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Remarks on Totally Symmetric
Self-Complementary Plane Partitions

Masao ISHIKAWA!

1. Introduction

In [Sta3], R. P. Stanley classified the problem of enumerating plane partitions
under various symmetries into ten cases. In this paper we consider a refinement
of one of those cases, i.e. the case of totally symmetric self-complementary plane
partitions (abbreviatedd as TSSCPP’s). To enumerate TSSCPP’s we introduce a set
%, of plane partitions which will be shown to have the same cardinality with the
set of TSSCPP’s. We mainly study this set %, and obtain a certain generating
function by means of a pfaffian.

For a positive integer n, we set

n—1 ;
A, = M (1.2)
i=zo (n+i)!

We introduce the set %, of row-strict plane partititions whose entries in the i-th
row do not exceed n—i. Then we will obtain a bijection between %, and the set
of totally symmetric self-complementary plane partitions in Section 3.

Example 1.1. %, is composed of the following seven elements.

9] 1 1 2 2 2|1’ 21J

Theorem 1.1. There is an explicit bijection (see Corollay 3.1) between the set of the
totally symmetric (2n, 2n, 2n)-self-complementary plane partitions and €,,.

This %, is the main object which we study in this paper. To study %, we
redefine the function U, which is introduced in [MRR3] as the function of %, into
N by using the bijection between TSSCPP and %, established in Theorem 1.4. This
function U, is expected to have the same distribution as that of 1’s in the top row
of alternating sign matrices (see [MRR3]). Namely we can expect that the number
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of elements y in %, such that U, (y) =r would be equal to the number of alternating
sign matrices which have 1 in the (r + 1)-st position of the first row. If we put
Uf(y)=n—1—"Uy) for each 1<k<n and ye%,, then Uc(y) has a simple
interpretation as follows.

Let y be an element of 4,. If a non-zero entry in the i-th row of y equals
n — i, we call this entry a maximal part of y. Maximal parts can occur only in the
first column because y is row-strict. We will prove that the U, (p) is the sum of the
number of parts which are equal to k and the number of maximal parts which are
less than k. Namely the following proposition will be proved in Sectin 4.

Proposition 1.1. For each ye¥, and ke{l, n], we have
Uy) = #{(G, Nell, nPlyy =k} + #{l <i<k—1]y,_;, = i}.
From Conjecture 3 in [Sta3] we can expect the following.
Conjecture 1.1 [MRR3]. For 0<r<n—1and 1 <k <n, we set
Gur =€, Uly) =1}

Then the cardinality of €¥, would be given by
- 2n—r—2
<n+r 1>< n—r >An—1
n—1 n—1
2n —2 '
(1.3)
n—1

Definition 1.1. Let A be an n by m rectangular matrix (1 <n <m):

#%,, =

a;; Gz Gim
. a,fZI a?z g,
Ayy Qua Oy
Then we put
ay;, Gy, v 4y,
=y e

1<ji1<ja<..<jn<m
P (1.4)

a a a

njy nj2 njn
i.e. d,(4) is the sum of all n x n minors of A.
Let us give a formula which expresses the multivariable generating function of

%, weighted by U, and in terms of d,.

Theorem 1.2. Let n and k be positive integer such that 1 <k <n. We define the n
by (2n — 1) rectangular matrix P,(t, x) by
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P,(t, x):= (") (t, x))i- 0. =1
.

s 20—

where
. h
pf-?’(t, x) = eﬁ-')—i(tlxl, LoXg, oyl 1 X1, (H £,)X;). (1.5)
v=i ‘

Then

U047 —
vezg;"t X' = dn (Pn(ta X)) (16)

Here e (xy, X,,+,X,) is the elementary symmetric function of degree r with n variables
X1y Xg, 5%, and t90 stands for [[io, 9. If y contains my 1’s, my 2’s, my 3s,--,

mn

. m m
then we write x' for xXT'x52x%2--.

By using a formula given in [Ok], we express the sum of minors d,(P,) by a
pfaffian.

Theorem 1.3. Let n be a positive integer.
(1) If n even then we have

z tﬁ(v)xy = an(fn(la J, ta x))Osi,an—l .

y€€n

) If n is odd then we have

Z tﬁ(wxy = an—l(fn(i’ ]a ta x))lsi,js;:—l .

y€€n
In the above expressions the entry f,(i, j; t, x) is given as follows.

