a3 @ a, @ @ ar)'

And the right hand corresponds to @« ™w’. This prove the first identity. And the second
identity will be an easy consequence of Theorem 2.3. In the proof of Theorem 2.3 we use
the first identity,. H

Example 2.7
Set w to be as in Example 2.5. Then

, <—14 -13 -1 -7 -4 -2 1 3 5 6 8 9 10 12)

w' =
3 —-10 —4 11 12 13 14 -5 -6 2 -9 1 -8 -7
and

—10] —9] -8 —7|13|14| —1a|-11] =7 ~4[-2[ 1 |
6| 112 —13] 6 |12

Gew = -51 2 De—w= 3109
—41 11 5110
3 8
e S

Theorem 2.3
Let w be a biword. Then

Demw ! =R:J«"w
R:G«"w !l =@«"w

Proof.

Suppose that w is given in two-line notation as
< ul uz e um >
w=
Ul 1;2 “ns vm
Let a (resp. b) be the greatest letter in the top (resp. bottom) line of w. It suffices to show that

1

trunc.,d«"w ! =trunc ., R: @ «"w

1

trunc, R: @ «"w™ ! =trunc_, @ «"w

and @«™w and @O «<™w™! have the same shape. We can assume the first two equations
above by induction on the length of w, since deleting a from the bottom line of w™! correspond
to deleting the last number from the top line of w and deleting b from the bottom line of w
correspond to deleting the last number from the top line of w™ 1.

So we have to prove the equality of shapes. As in the above corollary let °xy, °x,,..., °x;
(resp. °yi, °¥a,...,°y) be all the circled letters in the top (resp. bottom) line of w. Set

W= w(x; = — x ) ("%, = — X)) (O = = X))y = — ¥y = y) Oy = ),
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where — x; > — x, >+ > — x; (resp. — y, > — y, > - > — y,) are uncircled letters which are
less than all the uncircled letters in the top (resp. bottom) line of w. Then we have

W] =[w 'J0Cx; = = %)% = — %) X = — x) (¥ = — y) Cyz = —y2) v = — ).

@ «™w and @« w have the same shape by the first identity of the above corollary, and
@ «"w™! and @« [w] ! have the same shape by the first identity of the above corollary. In
addition @« w and @« [w] ! have the same shape by properties of ordinary Schensted’s
insertion. This prove the theorem. M

Corollary 2.3
Let w be a word and °x be the least letter of the circled letters in the top row of w. Let
— o0 be an uncircled letter less than all letters in the top row of w. Then we have

G e"[w(x—>'—0)]=0«"w
R:O"[w(x>'—0)]=[R: @ <"w](°x > —0). A

Fix a set of alphabets o/ and its division (U, C). Then an involution of < is a bijection
from a subset of &/ into itself such that wow = id.

<1°2°345°6>
w =
5°3 °2 41 °

is an involution. And the number of fixed points of w is two.

Example 2.8

Corellary 2.4

The above mixed Robinson-Schensted correspondence gives the bijection between involutions
and partial tableaux. And moreover in the above correspondence the number of fixed points in
an involution is equal to the number of odd length columns in its partial tableau.

Proof.
The first part of the corollary is clear from the last theorem. And the proof of the second
part is quite similar to the proof given in pp. 44, [Ro]. So we ommit the proof.

Example 2.9

Let w be as in Example 2.7. Then

1] 2/°6
Je™w = °31 4
5

Definition 2.4
Let

Uy Uy - Uy
W ==
Uy Uy o Uy
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be a biword. We define a poset P(w) and P(w) have the same underlying set which is the
subset of Z? composed of vetices V[, V,..., %,: for i =1, 2,...,m each vertex V = (ii;, i) Z? is
defined from (u;, v;) as follows.

_ u; if u,elU’
u; = . ,
—u if u,eC
_ v; if v;eU
Uy = .
—; if v,eC

The order of P(w) is the ordinary product order: i.e.

(1]
A
4

(u;, 0;) < (1, o7) if and only if 4, < 4] and
The order of P(w) is a dual order: i.e.

(u;, 0;) < (@, o)) if and only if 4, < 4] and

<
%
<)

Example 2.10
Let w be as follows.

(1 °2 °3 4 °5>

W =

1 3 °4 5 °2

The underlying set of P(w) and P(w) is in following diagram. Here the axes are pointing
right and upward.

X

O P O SR N

-5.4-3.2.11 2 3 4 5

In P(w) one cell is greater than another if it is above and to the right of that cell. In P(w)
one cell is greater than another if it is below and to the right of that cell.

From Theorem 1.3 and Corollary 1.2 we immediately obtain the following theorem.

Corollary 2.5
Let w be a biword. And set A to be the shape of @« ™w. Then for each k, we have

GPW) =24+ A+ + A4
a(PW) = A + A5+ + A

We will use this corollary to prove the main theorem of Section 2.

From now we treat a skew version. Let PST (1/u) denote the set of all partial skew
tableaux having the shape A/u. The following theorem is an easy extension of [SS], pp. 175,
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Theorem 5.1. Let |A| denote the weight of a partition 4 and let |w| denote the length of a
biword w. The weight of a skew partion A/u is || — || and denoted by |A/u|. If A/pis a
skew partition of weight n, then we write A/utn.

Theorem 2.4

Fix sets of alphabets ' and o/ and their divisions (U’, C") and (U, C) respectively. Fix
positive integers n, me P. Let o and B be fixed partitions. (Here we assume || +m = |B| + n)
Then the map

w, 1, K) (7, 0)

defined below is a bijection between biword w with 1ePST (a/p), xePST (B/n), such that
wWt=mn wWy k = 0, on the one hand, and nePST (AJa) and e PST (A/f) such that A/f+n,
Alab-m on the other.

Proof.
Let A=wk=1{a, <a, <--<a,}, where n=|A|. We construct a sequence of partial
tableaux :

(Ta K) = (nOa JO)’ (7'[1, 0-1)5-">(7En> Gn) = (7[, (T)

by the following rule. Set the shape of m, to be A,/ then i, =« and f, =p At each
step o, is obtained from ¢,_; by placing a, on 1,/4,_,. Next we explain how to construct
m, from 7m,_; for k=1,2,...n. At k-th step we see whether g,eW or g,e0.

Case 1: agew

Let the corresponding letter in w be b,. Perform z,_, «<™b, is @, is uncircled, or perform
b, —»™m,_, if a, is circled. Here we think as if the cells of §,_, is filed with — co and perform
the mixed insertion. The resulting tableau is m,. We have B, =f,_;. And let i, be the
shape of x.
Case 2: a,e0 and the cell containing g, in ¢ contains a letter b, in .

Let (i, j) denote the cell containing g, in . Remove b, from the cell (i, j) in m,_,. Insert
b, into the (i + 1)-th row if a, is uncircled, or insert g, into (j+ 1)-th column if g, is
circled. And set m, to be the resulting tableau. Let f, be the parition added the cell (i, j)
on B,_;. And let 1, be the shape of =,.
Case 3: a,ec but the cell containing g, in ¢ contains no letter in 7.

Let (i, j) denote the cell containing a, in 0. Let f; (resp. 4) be the parition added the
cell (i, j) on f,., (resp. A _,). Let =, be the same as m,_, except the shape of m, being

Mffy. W

Example 2.11 5 o4
Set o = (211) and f = (41). Let w=< 5 > Let t1ePST (¢/(1)) and xePST (B/(1)) be as
follows. 472
T = °3 K= 11{°3 I °5
1 6
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Then we have

°21°3]°5 °11 4| 6

Definition 2.5

To simulate the skew insersion we prepare |a| uncircled letters a; < a, <:-- < a), which are
less than all the letters in 7', and |f| uncircled letters by < b, < .- < by which are less than
all the letters in «/. Let & (resp. ) denote the partial tableau whose shape is « (resp. f) and
whose j-th row contains the letters @y -1+1, Gyj-142,...,dy; (TSP byr-14y, bg;-142,...,bp;) from
top to bottom.

For example, if « = (211) and § = (41), then we have

g= |o|a] F= [ ] ]ea]0s]
as by
as

Definition 2.6

We now define a bracketing operation on the triple (w, 7, k) defined in the the above
theorem. We will denote the image of (w, 7, ) by [w, 7, k]. W =[w, 1, «] is a biword of
length |A| = |a| + m = |B| + n whose top line includes the letters a,, a,,...,a, and letters in
o', and whose bottom line includes the letters by, b,,...,by; and letters in o/. So the top
line of w' is composed of the letters in {ay, a,,...,a;} U W« in increasing order. The bottom
line of w' is constructed as follows.