Julis js 8, )
n i

n n
Ly H X, z R (FRRP TR Sk ol (H tyHxt, LiXyg, s tjm 1 Xj—1s (H t,)x;)
v=i

v=1 v=1 r>2i-j v=j
. 1.7
" Jj v n o B _ noo -
- H L H Xy 2 AR (7 FUCIEN PSP (H L)X, £ 1 Xg 17"'9tj—-11xj~11’ (n Ly I)Xj ).
v=1 v=1 rz2j-i v=i v=f

Here Pf, stands for the pfaffian of an n x n skew-symmetric matrix.

Now we consider a special case: i.e. we substitute x;=1for 1 <i<nand ¢ =1
for 1 <1 <n except for a fixed k. In this case we can simplify the entries of the
pfaffan and obtain the following corollary.

Corollary 1.1.
(1) If n is even then we have

Y t00 = (1 + 1) P, (h;, j()2<ijen—1-

y6€n
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2y If is odd then we have

Z tﬁk(y) = an~1 (hi,j(t))lsi,j5n~1

ye€n

Here the entry hy;(t) is given as follows: For i=j=1 we set h;j(t) =0 and for (i, j)
such that i+j =3 we set
3G—0DBi—2)(3j—2 i+j
e Y PN (B
G+PNE+j—DE+j—2)\2i—
N 3( — D {9(5i% — 8i%j + 5ij) — 21(x> + y?) + 4(5i* — 8ij + 5/%) + 7(i +j) — 6}
G+NE+j—=DE+j—2Ri—j+1D2j—i+1)

X ( i.+j'>t. (1.8)
2i—j

If we put ¢t =1 in this formula and compute the entries of the pfaffian, then we
obtain the following corollary.

hy(t) =

Corollary 1.2.
(1) If n is even,

#€, =2PL (b )rcijsn-1-
2 If n is odd,

#E, =Pl (b )i<ij<n-1
Here the entry b; ; is given by

_ 3—-D)@Bi+1DGE+1) <i+j>
(+)Qi—j+H2j—i+1)\2i—j

i (1.9
Note that this formula is equivalent to the formula obtained in [Ste].

This paper is organized as follows. In Section 2 we give clementary definitions
on plane partitions. So the reader who knows these objects may skip this section
and only refer to it afterwards when necessary. In Section 3 we prove Theorem 1.4
by constructing a bijection concretely. In Section 4 we redefine the function U,
investigate the relation between %, and the shifted plane partition defined in [MRR3]
and prove Proposition 1.1. In Section 5 we employ the lattice path method and
give the generating functions of €, in the form of the sum of minors. Theorem 1.2
and its corollaries will also be proved in the section. In Section 6 we transform a
sum of minors into a pfaffian and simplify the entries of the pfaffian as far as
possible. Theorem 1.3 and its corollaries will also be obtained.

Recently J. R. Stembridge [Ste] obtained a formula on the number of totally
symmetric self-comlementary plane partitions and G. E. Andrews evaluated the pfaffian
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and proved the conjecture on the number of totally symmetric self-complementary
plane partitions in [Sta2]. But this work is independent of thier results and most
parts of this paper are written as my master thesis in January of 1988. It was
delayed to translate them into English and publish them, and it was the auther’s fault.
The auther expresses special thanks to H. Kimura and 1. Terada for checking English.

§2 Preparation

In this section we introduce some notation and terminology concerning plane
partitions. Some terminology describing various symmetries of plane partitions will
be defined at the end of this section.

We use the following notation. We denote the set of positive integers by P,
the set of nonnegative integers by N and the set of integers by Z. We write

Ui, j]:={xeZ|i < x <j}.
We denote by #X or Card X the number of elements of the finite set X, and by
n
< > the binomial coefficient.
r

The Gaussian binomial coefficient is by definition

1ot
rl, [t —rl,! 21

where [i],! = [i],[i — 1], - [1], and [i], = q —
q—

n . .
[ ] is zero if r < 0 or r>n.>
r
q

We use the notation in the book [Mc] for partitions. For example a partition
is a weakly decreasing sequence of nonnegative integers 4:= (1;, A,, 45,---) with finitely
many nonzero entries. We denote the length of a partition by /(1) and the conjugate
partition of 4 by A'. The Young diagram (or Ferrers graph) of the partition 4 is a
subset of P? defined by

<We agree to define also that

D)= {(i, )eP?|j < A} 2.2)

From now on we identify a partition A4 with its Young diagram and denote D(7)
simply by A.
Next we define the plane partitions in accordance with [Mc] and [St1].

Definition 2.2. Let A be a partition. A4 plane partition n:= (7;); jes is a filling of
the Young diagram A which satisfies the following conditions.