J
Step 2: We consider the pair (f, x) of partial tableaux having the same shape f. (Here the

shape of « is actually f/u.) We perform the (mixed) delition procedures on (B, k) so that we
obtain a biword of length |f/u| and a partial tableau of the shape p. The pairs in this biword

i
Step 1: The pairs < >ew are transfered to w' unchanged.

are transfered to w' unchanged.
Step 3: Recall that the shape of 7 is o/u. We place the partial tableau of the shape y obtained
in Step 2 into 7 so that we have a partial tableau t’ of the shape o. We have the pair (7', &)
of the same shape «. Again we perform the (mixed) delition procedures on (7', &) and obtain
a biword of length |o|. Finally the pairs in this biword are transfered to w' unchanged and
we obtain a word of length |4].

We define one more bracketing operation on the pair (z, ¢) defined in the above theorem.
Recall that the shape of = (resp. o) is /8 (resp. A/a). The image of (=, ¢) is denoted by [z, o]
and [#, ¢] is a pair (7, o') of partial tableaux having the same shape A defined as follows.
We place f (tesp. @) into 7 (resp. o) so that we obtain a partial tableau n’ (resp. o'} of the
shape A.
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Example 2.12
Let (w, 7, k) be as Example 2.11. In Step 2, we perform the mixed deletion procedure on the

pair
B= |b b:;lb:a bs K= 1 °3l°5]
by 6
. , °1 °3 °5 6 ,
We obtain a biword and a partial tableau
by by b, by

bs

of the shape p=(1). In Step 3, we perform the mixed deletion procedure on the pair

v = bs | °3 o« = ay | aq
i g
°5 ag

Then we obtain a biword
<a1 dy a3 a4>
1 °3 °5 b/

I(a1a2a3a4°12034°56>
1 °3 °5 by by, °4 by 2 by, b/

Consequently we have

On the other hand, the iamge of (n, 5) by the bracket operation is

7= | b |b3]bs] s o' = | a1 |as{°3]°5
ba | °2|°3|°5 Gt 4] 8
11°4 az | 2

Lemma 2.2
We use the same notation as in Theorem 2.3. The bracket operations defined above are

injections and the following diagram commutes.

W, 1, k) < (7, 0)

R

’

w o (', o)

where the top and bottom bijections are the skew and ordinary mixed Robinson-Schensted maps,

respectively.
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Proof.
It is clear that (7, o) (7, ¢') is an injection from the definition. It is easy to see that
(w, 7, k)W is an injection since we can construct the inverse of this map.

Now we prove the above diagram commute. We construct (0 «™w', R: @ «"w') and
show this pair is equal to (%', 0'). Let (mg, o), (my, 64),...,(%y> O} be the tableaux pairs
constructed by applying skew mixed Robinson-Schensted to (w, 1, k). Let (ny, a), (7, 61),...,
(n., o!) be the tableaux pairs constructed by applying skew mixed Robinson-Schensted to w/,
where r = |w| + |a|. Let

, ay a; a|a| Uy Uy u[w|
w = .
Uy Uy ot Dy Vet Vg2 0 U
Set

wy = <a1 a, - am) and w, :< U, Uy e u|w|>.
Uy Uy o Dy Vigj+1 Vg+2 =0 Ur

irst we construct (@ «-™w,, R: @ «<™w,). Tt is easy to see that the resulting pair is (v, &) in
Definition 2.5 from the definition. Now we insert w, into this tableau 7'. Suppose that we
constuct @i, from m;_ i, by inserting vy
Case 1: uy;ew

In this case v;.|, is an ordinary letter (i.e. v;y) # b; for any j). Since bis in 7 _y41g
are less than v;,,, the process to insert v;,y, into @i,y is the same insertion process as
skew mixed Robinson-Schensted.
Case 2: y;ex

In this case vy, =b; for some j. If we insert v, into m{_;4)y, then the bumping
process continues until it reaches the cell in 7;_ ;. which correspond to the cell containing
u; in x. If the cell contains no letter then the bumping process terminates. If the process
contains an ordinary letter then the subsequent bumping process is the same as the internal
skew mixed insertion procedure. This proves the lemma. W

Theorem 2.5
Assume that o =o', (U, C)=(U’, C"), m=n and o= B in Theorem 2.4.
If (W, 1, )< (m, 0) by the correspondence in Theorem 2.4, then wi k)o@ R

Corollary 2.6

Under the same assumption of Theorem 2.5, if w is an involution then the correspondence in
Theorem 2.4 gives a bijection (w, 1) between mePST (a/u) such that wlWt=mn on the one
hand and nePST (1/a) such that Ajal-n on the other. In this bijection we have

fix (w) + odd (1) = odd (4)

Here fix (w) denotes the number of fixed points of a biword w and odd (1) denotes the number
of odd length columns in a partition n. M

The first claim is clear from Theorem 2.5. The proof of the second claim is quite similar
to that of [Ro], pp. 53, Corollary 3.3.8 and we ommit the proof.
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Example 2.13

°3 4
Let w= and let
°3 4

°t] 2

Then

°11 216

- §3 The Fomin Version of The Mixed Robison-Schensted Correspondence

In this section we give an extension of Fomin’s method and present the Fomin version of
the mixed R-S correspondence as an application of it. To define Fomin’s generalization we
first introduce some terminology from [Ro] and prove a theorem on the Fomin version of
the mixed insertion. The only difference of this section from [Fo2] is that we define
R-correspondences cell by cell and this is an easy extension of [Fo2]. The best reference for
this section is [Fo2] and [Ro]. The author expresses special thanks to T. Roby for his helpful
discussions with the author about this section. If he was not in Japan, this section would
not be added to this paper.

Definition 3.1 [St]
Let r be a positive integer. A poset P is called r-differential if it satisfies the following three
conditions:

(D1) P is locally finite, graded poset and has a 0 element.

(D2) If x#y in P and there are exactly k elements of P which are covered by both x
and y, then there are exactly k elements of P which cover x and y.

(D3) If xeP and x covers exactly k elements of P, then x is covered by exactly k + r
elements of P.

When r =1, we will sometimes omit the r in r-differentialand say simply differential.

Proposition 3.1 [St]
If P is a poset satisfying (D1) and (D2), then for x #y in P the integer k of (D2) is equal

to zero or one.

Proof.

Suppose the contrary. Let x and y be elements of minimal rank for which k > 1. Then x
and y both cover elements x; # y, of P. But x, and y, are elements of smaller rank with
k> 1, a contradiction. W
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Remark 3.1

By the above proposition, if x # ye P, there is at most one element which covers (is covered
by) both x and y. And there exists a unique element which covers both x and y if and only
if there exits a unique element which is coverd by both x and y.

For a lattice L satisfying (D1), condition (D2) is equivalent to L being modlar.

Example 3.1
The Young’s lattice Y is the set of all normal shapes and the order is defined by set inclusion. Y
is a distributive lattice and a differential poset.

Definition 3.2

Fix a differential poset P. For each xe P, set C*(x):= {ye P|y covers x} and C™(x):= {yeP|x
covers y}. Then by the definition of differential posets, C*(x) and C~(x)|J {x} have the same
cardinalities. A R-correspondence @ = {@.}.p 15 a collection of maps ¢.: Ct{x)|J{x}—
C7(x)J{x} such that for each xeP, the restriction of the map ¢, on C*(x) is a bijection
and ¢.(x) = x.

Definition 3.3

In the Young’s lattice Y there are two natural R-correspondences. If yeC*(x), then y and
x differs by exactly one cell. Let a:=y\x be this cell. And let the coordinates of a be
(i, ). If i# 1, we can remove the rightmost cell of (i — 1)-th row from x and let z denote
the resulting diagram. We associate z with y if i# 1, and x with y if i=1 We call this
R-correspondence the natural R-correspondence by rows and denote it by @gr. Another one is
as follows If j s 1, we can remove the downmost cell of (j — 1)-th column from x and let z
denote the resulting diagram. We associate z with y if j # 1, and x with y if j=1. We call
this R-correspondence the nalural R-correspondence by columns and denote it by ¢c.

Example 3.2

lalal

b

d

Let xeY be as above. There are four elements which covers x and threc elements which is
covered by x. The each element which covers x is obtained by adding each cell o', b', ¢, d"
to x in the above diagram. And each element which is covered by x is obtained by removing
each cell a, b, ¢ from x. We indicate these elements by the cells added to or removed from
x. Then ¢g, natural R-correspondence by rows, maps b’ to a,¢ 1o b,d to ¢, a to x to
x. And ¢, natural R-correspondence by columns, maps a’' to a, b’ to b, ¢’ to ¢, d’ to x and
X to x.