(i) n,el if (i, jed,
(ii) Ty 2 Tiry if (i,7),@0+1,))el,
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(iid) T 2 Wijea if ), j+ Deld
The entries 7;; ((i, j)e A) are called the parts of =, and |x|:= Z(i,j)el n;; the weight

of z. In particular we denote by @ the plane partition which has no entry (i.e. 1 = 0).

In most parts of this paper we only consider the plane partitions whose parts
are positive integers. So from now on we assume that the plane partitions have
only positive parts and we regard that points outside A are filled with zero unless
otherwise mentioned. The subset of P* defined by

F(n):= {(i, j, kyeP*|(i, e, k < m;;} (2.3)

is called the Ferrers graph of n. A Ferrers graph F of a plane partition always
satisfies the following conditions:
(i) If (x', y', Z'yeF, then any (x, y, z)eP? satisfying
x<x',y<y and z <z belongs to F,
(ii) Card F < 0.

Note that any subset of P® which satisfies the above conditions defines a Ferrers
graph of a plane partition. So we will henceforce identify a plane partition with its
Ferrers graph and denote it by the same symbol. Now let = be a plane partition.
The partition defined by

bs(n):= {(x, ) eP2|(x, y, Den)

is usually called the shape of =, but in this paper we sometimes call it the bottom
shape of 7 in order to distinguish it from the side shape defined below. The partition
defined by

ss(n):= {(x, z2)eP?|(x, 1, z)en}
is by definition the side shape of =.

Next we recall some difinitions concerning the symmetries of plane partitions
which will be needed later. (For the details see [St3].)

Definition 2.3. Let n:= (7;)); ;> be a plane partition.

1 We say n is column-strict

if 7;;> 74y for all (i, j)eP? such that r;; # 0.
2) We say n is row-strict

if 7;; > m;;, 4 for all (i, j)eP? such that x;; # 0.
3) We say n is symmetric if n satisfies

Vix, y, 2)eP3: (x, y, 2)en<(y, X, 2).€m.

4) We say n is cyclically symmtric if n satisfies
V(x,y, 2)eP3: (x, y, 2)en<(z, x, y)en.

5) We say n is totally symmitric
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if 7 is both symmetric and cyclically symmetric.
6) For I, m, neP set X,,.:=[1,1] x [1, m] x [1, n].
We say n is (I, m, n)-self-complementary
if n satisfies the following condition:
7 is contained in X,,,, and
for all (x, y, z)€ X}, (X, y, 2)€x and only if
(l+1—=x,m+1—y,n+1-—2)émn

The condition of n being a (I, m, n)-seld-complementary is equivalent to saying that
n is contained in the box X,,, and n and X,,, —n are symmetrical to each other

[
with respect to the center (—2—,%, g) of the box X,,,.

§3 Certain Classes of Plane Partitions and Bijections Among Them

The aim of this section is to construct a bijection between the set of totally symmetric
self-complementary plane partitions and 4,.

Let neP. We denote by £, the set of all cyclically symmetric (2n, 2n, 2n)-self-
complementary plane partitions. We denote by %, the set of all totally symmetric
(2n, 2n, 2n)-self-complementary plane partitions.

Definition 34. Let &, be the set of plane partitions ¢ which satisfy:
(i) e[l n]?,
(i) for alt (x, y)eP? we have

x,yp, Jee=m+1—y, L,n+1—x)ée. 3.1
Example 3.2,
€= {@},
&,=1{0,1,2,1 1}

Theorem 34. Let &: R,— &, be the map which associates pe R, with €&, defined
by the condition:

V(x, y,2)eP3: (x, y, z)ee<(x, y+ 1,z + n)ep. (3.2)
Then & is a bijection from R, io &,.

Proof. In order to show that & is well defined, we have to verify that ec&,. But
it is clear that ¢ defined above is actually a plane partition and is contained in
[1, n]3, so we have only to show that

Vix, )eP?:(x, y, Dees(m+ 1 —yp I,n+ 1 — x)¢e (3.3)

Using the properties of p and the definition of ¢, this immediately follows by an easy
calculation. Next we construct the inverse map ¥: &, » %,. We define the domains
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D, (where p, g, re{l, 2}) as follows:
D,y = [@—=Dn+1,pn] x[(g—Dn+1,gn] x [(r — I)n+ 1, rn] 3.4)

Given ee&,, we define pe R, by specifying the points of p in each domain D, as
follows:

(D Vi, p+nz+neDi,: (x,y+nz+neps(xy, z)es,

2 Vix+ny,z+neD,,: (x+ny z+nepe(y,z xjes,

() Vx+my+nz)eDy i (x+ny+nepe(zx, y)es,

4 Vx+n y2€D,:(x+n y,20ep<m+1—x,n+1—yn+1-—2)é¢e,
(5) Vix,y+nzeD,:(x, y+nzepem+1—yn+1l—z,n+1—x)ée,
(6) V(x,y,z+meDi: (x,y, z+nepsm+1l—z,n+1—x,n+1—y)és,
(7 V(x, y, 2)€Dyyy: (x, ¥, 2)Ep,

(8) Vix+ny+nz+neD,,: (x+ny+nz+nép,

(where x, y and z belong to [1, n] in the above notation.)

First we have to show that pe4,. It is enough to show that p becomes a plane
partition since it is clear from the definition of p that p is cyclically symmetric and
(2n, 2n, 2n)-self-complementary. Suppose that P’ = (x', ¥, z') belongs to p and let
P =(x, y, 2)e[1, 2n]® be a point satisfying x <x’, y <y, z<z. Then we have to
show that Pep. This is clear if P and P’ lie in the same domain. Further in the
case that PeD,,; or P'eD,,,, this is trivial. So the remaining cases to be considered
are as follows.

PeD,,: (where one of p,q,r is 2 and the rest are 1)

P'eD,,: (where one of s, t, u is 1 and the rest are 2) (3.5)
P<s,gq<tr<u

For example we consider the case where

P=(X, ¥z + n)ED1125 P :(xla y, +n> 4 + n)ED122: (3 6)

x<x',and z< 7.

Since the claim was shown in the case where two points lie in the same domain, we
can assume that x = x’ and z =z. Then an easy calculation as follows leads to the
coclusion.

P,=(X, y,+n>Z+n)Ep¢>(xa y/,Z)eﬁ
=(x, ,z)ee=>m+1—zn+1—x 1)¢e
=>m+1—zn+l—x,n+1—yde>P=(x,y,z+nép

So in this case the claim was shown. We can prove the other cases similarly, and
this shows that p is a plane partition. The remaining task is to show that ¢ and
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¥ are the inverse mappings of each other. It is clear from the definition that
®o¥=id,, so we have to show that & is injective. This is equivalent to show
that, for any seé&,, p = Y(e)e R, is the only one which satisfies @(p) =& But this
is an easy consequence of the fact that p is cyclically symmetric and (2n, 2n, 2n)-
self-complementary. []

Definition 3.5. For neP, we put
%,: {y|y is a row-strict plane partition satisfying (x, y, z)ey=>x+z<n}, (3.7
9,:=1{5]6 is a plane partition satisfying the conditions:
Vix,y,2)eP3: (x, y, 2)ed<=(x, z, y)€d (3.8)
V(x,y,2)eP?: (x, y, z)ed<=x + y < n}.

Example 3.3. 2, is composed of the following seven clements.

? 3 ? ) ? ?

Proposition 3.2. Let @,: D, > ¥, be the map which associates o€ D,, with ye¥,, defined
by

V(x, v, 2)eP3: (x, y, 2)ey<=(x, y, y + z — 1)€b. (3.9)
Then @, is a bijection.

Proof. The plane partitions in 9, are symmetric in the directions of y and z (i.e.
(x, v, z)e 6 if and only if (x, z, y)ed.), whereas each row of the plane partitions in %,
is a strict partition. There is a well known one to one correspondence between
symmetric partitions and strict partitions so that it is easy to verify the above
construction gives a one to one correspondence between %, and 2,. [

Theorem 3.5. The restriction of the mapping @: R, — &, in Theorem 3.1 to ¥, gives
one to one correspondence between &, and 9,,.
Proof. Let peé,, ecé, and ¢ = &(p). Then
p Is symmetric

=[x, y+nz+nep<s(x,z+ny+nep]

< [(x, 3, z) ee<(x, z, y)ee].
Finally we have to show that, under this condition, the condition
(i) x,y, Dee=mn+1—y, Ln+1—x)¢e

is equivalent to the condition
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(i) (x,y, 2 ee=>x+y<n
This is an easy calculation. []

Corollary 3.3. The mapping @,0 Dl is a bijection from &, to €,.
To sum up, this bijetion of &, onto €, is given by the following rule.
Given de & ,, we construct y€¥, as follows:

V(x, 3, 2)€P?1(x, y, D)ey<s(x, y+m y+z+n—1)eo (3.10)

§4 Weighting the elements of €,

In this section we investigate the set %, First we introduce the terminology
defined in [MRR3], then investigate the relation between %, and %, and redifine
the function U,. We will prove Proposition 4.1 and introduce two conjectures from
IMRR3] at the end of this section.