We fix a connected skew diagram S throughout this section. We use “French” notation
only for this fixed skew diagram S. In diagrams written in “French” notation we suppose
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that the axes are pointing right and upwards.
For an example

Vo

Vio
is the skew diagram (5, 4, 3, 2)\ (2, 1).

Definition 3.4

Set C(S) to be the set of all cells in § and V{(S) to be the set of all vertices in S. And let
ROW (S) denote the set of all rows of S and COL (S) the set of all columns of S. The most
left and up vertex in V(S) is denoted by ¥, and the most right and below vertex in V(S), by
V0. V(S)is considered to be a poset wherein one vertex is greater than another if it is upper
and to the right of another.

A path @ of S is by definitiom a path (a set of edges) from ¥ to ¥, in S which goes
right and down. For a path & let V(&) (resp. E(#)) denote the set of vertices (resp. edges)
included in 2. Notice that V(#) is regarded as a subposet of V(S). Let C(#) denote the
set of cells which are above and to the right of 2. We define upper and lower boundaries of
S as the paths whose vertices are defined by

V@ (S)={(x, YeV(S): (x + L,y + D¢ V(S)}
V(@ (8):={(x, )eV(S): (x — 1,y — D¢V(S)}
Example 3.3

In the following diagram the vertices with v are on a path & and C(2) is the set of the cells
containing C.

Y v

C C

C C

Definition 3.5

Fix a connected skew diagram S and a differential poset P. A system of R-correspondences
on S is by definition a family of R-correspondences @ = {¢©}..cs, Wherein, for each cell
ce C(S), »© is a R-correspondence.
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Definition 3.6.
Set P =Y to be the Young’s lattice. We regard ROW (S) and COL (S) as the set of the row
numbers and column numbers respectively. Fix divisions (U’, C') of ROW () and (U, C) of
COL (S).

Let Z, denote the cyclic group of order 2. Set o = (0))irow s €Z2

_ COL(S
T= (Tj)jeCOL(S)Ezz ® by

{0 if ieU’ {0 if jeU
g; = . . ’Cj= . .
1 if ieC’ 1 if jeC

ROW(S) ,nd

Let ¢ be a cell in S whose cordinates are given by (i, j). We attach ¢ to ¢ if g, +1;=0,
or ¢c to ¢ if o;+ t;=1. In this way we obtain a system of R-correspondences. We call
this system the mixed system of R-correspondences induced from (U, C, U’, C') and denote it
by ¢"l'

Example 3.4
Set S=(5%) and R=Y.

°5 |PRIVCIPRIVRIYC

4 |PClPRIYC{PC PR

°3 |¥Pr|PCiPR|¥PR|VC

°2 VPR |Pc | PR|¥PR|PC

1 (¥e|er|¥e |Pei¥r

°L 2 °3 °4 5
For the divison of rows and columns shown in the diagram, the mixed system of
R-correspondences, @,,, attach the above R-correspondences to each cell.

Definition 3.7

Given a connected skew diagram S and a path 2 of S, a generalized permutation on C(P)
is a subset w of C(#) which does not share any row or column. Other commonly used terms
include nontaking rook placement or permutations with restricted positions. We call the
cardinality of w length of w and denote it by [w].

Example 3.5
Let 2 be as in Example 3.3.

The set of cells containing X in the above diagram is a generalized permutation on C(2).
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In a graded poset, if y covers x, then we denote this relation by “x < y”. And if y
covers x or x is equal to y, then we write “x < y”.

Definition 3.8 [Fo2]
Let P and Q be any graded posets. A map g: P—Q is called a growth if it preserve the
relation < : ie.

x < y=g(x) < g(y)
A growth is an order preserving map but an order preserving map is not always a growth.
Example 3.6

(1) The rank function p: PN is a growth.
(2) The composition of two growthes is a growth.

Let g: P—Q be a growth and p: Q+— N the rank function of Q. By composing these
we get a new growth called the modulus of g and written |g|: P+ Z.

Definition 3.9
Fix a connected skew diagram S and a differential poset P. A growth g: V(S)—> P on V(S)
is called a two-dimensional growth.

Example 3.7
Set S =(5% and P =Y. The following is a two-dimensional growth.

1 2 21 31 311

. =

21 211 21

1 1 1 i 111

— S S
—
o

11 11 11

0 0 0 1 1 1

——__ D
—
—

) [ [ [ 9

let g:V(S)— P be a two-dimensional growth. Let ceC(S) be a cell in S. Let

V00(€), 01(€), v10(c) and vy, (c) denote each vertex of ¢ as in the following diagram.

vor{e)]  wnle)

vo(€)  vi0(c)

Let goo(c), go1(c), g10(c) and g;,(c) denote the values of g at the vertices vgo(c), v51(¢), D10(c)
and v,,(c), respectively.

go1(c)|  gule

goo(e)  go{c)
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Definition 3.10
Fix a connected skew diagram S and a differential poset P. Let @ = {¢p9}..5 be a system
of R-correspondences on S.

A two-dimensional growth g: V(S) > P is said to be consistent (or compatible) with @ if
g satisfies

doolc) = ‘/’(C)gm(c)(g11(c))~

for each cell ceC(S) such that go,(c) = g;o(c). We sometimes call it simply @-consistent (or
D-compatible).

Example 3.8
The two-dimensional growth in Example 3.7 is consistent with the system of R-correspondences
in Example 34.

Definition 3.11
Fix a connected skew diagram S and a differential poset P. And suppose we are given a
path & of S. Let (h,w) be a pair of a growth h: V(#)—> P on V(#) and a generalized
permutation w on C(%). The pair (h, w) is said to be admissible if it satisfies the following
conditions:
(1) For each row Re ROW (S), if & is strict on R () E(#), then w has no cell in R ) C(#).
(2) For each column CeCOL(S), if h is strict on C(}E(#), then w has no cell in
C N C@).
Set

m' = the cardinality of {CeCOL (S)|h is strict on C () E(#)}
n' = the cardinality of {ReROW (S)|h is strict on R E(#)}.

The pair (m, n) = (m + |w|, n’ + |w|) of integers is called the weight of the pair (h, w). If
P = 0% (S), then C(2) has no cell so that |w| is always zero and we say h has weight (m, n).

Example 3.9
Set P=Y. Let & be as in Example 3.3.

3 3
3 31
X
31
21 21
X

21 21 22

Then the above pair (h, w) of a growth h: V(#)— P on V(%) and a generalized permutation
w on C(%) is admissible and has the weight (4, 3).

The author and Roby obtained the following easy extension of the Fomin’s theorem.
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Theorem 3.1

Fix a connected skew diagram S and a differential poset P. Set & to be a system of
R-correspondences on S. Let P be a path of S.
If (h, w) is an admissible pair of a growth h: V(#)— P on V(P) and a generalized permutation
w on C(2P), then there exists one and only one ®-compatible two-dimensional growth g: V(S) - P
which satisfies:

(i) glg=nh
(i) For each cell ce C(P), if goolc) = go1(c) = g10(c), then we have

(c)_{x if céw
WOZ o)1 if cew

where x is equal 10 go0(C) = go1(c) = g10(0).

Proof.

We prove this theorem in the same method as [Ro]. We construct g: V(S)— P as
follows. First we construct g on cells which are above and to the right of &#. Recall that
the value of g at each vertex of ceC(S) is denoted as follows.

g()l(C) _(}11((1)

go0(c)  grole)

Here we abbreviate g;;(c) to g;; for i, j=0, 1, and 0 to ¢. We construct g,, from given
doo»> go1 and g, so that the resulted g become a growth.
(Case 1): gor| <1910l
The definition of growth forces goo = go1 and goo < g1o. Then by goo = go1 < g10 < 911
we have ¢, = gyo.
(Case 2): |gos] > 1910l
In the same way as Case 1 we obtain goo = ¢g10 < g10 = J11-
(Case 3): [go1] = 1910l bUt gos # d10-
By the definition of growth we have goo < go; and goo < g1o. Then Remark 2.1 assures
us that there exists one and only one element g,, which cover both g,, and g,,.
(Case 4): go1 = g10 )
Set gor = g0 =% If goo #x, then we have g, = ¢; '(goo) since g is consistent with
&. If goo = x, then g, is completely determined by the assumption.
Next we construct g on cells which are below and to the left of 2. We can construct gy,
from given go, g10 and g, in the same way as above. W

Let &, and &, be paths of S. Set V= V(2 V(#,). Then V has at least two vetices:
V%, and ¥,. Fix any subsets P, of P for each veV

For example, set 2, =097(S) and &, =0%(S). We have V={¥,, Ko}. Fix any
o, BeP. (Por, Pio) = ({0}, {0}), (Por> Pro) = ({}, {&}), (Pos, Pro) = ({o}, {B}) and (Poy, Pyo) =
(P, P) are examples. :
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The following theorem immediately follows from Theorem 3.1.