A strict partition is by definition a partition A= (4, A;,-:-,4,) such that
A > A, >-->2 >0 With a strict partition 4 we can associate a shifted diagram
SD(4) which is defined by

SD():={(i, e P* |1 <i<j<A), 4.1)

Definition 4.6. Let A be a strict partition. A shifted plane partition = of the shape
SD(%) is a triangular array

ni= (m; j)(i, HeSD(A)

which satisfies the following conditions

(i) nyeZ it (i, )eSD(Y)
(ii) Tij 2 Wit 1, if (i,/),(@+1,j)eSD(A)
(iif) M2 ey 3 () () + 1)eSD(A)

From now on we only consider the shifted plane partitions whose parts are
positive integers and regard that all parts outside the shape SD(4) are filled with
zero. We can define a Ferrers graph F(n) of a shifted plane partition n in the same
way as that of an ordinary plane partition:

F(m):= {(i, j, k)eP?|i<j and k <=} 4.2)

Definition 4.7. We denote the strict partition (n — 1, n — 2,---,1) by A®”. Let %, be
the set of shifted plane partitions

B:= (.Bij)(i, HeSD(A)
which satisfy

n—i<p;<n for all (i j)eSD(A"). 4.3)
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Example 44. 28, has the following seven elements.

’ ’ ) b ) b

In [MRR3] the set &, was defined, and the following theorem was proved.

Theorem 4.6. For neP, the mapping &, — RB,, 0 = (6, jer>— Bij)i, jespaomy defined
by

Bij=0ir1,j+1— N (I<i<j<sn-1) (4.4)
is a bijection.
(see [MRR3], p. 280 Theorem 1.)

Interpreting in terms of the Ferrers graph, we can say that the mapping &, — 4,
takes ce.%, to fe B, defined by

V(x, v,2)eP?® such that l<x<y<n-—1:
(X, s 2) y 45)

x, y,2)ef<=x+1,y+ 1, z+n)ec

Combining Theorem 4.4 and Corollary 3.12 of Section 3, we obtain the following
corollary.

Corollary 44. The map B,— €,, By defined as follows is a bijection. For each
peB,, ye¥b, is determined by
Y(x,y, 2)€[1, n]® such that x+z<n: “6)
(6 pDeyes(r+l—x—zn—xn+1-y¢p

The inverse mapping €,— B, is given by the following rule. With each ye¥,, we
associate feRB, determined by

V(x, y, 2)e[1, n]® such that 1<x<y<n-—1:

.7
(x, p2)ef=m+1—z,n—y 1 —x+y)é¢y
Mills, Robbins and Rumsey defined the following function U, in [MRR3].
Definition 4.8. For feB, and ke[l, n], let
n—k n—1
Uk(ﬂ):= Z (ﬂt,t+k—1 — Bt,t+k) + Z {ﬁt,n-*l >hn— t} (4 8)
t=1 t=n—k+1 i

Here we set f8,, =n—t for all te[l, n— 1] by convention. Also {---} has value 1
when the statement “---” is true and 0 otherwise.

We also use the function
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UB)=n—1—Uyp) (4.9)

for fe4B,. ldentifying 4, and €, by the bijection defined in Corollary 4.5, we define
U(y) and U, (y) for ye%,.

Definition 4.9. Let y = (y;j); jep2€%,. We call the parts y;; which satisfy y,; =n —i
the maximal parts of y. The maximal parts, if they exist, appear only in the first
column.

For example the maximal parts of an element of 45

4 13 1
312 1
1 1

1

are the boldfaced entries.
Next we show that the U,(y) is the sum of the number of parts which are equal
to k and the number of maximal parts which are equal to 1,2,---,k—1 in y.

Proposition 4.3. For each ye %, and ke[l, n], we have
Uuy) = #{(G, Nell, nP lyy =k} + #{1 <i<k =1y, = i}. (4.10)
Proof. Recall that the definition of U, is

UiB)i= T Burssor = Busd + 5 (Braer > n— 1)
=1 t=n—k+1
Ifn—k+1<t<n—1,
Py >n—tet,n—1Ln+1—-t)ef(t, L,n—1t)¢gy<y, <n—Lt
It follows that

n—1

z {:Bt,n—l>n_t}=#{te[l’k_1]|yn~t,l<t}
t=n—k+1 (411)
=k—1—#{te[l,k =111y, = t}.