Theorem 3.2

Fix a connected skew diagram S and a differential poset P. Fix a system of R-correspondences
on S and positive integers (m, n)eP?. Let P, and P, be paths of S. Set V= V() V(P,).
Fix an arbitrary family F = (P,),.y of subsets of P. Theorem 3.1 gives a bijection

(hy, wy) > (hy, wy)

where (h;, w;) are admissible pairs of a growth h;: V(Z)—>P on V(P) and a generalized
permutation w; on C(%) such that the weight of (h;, w)) is (m, n) and h,(v)e P, for each veV.
(i=1,2 =n

Theorem 3.3

Fix a connectd skew diagram S and a differential poset P. Fix a system of R-correspondences
on S and positive integers (m, nye P2,  Let P, P, and P, be paths of S. Set V=V(?)N V(%))
V(P5). Fix an arbitrary family F = (P,),., of subsets of P. Let (hy, w,) correspond to (h,, w,)
in the correspondence of Theorem 3.2. Let (h,, w,) correspond to (hs, ws) in the above
correspondence. Then (h,, w,) corresponds to (hsy, wi) in the above correspondence. Here we
assume that (h;, w)) are admissible pairs of a growth h;: V(#)— P on V(#) and a generalized
permutation w; on C(P) such that the weight of (h;, w) is (m, n) and h;(v)eP, for each

veV. (i=1,23 W

Set # = 37(S), #' = 3" (8), Py,, = {0} and P, = {0}). We obtain the following corollary
from Theorem 3.2.

Corollary 3.1

Fix a connectd skew diagram S and a differential poset P. Fix a system of R-correspondences
on S and a positive integer neP. Then we constructed a bijection between generalized
permutations of length n and growths g*: 37 (S)— P which satisfy g* (V) =g" (Vo) =0 and
has weight (n,n). M

Example 3.10

Here we give a big example which correspond to the mixed insertion algorithm of Example
2.5. Set P be the Young’s lattice Y and S to be (14'%). Let (U, C, U’, C’) be as in Example
1.5 and @, be the mixed system of R-correspondences determined by (U, C, U’, C’). Set
2 = 37 (S) and suppose that the growth h on V(#) has value @ at each vertex. Set w to be
the cells containing X in the following diagram. Then the two-dimensional growth extended
from (h, w) is as follows.
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o] 1 2 21 31 311 321 421 4211f 4221p 4222] 5222] 5322| 6322] 63221
14| X
Q 0 1 11 21 211 221 321 3211} 3221} 3222| 4222} 4322 5322 53221
13 X
0 0 0 1 11 111 21 221 2211| 2221 2222 3222| 3322} 4322 43221
12 X
4] 0 0 1 1 11 21 211 2111} 2211| 2221} 2222| 3222 4222] 42221
11 X
0 0 4] 1 1 11 21 21 211 221 222f 2221| 3221 4221} 42211
°10 X
0 0 0 1 1 11 21 21 211 221 222} 2221} 3221 3221f 32211
09 X
0 0 0 1 1 1 21 21 21 22 2211 2211} 2221 2221] 22211
og X
0l 0 0 1 1 n 21 21 21 22 22 221} 2211] 2211} 22111
07 X
0 0 0 1 1 11 21 21 21 22 22 221 221 221 2211
°6 X
0 0 [} 1 1 1 2 2 2 21 21 22 22 22 221
°5 X
0 0 0 0 o] 0 1 1 1 1t 11 21 21 21 211
o4 X
0 4] 0 0; 0 0 1 1 i 11 11 11 11 11 111
3 X
0 o] 0 0: [} [4] 1 1 1 11 11 11 11 11 11
2 X
0; 0 0 0 0 (0] 0 o} o 1 1 1 1 1 1
1 X
0 0 o} 9] 0 0 (o} 0 0 o] o] o] 0 0 0

1 °2 3 °4 5 6 7 8 9 10 °11 12 °13 °i4

Set Z=07(S), # =0%(S), n=m, Py, ={a} and P, = {a} for a fixed «eP. Then we
obtain the following corollary from Theorem 3.2.

Corollary 3.2

Fix a connectd skew diagram S and a differential poset P. Fix a system of R-correspondences
on S, a positive integer neP, and an element ac P. Then we have a bijection between admissible
pairs (g~ , w) of a growth g~: V(0™ (S))— P and a generalized permutation w on C(S) such that
the weight of (g, w) is (mn), g (V1)=9 (Vo) =a on the one hand, and growths
g*: V(3" (S)) — P such that the weight of g~ is (n, n), g* (V1) = g* (Vio) = &, on the other. R

Example 3.11
Set P to be the Young’s lattice Y and S to be (6%). Let (U, C, U’, C') and w be as in the
following diagram. And we suppose @, to be the mixed system of R-correspondences
determined by (U, C, U’, C’). Set @ =07 (S) and suppose that the growth g~ on V(#) has
values as in the following diagram. Then the two-dimensional growth extended from (g~ , w)
is as follows.
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21 211] 221 321 421] 422| 522
6 X »
21 211 2211 221 321 322 422
og X
21 213 221 221f 321] 322 322
4
2 21 21y 21 311 321) 321
o3 X
2 21 211 211 211 221 221
2
1 11 111 i1 111 211} 211
of X
1 1 11 11 11 21 21

1 °2 3 °4 5 °6

Set # =07(S), # = 0" (S), Py,, = {a} and Py, = {f} for a fixed «, e P. Then we obtain
the following corollary from Theorem 3.2.

Corollary 3.3

Fix a connectd skew diagram S and a differential poset P. Fix a system of R-correspondences
on S, a positive integer (n, myeP?, and elements a, feP. Then we have a bijection between
admisible pairs (g~ , w) of a growth g~ : V(07 (S)) = P and a generalized permutation w on C(S)
such that the weight of (g~ , w) is (m, n), g~ (V1) = &, g~ (Vio) = B, on the one hand, and growths
9" V(2*(S)) = P such that the weight of g* is (m, n), g* (V1) = &, g+ (Vo) = B, on the other. M

Example 3.12
Set P to be the Young’s lattice Y and S to be (6%). Let (U, C, U, C’) and w be as in the
following diagram. And we suppose @, to be the mixed system of R-correspondences
determined by (U, C, U’, C’). Set 2 =07 (S) and suppose that the growth g~ on V(%) has
values as in the following diagram. Then the two-dimensional growth extended from g ,w
is as follows.

2000 221p 222|322 332 432 442
°5

21 220 221 321 322 422 432
o4 X

21 22 22 32] 321 421 431
°3

11 21 21 31 311 411] 421
09 X

11 21 21 31 31 41 411
1

1 2 2 3 3 4 41

Corollary 3.4

Let P be a differential poset and S a connected skew diagram. Fix a system of
R-correspondences on S.  Then we have a bijection between admissible pairs (g™, w) and growths
gr:07(8)—~P.
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Set P to be the Young’s lattice Y and § = (k') for fixed integers k, leP. Set o' = [k]
and o/ =[I]. A word with bars w: &/’ — o/ is identified with a generalized permutation on §:

i
A pair <_>ew if and only if the cell (i, j) is included in the generalized permutation. For
J

2 3
example, if k=35 and [ =4, the biword w = (4 | 3> is identified with

NS
e

1 X
1 2 3 4 5

Let %o =(1, 1) and V;; = (k, ) which are vertices in S.

Proposition 3.2

Let gt: V@' (S)—=Y be a growth. Set a=g* (W), B=g" Vo) and A=g* (V). The
growth g* is identified with a pair (n, o) of partial tableaux such that nePST (1/f) and
o€ PST (1/a).

Let g7: V(@ (S)—>Y be a growth. Set a=g9" V1), =9 (Vo) and p=g (Ke). The
growth g~ is identified with a pair (v, k) of partial tableaux such that tePST (¢/u) and
aePST (B8/1).

L N

1 2 3 4 4

For example, the above g*: V(0¥ (S)) > Y is identified with the following pair.

From here we present the Fomin version of the Haiman’s mixed correspondence which
is given by the mixed system of R-correspondences. And prove the equivalence of the Fomin
version and the mixed insertion procedure in a similar method given in [Fo2]. Notice that,
in the “French” notation diagram S, the axes are pointing right and upward, while, in other
“English” notation diagrams, the axes are pointing downward and right.

First we cite two lemmas which is proven in [Fol] and [Fo2].

Lemma 3.1 [Fol]

Let P be any finite poset. Let eeP be an extremal (i.e. maximal or minimal) element of
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P. Then AP\ {e}) < A(P).

Let ¢; and e, be extremal elements of P. (i.e. maximal or minimal elements) Define
doo = AP\ {ey, e2}), Aoy = MP\{ei}), 410 =A(P\{ey}) and 1, =A(P). Then we have
Aoo <€ Aoy << Ayp and Adgg < Ay < Ay by Lemma 3.1.

Lemma 3.2 [Fo2]
Assume g = Ao in the above situation. Let A= (i,, j,) denote the cell Lo\ Aoy and
B = (ig, jg) denote the cell 1.\ Agy,.
Case 1: If e, and e, are extremal elements of different types (i.e., one is maximal and
the other minimal) then (ig, jo) = (4 + 1, j4), or, ig<i, and jg=j,+ 1.
Case 2: If e, and e, are extremal elements of the same type (ie., both maximal or both

minimal) then ig > i, and jz <j,.
The interested reader should consult with [Fo2] or appendex A of [Ro].

Henceforth we set P to be the Young’s lattice Y. And from now on we set § = (k') for
fixed integers k, [eP. We regard COL (S) = [k] and ROW (S) = [/], and fix divisions (U’, C’)
of [k] and (U, C) of [I]. Let @,, denote the mixed system of R-correspondences indeced from
(U, C, U’, C"). For any ve V(S), let S, denote the skew diagram composed of the cells which
are beneath and to the left of v in S. For example, in the following diagram S, is composed
of the cells containing C for given v.

slelelc|c

1|lcyc|c|cC

Definition 3.12

Let w be a generalized permutation on C(S). For each veV(S), set w, = C(S,)(\w. Then
w, is a generalized permutation on S,. The posets P(w,) and P(w,) are defined from w, in
the same way as in Definition 2.4. Then chains in P(w,) are antichains in P(w,) and antichains
in P(w,) are chains in P(w,). So by Theorem 1.2 we have A(P(w,)) = u(P(w,)). We associate
A, = A(P(w,)) with each veV(S), then we have a map g: V(§)» Y. By Lemma 3.1 g is a
growth on V(S). We call g the Greene-Kleitman two-dimensional growth defined by w.

Example 3.13

Let S =(5%. And let w be the cells containing X in the following diagram which is the same
generalized permutation as in Example 1.7. The Greene-Kleitman two-eimensional growth
g: V(S) > Y v A(P(w,) defined by w is as follows.
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] 1 11 21 31 32
5 X

] 1 11 21 21 29
o4 X

0 1 11 11 11 21
3 X

0 1 1 1 1 2
09 X

(] 1 1 1 1 1
X

1 °2 °3 4 °5

The underlying set of P(w) and P(w) is as in the following diagram.

X

X

G o R e N W Ao

-5 -.4.3.2.11 2 3 45

Theorem 3.4

Fix neP and set S = (k). Fix a division (U’', C') of R(S) and a division (U, C) of C(S). Let
@, be the mixed system of R-correspondences induced from (U, C,U', C'). Let w be a
generalized permutation on C(S) and set gg : 0 (S)—=Y to be the constant map defined by
go (v) =Q. Then the ®-compatible two-dimensional growth induced from admissible pair (g , w)
and the Greene-Kleitman two-dimensional growth defined by w have the same value.

Proof.

Set g to be the Greene-Kleitman two-dimensional growth defined by w. By Lemma 3.1 it is
casy to see that g is a growth on V(S). So it is enough to prove the following claim.

For each cell ce V(C) such that gy,(c) = g,o(c) we have

4110 = {{@? Hd0o@)) i Gool) # x or cew

s x if goolc)=xandcé¢w
where go,(c) = g10(c) = x.
Set ¢ = (i, j) and asume that gu;(c) =g,,(c)=x. (In this (i, j), the axes are pointing right
and upword.) (Case 1) If ggo(c) = x and c¢w, then w have no cell eathier to the right of ¢

or below ¢. So we have g,; = x.
(Case 2) Asuume that goo(c) = x and cew. Set v =1v,,(c) and v' = vye(c).

v

X
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If (i, jJeU’ x U, then P(w,)\ P(w,) is a maximum element of P(w,). If (i ))eC’ x C, then
P(w)\ P(w,) is a2 minimum element of P(w,). In either case A(P(w,)) is obtained from AMP(w,))
by adding one cell in the first row. Similarly if (i, )e U’ x C{JC’ x U, then P(w,)\ P(w,) is
either a minimum element or a maximum element of P(w,). In either case A(P(w,)) is obtained
from A(P(w,)) by adding one cell in the first column.

(Case 3) Assume that gyo(c) # x.

Then w has cells both to the left of ¢ and just below ¢. Let ¢, denote the cell which
is to the left of ¢ and containing X. Let ¢, denote the cell which is just below ¢ and
containing X. Set v =1v,,(c), v; = 0,,(c), v, = vo1(c) and v/ = vye(c). Set e; = P(w,)\ P(w,,)
and e, = P(w,)\ P(w,,), then they are extremal elements of P(w,) and P(w,).

And we have P(w,) = P(w,)\ {e,, e;}. Define Ao = A(P(w,)) = AP(w,)\{e;, €:}), 401 =
AP(w,)) = A(P(w,)\ {e,}) and Ay, = A(P(w,)). Let 4= (x4, y,) denote the cell Ag;\ 4oy and
let B = (xz, yg) denote the cell A;;\1y,. (In this (x,, y,), the axes are pointing downword
and right))

X

X

Set the coordinates of ¢, (resp. ¢,) to be ¢y = (i', j) (resp. ¢, = (i, j)).

First assume that (i, jeU' x UJC x C. I (i, j)eU’ x U, then both e, and e, are
maximal elements of P(w,). In addition e, is a minimal element of P(w,) and e, is a maximal
element of P(w,). (For example if j'e C, then we have e, = (i, j/). This is a maximal element
of P(w,) and P(w,).) If (i, ))eC’ x C, then both ¢; and e, are minimal elennts of P(w,). In
addition e, is a maximal element of P(w,) and e, is a minimal element of P(w,). In both of
the above cases e, and e, are extremal clements of the same type in P(w,), but they are
extremal elements of different types in P(w,). By Lemma 3.2 we have x5 > x, and yp < y4.
By Lemma 3.2 and Theorem 1.3 we obtain (xz, yg)= (%4, y4+ 1) or xpg=x,+ 1, yp < ya.
Combining these we obtain xp = x, + 1 and yg < y,: L.e. A1y = (@r)ior (Aoo)-

Next assume that (i, )eU’ x CYC’' x U. If (i, )eU’ x C, then e, is a minimal element
of P(w,) and e, is a maximal clement of P(w,). In addition both e, and e, are maximal
elements of P(w,). If (i, j)eC’ x U, then e; is a maximal element of P(w,), e, is a minimal
element of P(w,) and both e, and e, are minimal elements of P(w,). In both of the above
cases e, and e, are extremal elements of different types in P(w,) but they are extremal elements
of the same type in P(w,). By the same reason as above we have A, = (07 HAgo)- This

prove the theorem. M
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From this theorem we immediately obtain the following theorem.

Theorem 3.5

Fix keP and set S = (k"). Fix a division (U’, C') of [k] and a division (U, C) of [I]. Let
D, be the mixed system of R-correspondences induced from (U, C, U’, C'). Set P =Y and set
®,, to be the mixed system of R-correspondences induced from (U, C, U’, C’) in Corollary
3.1. Then the correspondence given in Corollary 3.1 and the correspondence given in Theorem
2.1 are identical. W

Theorem 3.6

Fix ke P and set S = (k"). Fix a division (U', C') of [k] and a division (U, C) of [I]. Set
P =Y and set @, to be the mixed system of R-correspondences induced from (U, C, U’, C’) in
Corollary 3.3. Then the correspondence given in Corollary 3.3 and the correspondence given in
Theorem 2.4 are identical.

Proof.

Let 8 = ((Ja| + k)'¥'*!). Place § into the right and above corner of S’. We prepare |of
uncircled letters a, < a, < --- < @, which are less than all the letters in [k], and |B| uncircled
letters by < b, < --- < bjp; which are less than all the letters in [[]. We number the columns
to the left of S with the letters ay,a,,...,q, and the rows below S with the letters
by, by,...,by. For example if we have S in Example 3.12, then §’ is as follows.