On the other hand if te[l, n — k]
ﬁt,tJrk—l = #{me[l, n]l(t9 t+ k— 1) m)eﬁ}
=#{mel[l,n]in+1—mn—k+1—1t ké¢y} 4.12)
=#{m€[19 n]|ym,n—k+1—t<k}

and
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_ #{mE[L n]lytn,n—k—tsk} if t<n—k
M Lk if t=n—k (4.13)

From (4.12) and (4.13) we conclude

n—k

Z (Beisk—1 = Beysr) = #{(, pell,n] x[1,n— K1y ; < k}
=1

(4.14)
—#{G, e[, n] x [I,n—k— 1]y, <k} — k.

It is easy to see that
#{(, pDlie[l,n],j=n—k and y,; <k} =n. (4.15)
From (4.14) and (4.15)

n—k

Z Berrn—1 = Bord =n—k—#{0 jell, n] x [, n — k]ly; ;= k}. (4.16)

(4.11) and (4.16) immediately imply the proposition. []
We introduce the notion of alternating sign matrices defined by Mills, Robbins
and Rumsey.

Definition 4.10, An alternating sign matrix is a square matrix which satisfies

(1) all entries are 1, — 1 or 0,
(ii) every row and column has sum I,
(i) in every row and column the nonzero entries alternate in sign.

‘Let </, be the set of n by n alternating sign matrices.

Example 4.5.

1 00 100 010

Ay = 010},{001),1j100],
001 010 0 01
010 0 01 001 0 1 0
0o0t1t}],]100],}1010], -1 1
1 00 010 100 0 1 0

We refer to some conjectures from [MRR3] in order to show some significance
of the functions U,.

Conjecture 4.2. ((MRR3]) Let 0<r<n—1 and | <k<n. Then
#{o= (i1 <ijen€ A plypry = 1} =#{peB, | Up) =r}. (4.17)
Conjecture 4.3 ([MRR3]) Letn =2 andr, s be integers such that 0 <r, s <n. Then
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#lo=)i<ijen€ploy i =1 0 =1} = #{feB,|U(f) =7, U,(B) = s}. (418)
By Conjecture 3 in [Sta3] we expect the following conjecture.
Conjecture 44. Let 0<r<n—1and 1 <k<n. Set
@ = (7€, 1 U0) =1}
Then #%%, would be given by

n+r—1 2n—r—2
1 1 An—l
n— n—
€ =
* <2n - 2) 4.19
01 (4.19)
Conjecture 4.5. Let n>2 and v, s be integers such that 0 <r,s <n. Then

#{’))E(gnl le(’)}) =T, [72(}’) = S}‘

= #{(X = (aij)lsi,jsrle‘%nl(xlr+1 = 1’ Opp—g = 1}

(4.20)

§5 Generating Functions

In this section we will give the generating function of €, which is weighted by
the multiplicities of parts and the function U,. The main theorem of this section is
Theorem 5.1. We will obtain several corollaries of this theorem.

In the first place we summarize the lattice path method by recalling some
terminology and stating the results of Gessel-Viennot {GV] as Lemma 5.1 and Lemma
5.2. Let D be an acyclic digraph in which every edge is assigned an element of a
fixed commutative ring R. This element is called the weight of the edge. In our
application the ring R will be the ring of polynomials in several variables. A k-vertex
is by definition a k-tuple of vertices of D for a fixed integer k. If w= (uy, uy,--,u)
and v= (v, v,,---,v) are k-vertices of D, a k-path from u to v is a k-tuple
A=(A,, A,,---,A,) of paths such that each A, is a path from u; to v;. The k-path
is said to be disjoint if the paths A; are vertex disjoint. We define the weight of a
path A to be the product of the weights of its edges and denote it by wt(4). Similarly
the weight of the k-path A is defined to be the product of each path and denoted
by wt(A). If u and v are two vertices, we write the set of paths from u to v as
P(u, v) and if u and v are k-vertices, we write the set of k-paths from u to v as
2(u, v). And we denote the set of disjoint paths from u to v by A4"(u, v). We write

Py, v) = t(4
(u, ) AGWZ(H’U)W( ) (5.1
P vy= 3 wi(A) _ (5.2)

Ae?(u,v)
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Nu, v) = tHA
(u, v) AeA;u,v)W( ) (5.3)
Let S, be the symmetric group on {1, 2,---,k}. 1If v is a k-path and meS,, then let

n(v) = (Un(1)5 Un(Z):"'avﬂ:(k))'

Lemma 5.1. ([GV ] Theorem 1)

Z (sgnm) N (u, 7(v)) = det (P(u;, vj))i,jzl,z ..... k (5.4)
neSk .
Let us say that a pair (u, v) of k-vertices is nonpermutable if N(u, n(v)) is empty
unless 7 is the identity element. Then we have the following corollary.

Lemma 5.2. ([GV'] Corollary 2) 1If (u,v) is nonpermutable, then
N(u, v) = det (P(u;, Ui i=1,2,0 0k (5:5)

We need several kinds of symmetric functions to describe the generating functions
of plane parititions. Let us prepare some notation here. We use countable many
variables x = (X;)iz. For n,m, reZ such that n>m, we write the r-th elementary
symmetric function in n —m variables X, X,15,'0X, as e®™(x). Its precise
definition is as follows.

In the case n > m we define "™ (x) by

X, X if n>mandr>0.

m+l1<ip<iz<..<ip<n

S0 if n=m (5.6)

i ...xir

"™ (x):=

(We use the convention that ¢™™(x) =1 if r =0 and €™ (x) =0 if r <0) If n=m,
we put e"™(x)=9,,. If m=0, we abbreviate "/”(x) to ¢”(x). The gencrating
function of €™ (x) is given by

(n/m) - -
rezze, ()t = i:lp:[ﬂ(l + x;t). (57)

We prepare some notation to describe our theorem.

Definition 5.11. By the generating function of %, weighted by U,, we mean

Z (g Iy
YE€Gn
If @ = (%)) jea is @ plane partition of the shape 1, we write x* for the monomial

[T xx- (5.8)

(i, eA
For ye%,, we write U(y) = (U,(y), U,(y),-+,U,(y)) and

00 — tlﬁl(v) tgz(v) tnﬁn(')’) (5.9)

For example, for the following element y in %5
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413 lel

we have t70x? = 3123133 x3x3x3x4.

Now we give the generating function of €, expressed as the sum of minors of
a rectangular matrix whose entries are certain elemntary symmeric functions. We
can apply Lemma 1 in two different ways to obtain the generating function of
€,. We use only one of them here.

Theorem 5.7. Let neP and ke[, n]. We define the n by 2n — 1) rectangular matrix
Pﬂ(t’ x) by

Pn(ta X)Z= (pgl;(t’ X))i.=0 ..... n—1

j=0,...,2n~2

where
. n
PP (L, x) = €D (t1 X1, EaXa, s bim g Xim g (T] t)x). (5.10)
v=i N

Then

t70x" = d,(P,(t, x)).
yezz;,. (55 29) (5.11)

Before proving the theorem, we first show an example, and then we state some
corollaries which are immediately deduced from Theorem 5.4.

Example 5.6 When n=3 and k=1,

10 0 0 0
Pyt,x)=1 0 1 ttyt3x, 0 0
00 1 Xy HEtaX, tilataXyX,

and
dy(Pa(t, X)) = 1 + t,x, + tatsx, + LilataXx X, + t1t,t5xT
tt3t2x,x, + t35t3xix3.

Whereas the elements of €, are
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ve?s  U(y)  Uyly)  Usy) 90y

B}, 0, 0, 0, 1

1, 1, 0, 0, tyx,

1 2 2

1’ 29 1’ 15 tlt2t3x1

2, 0, 1, 1, tytsx,

?s 13 2’ 2, tlt%tgxle
201, 1, 1, 1, ) Eyts Xy %y
FER M S S F 17 e 5

Putting ¢, =1 (1 <i < n) in Theorem 5.1, we obtain
Corollary 5.5. For neP, let L,(x) be the n by 2n — 1) rectangular matrix defined by

L= (09,2, - (5.12)

Then

> X' =d, (L))

e (5.13)
Putting x; = ¢' (1 <i <n) in Corollary 5.1, we obtain

Corollary 5.6. For neP, let M,(q) be the n by 2n — 1 rec’zangular matrix defined by

G=-DG-i-1) l
(L),
J—=tde/i=0,n-1 (5.14)
j=0,..,2n-2
Then
|71 — d M
yez'g;nq n(M,(q)) 515

Putting q = 1 in Corollary 5.2, we obtain

Corollary 5.7. For neP, let N,(x) be the n by (2n — 1) rectangular matrix defined by

i
N, (t, x):= .
. x) <<j—i)>,~ " (5.16)

Y, =#%,=d,(N,). (5.17)

Then
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If we put x; =1 (1 <i<n)in Theorem 2, we obtain

Corollary 5.8. For neP, let Q,(¢) be the n by (2n — 1) rectangular matrix defined by