Vi v v vl Vo
°5

°4
°3 S

°2

1

bs

by

b3

bs

v

by

Véo Voo Vio
a) az az a4 °1 2 °3 4 °5 6

Let V5, (resp. Vo) denote the most left and up (resp. right and down) vertex in V(S) which
is placed in V(S"). Let V5, denote the most left and down vertex in ¥(S) which is placed in
V(S). Let ¥ (resp. V) denote the most left and up vertex (resp. right and down) in ¥ (S"). Let
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¥, denote the most left and down vertex in V(Sy. Let V5 denote the vertex which is just
below ¥, and the most down in V(SY as in the above diagram. We define the paths #,, 2, Py
of S as follows. Set &, =3*(8") and &, = 0~ (§'). The &, is defined as the path which goes
right from ¥}, to ¥, then goes down from ¥, to ¥, then goes right from ¥, to ¥, and
finally goes down from ¥, to ¥,. Let 2, denote the subpath of &, which goes right from
¥, to V,. Let 2, denote the subpath of %, which goes down from ¥, to V. Let 24
denote the subpath of 2, which goes right from ¥, to ¥,. Let 2, denote the subpath of
#, which goes down from ¥, to W, 2,U2; is denoted by 07(S). Given a growth
g~ V(@ (S)) » Y, we define a growth h: V(#,) —» Y as follows. ¢~ and h have the same value
on V(@7(8)). On 2,, h always has the value which correspond to & defined in Definition 2.5.
On 92,, h always has the value which correspond to p defined in Definition 2.5. This gives
an injection

(9=, wy—(h, )

from the set of all pairs (g~, w) such that g~ : V(67 (8)) > Y is a growth on V(S), g~ (Vo,) = o,
g~ (Vo) =p and w is a generalized permutation on C(S), on the one hand, into the set of all
pairs (h, w) such that h is a growth on V(%,), hiyy) = h(Vo) =@ and w is a generalized
permutation on C(,), on the other. We denote this injection by F;. From (b, w), we obtain
a admisible pair (', w') of a growth ': V(07(5")) > Y and a generalized permutation w' on
C(S’) by the corresondence of Theorem 3.2.

(h, wy— (', W)

We denote this bijection by F,. The composition of these maps F=F,-F, is an
injection. Now we define one more injection

g+ "“’gl+

from the set of all growths g+ on V(8*(S)) such that g*(¥,)=0a and ¢g*(V,) =, on the
one hand, into the set of all growths gt (Vo) = @, on the other. ¢* and g~ have the same
value on V(3*(S)). On 2,, ¢* always has the value which correspond to & On 2,, ¢'*
always has the value which correspond to B. This injection is denoted by F'.

First we claim that F’ can be identified with the bracket operation (7, o) {7, ¢] in
Definition 2.5 by the identification in Proposition 3.1. But this is clear from difinition.

Next we claim that F can be identified with the bracket operation (w, 7, k) [w, 7, k] in
Definition 2.5 by the identification in Proposition 3.1. If we prove this theorem then the
theorem is an easy consequence of Lemma 2.2 and Theorem 3.3.
(Case 1) At first we consider the case: f =0

This forces us p=@ in Theorem 2.4. Let %, (resp. #,) denote the path which goes
down from ¥, to Vi, (resp. right from Vo to Vso = Vo). Theorem 3.4 shows that the
correspondence between pairs on 2, |J#, and pairs on %, U#, can be identified with the
deletion process on (v, & in Definition 2.5. This proves our claim in Case 1.

(Case 2) Next we consider general case.

Let &, (resp. #,) denote the path which goes down from ¥, to ¥ (resp. from ¥ to
¥:). Let &, (resp. 4.) denote the path which goes right from I, to ¥ (resp. from Voo to
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l0). Set S§” to be the skew diagram surrounded by 25, 2,, #, and %,. Then the
correspondence between pairs on 07 (") =25 )2, and pairs on 3%(S") = %, )%, can be
identified with the mixed deletion procedure on (f, x) in Definition 2.5 by Case 1. Set §” to
be the skew diagram surrounded by 2,, 2,, #;, #, and #,. Obtaining growths on 2, ) &,
from growths on 2, and %, is identified placing the resulting tableaus into 7 to obtain
7. Then Theorem 3.4 shows that the correspondence between pairs on 2, )%, )%, and
pairs on £, |) %, can be identified with the deletion procedure on (7', &) in Definition 2.5. This

proves our claim. W

§4 Mixed Knuth Correspondence for (A, B)-Partially Strict Tableaux

In this section we consider the mixed Kunuth correspondence and dual mixed Knuth
correspondence simultaneously by using (A, B)-partialy strict tableaux.

Fix another division (4, B) of /. Set k=|A4| and !=|B| so that we have
|| =k+1. We have two pairs (4, B) and (U, C) which are divisions of /. We write

A,=ANU, 4,=4NC
B,=BNU, B.=BNC’

Example 4.1

Set A={1,3°,57}, B=1{2,4°6,8}, U={1,2,56} and C = {3°,4°,7°,8°}. Then (4, B)
and (U, C) are divisions of [8] and we have A,={1,5}, 4.={3° 7}, B,={2,6}, and
B.={4°,8°}. As in this example we write elements of A in lightface and elements of B in
boldface.

The folowing terminology is not so common but it is an easy extension of (k, [)-semistandard
tableaux. For the definition of (k, /)-semistandard tableaux see [BR] or [Re].

Definition 4.1 (Okada)
Let © be a (skew) reverse plane partition. = is said to be (A4, B)-partially strict if it satisfies
the conditions:

(i) For any me A, m appears at most once in each column.

(ii) For any me B, m appears at most once in each row.

We call a (4, B)-partially strict (skew) reverse plane partition a (A4, B)-partially strict (skew)
tableau. A (P, O)-partially strict skew tableau is usually called a column-strict skew tableau
and a (@, P)-partially strict skew tableau, a row-strict skew tableau. If A =1{1,2,...,k} and
B={1,2,.,1},where l <2< ...<k<l <2 <. <1, then a (4, B)-partially strict tableau
is called a (k, I)-semistandard tableau.

Example 4.2
Set (4, B) to be the division given in Example 4.1 Then
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ef 3| 3146 77

n= 415|516
|17yl 8
51 8

is a (4, B)-partially strict tableau.

B T I T A B

= 4 141172
113
1/

is an exmple of (4, 3)-semistandard tableau.

Definition 4.2
Let A/u be a skew diagram. Let 4 p(1/1) denote the set of all (4, B)-partially strict skew
tableaux of shape A/p. For me T, 5(A/u) set the weight we(r) of = to be [],_,, X7« where

m, = number of times a occurs in 7
and x,’s are indeterminates. Set

HS:P(x) = Y wt(rm).
ned (4, B)(Al1)

It is clear from the definition that
HS{P(x) = HSE 2(x).

In particular if 4= {1, 2,...,k} and B={1', 2,0, where 1<2<-<k<l'<2 <<
I, we write HS:P(x) as HSE2(xy, Xa,..0, Xio Yis Vasenos VD)

Propesition 4.1
Set A ={a,, a,,...,a} and B={by, b,,...,by}. Then

A,B — k,I
HSGP(x) = HSED(Xg10 Xayse ooy Xays Xigs Xiys s Xpy)-

Proof.
We can easily construct a bijection beteween 74 5 (4/p) and T 1. 1. 1n2,.,1p(A/ 1) using
the jeu de taquin method in [Re], Section 3, pp. 266. For details se [Re]. B

Definition 4.3

Let 7 be a (4, B)-partially strict tableau and let xe.o/. We define INSERT 4 .y ¢ (x) as follow.
If xeU, insert x into the first row of =n; if xeC, insert x into the first column of n. If

the bumped element y is uncircled, then we insert y into the row immediately below or if the

bumped element y is circled, then we insert y into the column immediately to its right by the

following rules.
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y replace the least element which is >y if yed,|)B,: or y replace the least element which
is >y if yeB,J A..

Continue until an insertion takes place at the end of a row or column, bumping no new
element. This procedure terminates in a finite number of steps. Then set (s, t) to be the cell
which is added to =z

Similarly we define INSERT 4.5, (x) by swapping U and C in the foregoing
definition. If xe U, insert x into the first column of x; if xeC, insert x into the first row of
7. The uncircled letters which are bumped are inserted into the column immediately to its
right and circled letters are insertedinto the row immediately below by the following rule.

y replace the least element which is >y if yeA,{JB,: or y replace the least element which

is >y if yeB. | A4,.

It is easy to see that the resulting tableau is also (A4, B)-partially strict. Let # «™x (resp.
x »™n) denote the tableau which is obtained after we applied INSERT 4 p.u.¢)(x) (resp.
INSERT 4 3.v,¢) (%)) to 7.

Example 4.3
Let © be the (A, B)-partially strict tableau in Example 4.2.

1 1 111]4°
2 13| 3| 34|

<
(<2l

v |

"4 = 4215|561} 8°
41 6|77
5| 8

And we have (s, t) = (4, 4).

1ol 2]els]s 7°J

SRS 7| 7
2omn= 3|55 s

| | el s

4] 8

And we have (s, t) = (6, 1).

Remark 4.1

In [Re] two insertion procedures are defined for (k, I)-semistandard tableaux. Set A =
{1,2,...,k} and B={1',2,..,I'}, where 1 <2< <k<l'<2<--<l. If U=4 and
C =B, then the insertion algorithm in Definition 4.2 is called RS1 insertion in [Re]. If
U=/ and C =@, then the insertion algorithm is called RS2 insertion.

Definition 4.4
Let 7 be a (A, B)-partially strict tableau. Set m, to be the number of times x occuts in 7
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for each xes/. Let m=Y __ m. We make a partial tableau pt (r) with letters in [m] from
7 as follows. If xe 4, then replace m,x’s inw to ), . m.+1, % _ m. +2,..,> _ m, from
left to right. If xeB, then replace m,x’s inzw to ), _ m,+ 1, ) . m.+2,..,% _ m, from
top to bottom. If xeUthen) . m + 1,3 _ m +2,..,% _ m arein U, and vice versa.

Example 4.4
If 7 is as in Example 4.2, then pt(n) is as in Example 2.2.

Definition 4.5

A word with repetition is a sequence w = w,w,...w, of letters in .o wherein each ae.o/ can
appear more than once. Given a word with repetition w = w, w,...,w,,, we make the insertion
tableau 7 =@ «™w for w as follows. For i=1,2,...m we define inductively n, =@ and

w,=m;_y«<"w,. Letmn=m,.
Example 4.5
w=°2 °2 1 °3 4 °3 °3 1 4 °2 4

is a word with repetition and the insertion tableau for w is as follows.

1] 1]°2]3]4
Dmw=|2|°3|°3| 4
2|4

Definition 4.6

For a given word with repetition w = w, w,...w,, we make a permutation p(w) of [m] as follows.
For each xes/ let m, denote the number of times x appears in w. For each xe/, if xe
A, B, then replace all x in w by Zy<xmx + 1, Zy<xmx + 2,...,2y5xmx in increasing order.
For each xe«/, if xes/, if xe A, \JB, then replace all x in w by Zygxmx, pexle = 1.,
Yoy<xMy + 1 in decreasing order. If xeU then Y. . m,+1,% _ m. +2,..,> _ m, are in
U, and vice versa.

Example 4.6
Let w be as in Example 4.5.

pw=°3 °4 1 °8 9 °7 °6 2 10 °5 11

1]2(°8|°3fo9
G"pw)= [°4]|°6]|°7]10
°51 1L

The following proposition is easy to see from definitions.

Proposition 4.2
Let w be a word with repetition. Let n be the insertion tableau of w Then the following
diagram commutes.
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W —— 7T

l” lm
p(w) «— pt(n)

where the top and bottom bijections are the mixed Knuth and mixed Robinson-Schensted maps,

respectively. W

Lemma 4.1
Let 7 be a (A, B)-partially strict tableau and ¢, x'e of. If INSERT 4 p.y c)(x), determining s

and t, is immediately followed by INSERT 4 p.y.c, (X)), determining (s', t'), then
(Case 1) x, x'eU

(@ If x<x'" or x=x'€A then we have s> s and t <t'.

(b) If x>x" or x=x"€B then we have s <s and t > t'.
(Case 2) x,x'eC

(@ If x>x" or x=x€A then s=¢s and t <t'.

) If x<x' or x=x"€B then s<§ and t =t
(Case 3) xeU and x'e€C, we always have s <s and t > t'.
(Case 4) xeC and x' €U, we always have s > 5" and t <t'.

Proof.

Choose arbitrary word with repetition w such that n =@ «™w. Let w' =wxx’. Then it is
easy to verify the lemma by using Proposition 4.2, Corollary 2.2, and Lemma 1.1. For example,
we verigy Case 3. Assume that xeU and x'eC. Then x'eC. Then x'eC is changed into
some negative letter — x’ which is less than x so that we obtain s < and t > ¢’ immediately
by Lemma 1.1. ®

Remark 4.2

In the foregoing lemma by changing INSERT 4 p.yc(x) and INSERT 4 5.y o (x) into
NS—EFF(A,B;U,C,(X) and mw,&u,@(x’), respectively and swapping U and C, we obtain a
similar result on INSWF(A'B;U,C)(-).

Fix another finite totally orderd set </’ and its divisions (4’, B)) and (U’, C') such that
|A’'| =k" and |B'| =1 We write
A, =ANU, Al=4ANC
B,=B (U, B.=BNC’
Definition 4.7
Let a be a (k' + ') x (k +]) matrix of nonnegative integers

i,y Ay 0 Gy

Ga,1 Gp,2 0 Gy
a=

am, 1 am,l ot am,n

whose rows are labeled by elements of &/’ and columns are labeled by elements of &. a is
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said to be addmissible if it satisfies:
(1) If(i jl)ed x AUB x B, a;;€N.
2) (4 j)ed x BUB x A, a; ;€{0, 1}.

Let #(A', B', A, B) denote the set of all admissible (k' + ') x (k + [) matrices.

Example 4.7
Let A= {2,°4}, B = {1,°3}, A= {°3,4}, and B = {1,°2}. Then

- O o N
T e =
N O N O

0
1
3
0
is a admissibe 4 x 4 matrix.

Definition 4.8
Let ae M (A', B, A, B). From a we make a two-line array

u u v e um
l(a)=< v >
vl 1)2 e e v"l

57

u
as follows. We arrange a, , pairs of row and column labels ( ) by the following rule. First
v

we assume that

U;
) such that u; = u as follows.

(1) For each ue A, B, we arrenge all labels (
U;

vm’ vpz’ ’ Upr+1’ Upr+2’

elements of C elements of U
in decreasing order in increasing order

u; .
(2) For each ues/,|) B, we arrenge all labels < ) such that u; = u is follows.

4]
Upys Upas UpgseveseensUps Upys UpygsenisennsUp i
elements of U elements of C

in decreasing order in increasing order

It is easy to see this gives a one to one correspondence between admissible matrices and
two line arrays satisfying the above conditions. We call this two line array the matrix word
of a and denote by [(a). The top (resp. bottom) line of I(a) is denoted by fta) = uy, us, -, u,,

(resp. T(a) =D, Ug,0005 V)
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Example 4.8
The two line array which correspond to the matrix a in Example 4.7 is

I <1 1 2 2 22 °3°3°3 °3 °4 °4 °4 °4>
a) = .
11 °3 °244°3°2°2°2 4 41 °3

Definition 4.9
Let ac #(A', B, A, B). From a we make a two-line array l(a) in Definition 4.8.

l ( ul u2 .o e um >
vl v2 B ‘e vm
We construct a sequence of tableaux pairs:

(0: 0) = (77-'0’ 60)’ (nla 0'1),...,(7Im, o-m) = (7[’ G)

inductively as follows. For eachi=1,2,...,m form =; from 7, by performing INSERT 4 .y ¢,
(v;) on m_, if u; is a uncircled letter, or performing ﬁ\IT—ER’—I‘(A,B;U,C)(vi) on 7w if w; is a
circled letter. Form o; from o;,_; by placing u; on o,_; in the cell added to n;. By Lemma
4.1 ¢ is a (A', B)-partially strict tableau and = and ¢ have the same shape.

Example 4.9
Let a be as in Example 4.7. Then
1feaesfos] a4 1[2]2]2]3]4]
= 1]°2] 4 o= 1 [°31°4
1]°3 2 1°3
°2| 4 °g3 | °4
°2 °4
Definition 4.10
Let ac.#(A', B, A, B). Let
u u saw e um
l(a)z( v >
vl ’UZ vas e vm

be the two line array which correspond to a. We construct a biword w from [ as follow. For
each xe.of (resp. xe of') let m, (resp. m}) denote the numeber of times x occurs in the bottom
(resp. top) line of I. Replace m;, x’s in the top line of | by qumx +1, Zy<xmx + 2,...,Zy£xmx
from left to right. The circles are transfered unchanged in this replacement. For each xe ./

U;
let r, (resp. s,) be the number of pairs ( ) such that v; = x and w;e U (resp. y;€C). So we
Uj

have r, + s, = m,. For each xe .o/ we replace v’s such that v; = x by the following rules. The

circles are transfered unchanged in this replacement.

(Case 1): xe A, B, "

Replace the v;s of pairs (vl> such that v;=x and weC by ) . m. +1,) . m +2,..,
J

y<x "X
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U;
qumx + s, from right to left. Then replace the v,’s of pairs ( ) such that v; = x and u,eU
Uj

by Y o ome s+ LY omo s+ 2,00y <x s from left to right.

(Case 2): xe A, \JB, "
(2)

Replace the v;’s of pairs such that v;=x and w,eU by Y . m. + 1LY o mc+2...,

u;

Zy<xmx +r, from right to left. Then replace the vj’s of pairs < > such that v; =x and
b;

weC by Y mo+re+ 1Y ometrat 2,00 yex s from left to right.

Let p(a) denote the resulting biword.

Example 4.10
Let g be as Examle 4.7 and I(a) as Example 4.8. Then we have

<1 2 3 4 5 6 °7 °8 °9 °10 °11 °12 °13 °14>
pla) = 21 °8 °7 13 14 °9 °6 °5 °4 12 11 3 °10/
The following proposition is easy to see from definitions.

Proposition 4.3
Let ae M(A', B, A, B). Then the following diagram commutes.

a «~— (m, 0)
p(a) «— (pt(m), pt(a))

where the top and bottom bijections are the mixed Knuth and mixed Robinson-Schensted maps,

respectively. M

Example 4.11
Let p(a) be as in Example 49. Then the insertion pair of p(a) is as follows.

1[4 o0 ]o10] 13 ] 1] 1]as]6]er]n
T = 2 1°5112 o= 2 1°8(°13
B 3 | °9
og | 11 °10]°12
|7 | °q1

From Proposition 4.3 we obtain the following theorem.

Theorem 4.1

Fix of and its divisions (U, C) and (A, B). Fix another s/' and its divisions (U', C') and
(A', B). The map in Definition 49 from admissible matrices ac #(A', B', A, B) to pairs (z, 0),
where © is (A, B)-partially strict tableau, o is (A', B')-partially strict tableau and = and ¢ have
the same shape, is a bijction.

The following proposition is also easy to sec from definitions.
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Proposition 4.4

Let ac #M(A', B, A, B). If p(a) correspond to a by the map in Definition 4.10, then the
inverse biword p(a)~! correspond to a'. Here @' denote the conjugate matix of a.

From Proposition 4.4 we obtain the following theorem.

Theorem 4.2

Fix o/ and its divisions (U, C) and (A, B). Assume that (n, o) correspond to a by the bijection
in Definition 4.9, where ac M (A, B, A, B), and n and o are (A, B)-partially strict tableau having
the same shape. Then (o, ) corresponds to a' by the same bijection.

Example 4.12
Let a be as Example 4.7. Then

O O O N
N o~ = O
(= e~
N~ D =

and
" <111°2°2°2°2°3°3°34444>
q) = .
11 °4°3°3°3 2 2 °3 °4 °4 °4 22

It’s easy to make sure that

SEIEIRIENES 1[2]2]2 8]
n= |1 2|4 o= |1/[°3|°4

1]°3 R

°g | 4 °g | o4

- E

Definition 4.11
Fix .o/ and its divisions (U, C) and (4, B). Let a=(a;); o€ #(4, B, A, B) be an admissible
symmetric matrix. We define tr, p a by

trama= Y a;+ » odd {a;}
icA ieB

1 if xis odd

0 if xis even

where odd {x} = {

Corollary 4.1

Fix o and its divisions (U, C) and (A, B). The map in Definition 4.9 givs a bijection from
admissible symmetric matrices ae M (A, B, A, B) onto (A, B)-partially strict tableaux n. In this
bijection we have

tre4,p a = odd (1)



Mixed Robinson-Shensted-Knuth Correspondence 61

where A is the shape of m and odd (J) stands for the number of odd length columns in A.

Example 4.13
Let A={1,°3} and B={°2,4}. Let a be an admissible symmetric matrix given by

1020
0210
a =
2101
0011
Then
1 1 1 °2 °2 °2 °3 °3 °3 °3 4 4
la) = .
°3 °3 1 °3 °2 °2 4 1 1 °2 4 °3
and

111°24J

°214
°3
Corollary 4.2
Fix o/ and its division (A, B).
1 1+ tx;
HS(A,B) (x) todd(l) - (1 + x,x) P .
; g (i,j)eA.XA_UBXBI - X;X; (i,j)ng ’ E«i 1— lx,g 1—
i<j

In particular,

T OHSEP = ] Lo dexe) Ty

A even (i.j)ledX AUBXx B 1 - XiXj (i, j)ed x B ieB L — X
i<j

Now we investigate the skew case. Let PST 4 p (4/u) denote the set of (4, B)-partially strict
skew tableaux which have skew shape A/u.

Theorem 4.3
Fix o and its divisions (U, C) and (A, B). Fix another &' and its divisions (U', C') and
(A’, B). Let o and B be fixed partitions. Then the map

(a, 7, k) > (7, 0)

defined below is a bijection between admissible matrices ae # (A, B, A', B) with 1€ PST 4 p, (¢/1)
and ke PST gy (B/1), on the one hand, and mePST, 5 (A/B) and ce€PST 4 p,(A/a), on the
other, such that ©\) i(a) =7 and x|) f(@) = 0.

Proof.
Let n be the largest letter of «{J f(a). We construct (z,, g,), for r =0, 1,...,n, as follows. Start
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with (ry, 6o) = (7, 9,). Form =z, from n,_, as follows.

Case 1: re A, B

At first we insert all the circled letters of I(a) paired with r’s in i(a), where these circled
letters are arranged in decreasing order. Next we internally insert all the letters of =,
corresponding to #’s in a,_,. If reA;, the insertion proceed left to right, and if re B, the
insertion proceed top to bottom. Finally we insert all the uncircled letters of [(a) paired with
r’s in I(a), where these uncircled letters are arranged in increasing order.

Case 2: re A/ B,

At first we insert all the uncircled letters of I(a) paired with r’s in I(a), where these uncircled
letters are arranged in decreasing order. Next we internally insert all the letters of =, ;
corresponding to r’s in o,_,. If re A, the insertion proceed left to right, and if reB,, the
insertion proceed top to bottom. Finally we insert all the circled letters of ?(a) paired with
s in [(a), where these uncircled letters are arranged in increasing order.

In either case placing ’s in the appropriate cells of ¢,_, result in ¢,. It is not hard to
see that the cells where s are placed are horizontal or vertical strip in o,. At last we put
(zy, 0,) =, 0). W

Example 4.14
Let A={1,°2}, B={3,4}, 4'={1,°3}, B={2,°4}, a=(221) and f=(43). Let a=

0100
0101 ) i 1 2 2 °3 °3 °3 °4
so that the matrix word of a is I(a) = Let
2100 24 °2 1 1 °2°3
0010
T= 1 K= 112 1°4
114 1]1°31°4
|73
Then we have
7= t]1]s]a] o= 1] 1]2]3]3]4]
1]°2 21°31]°3
1(°2/4 11|°4
°21°8 2 |°4

Corollary 4.3
Fix & and its division (A, B). Fix another of' and its division (A', B)). Let o and B be
fixed partitions. Then

Y HSYP (x) HSY ™) (y)
A

1

H 14+ xy)

alp 1
(i, jleAx A'UBx B L — X;Vj (i,jleAx B'UBx 4’

=Y HSEP (x) HSS™ (7)
I3
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Theorem 4.4

Let of =5/, (A,By=(A",B), (U, C)=U"',C’y and o= f in Theorem 4.3. If (a, 1, k)
correspond to (m, 6) by the bijection in Theorem 4.3 then (d', x, t) correspond to (o, @) by the
same bijection.

Theorem 4.5
Fix o and its divisions (U, C) and (A, B). Let o be a fixed partition. Then the mapping
in Theorem 4.3 restricts to a bijection

(a, )

where ae M(A, B, A, B) is a symmetric matrix, 1€PST 5 /1), nePST 45 /1), and
Z(a)Ur =m. In this bijection we always have

tr 4 g a + odd (1) = odd (3)

Example 4.15

0111
1200 .
Let A ={1,°2}, B={°3,4} and o =(221). Let a= Joo0o0 | % that the matrix word
1000
. 1 1 1 °2 °2 °2 °3 4
of a is l{a) = Let
°3°24°2°2 1 11
T ==
4
°3
Then we have
m = 1|1
°21°8
1[°2|4
°21°8

Corollary 4.4
Fix of and its division (A, B). Let o be a fixed partition.

Z HSg:-/i&B) (x) todd(}.)
2

1 1 1+ tx;

[T @+xx)[l 11

2
Gpeax duBxB 1 — X;X; (i, jjedxB edl —tx;ieg 1 — X
i<j

= Y HSUD () 10090
n
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In particular,

1 1
Y HSHP= % HSGPx I ——— [l (+xx)[[—
A'even # even (i.j)ed X AUB X B 1— XiXj (i, j)eAx B s 1 — X;
i<j
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