Qn(t):: (ey‘li(tl’ t2a"°ati—1’ l_[ tv))i=0 ..... n—1 ° (518)
v=i j=0

,,,,, 2n—2

Then

00 — d (
y;nt d,(Q,(t)). (5.19)
Proof of Theorem 5.1. We consider the digraph in which the vertices are lattice
points in the plane and the edges go from (i, j) to (i, j— 1) and (i +1,j—1). The
edges which go from (i, j) to (i, j + 1) are called the vertical steps and those which
go from (i, j) to (i+ 1, j— 1) the horizontal steps, although they are not exactly
horizontal. Let A= (A, 4,,---,4,) be a partition whose length is exatly k. And let

EP .= {yeb,|bs(y) = 4}. (5.20)
We define the k-vertices u and v by
w=>0—in-—1i), v,=(4—i+1,0). (5.21)

Then we can define a bijective correspondence between the ye%{’ and the disjoint
k-paths A from u to v as folows. The i-th row of the plane partition determines
the i-th path A; of A. 4; contains the horizontal step from (I, k) to (I + 1, h—1) in
i-th path if and only if y,,,, is equal to h. Vertical steps are appended appropriately
so that the i-th path A4; becomes a path from u; to v;.

Recall that

Uy) = #{G, Nelt, nPlyy =k} + #{I i<k —1]y,i0 = i}. (5.22)

To realize this weight we define the weights of the edges in the above digraph as
follows. The weights of vertical steps are 1. If the horizontal step from (I, h) to
(I+1, h— 1) is in the form

I=1—1i h=n—1i

then the weight of the step is f,f,,, - t,X;. Otherwise, the weight of the step is
t,x,. Letu; = (a; b)and v; = (c;, d;). In this digraph the pair (u, v) is nonpermutable
if a,,<a, by <b+a—a, ¢;41<¢ and d;, <d;+c¢;—c;y. Since the
above pair satisfies this condition, we can apply Lemma 2 and obtain

N(u, v) = det (P(u;, vj))i,j=1,2 ,,,,, k* (5.23)

In this identity we can express P(y;, v;) using the elementary symmetric function:

n

P(”ia Uj) = e(}:-_—i}+i(t1x1, t2x2>""tn——i”1xn—i—1’ ( 1—[ .tv)xn—i)' (524)

v=n-—1
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Up to this point we assumed that 1 <i,j<k and A, > 4,>--->1,>0. But we
may identify the partition 1= (4, 1,,---,4,) with A=(4,, 1,,---,4,) such that
A+1=0,---,4,=0, and from (5.24) we obtain

det (P(u;, Uj))i,j=1,2 x = det (P(u, Uj))i,j=1,2 ..... n (5.25)

.....

So we sum up this generating function with A ranging over all partitions and obtain

tﬁ(Y)xy = det (P(ui7 v'))i j= n»
Zg Ml,% ..... 2 PLI= 2 (5.26)

where A ranges under the condition
A =2dy =2 22,20 (5.27)
Now we replace 4; by
Pnj=n—J+ A 1<j<n). (5.28)
Then p ranges under the condition
O<pug<py < <p,<2n—2. (5.29)

Substituting 4; —j + i = u,_; + i — n into (5.24), we obtain

n
P(u;, Uj) = eg',.__?+i—n(t1x1> 2 ZYCEEN MEPEPS S H £)X,—3)- (5.30)

v=n—i

From (5.30) we have
P(u,_;, v,_) = eff,)-—i(ﬂxu LyXo, ooy lin1 X5y, (H.tv)xi). (5.31)

Substituting (5.31) into (5.26), we obtain (5.11). [

§6 A Formula with Pfaffian

In this section we express d,(P,(t, x)) of (5.11) obtaind in Theorem 5.1 in the
form of a pfaffian by using [O] Theorem 3 and then simplify the entries of the
pfaffian as far as possible. Theorem 1.3 and Corollary 1.2 is the main result of this

;.
Let (ay, a,,---,a,) and (b, b;,---,b,) be integers such that
l<a, <ay<--<a,<n 1<b <b,<--<h<m
We write
d(a,, a;,-,a,; by, by,--,b,) = det (Za.-bj)isi,jsr (6.1)

and
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d(auaZa'”:ar): z d(a19a25"'aar;b19b2"">br)' (62)

Lemma 6.3. [O, Theorem 3] Let 1<a;<a,<---<a <n
(1) If v is even, then we have

d(ay, a3, a,) = Pl(d(a;, )1 <ij<r
) If r is odd, then we have

d(ay, as,--+,a,) = Ph,, (xij)lsi,er+1

where
0 (=j=1
e 1 4@ (=L2<j<r+1)
v —d(a;-4) =L2<i<r+1)

d(a;-1,a;-1) Q<ij<r+1)
Here we denote the pfaffian of degree r by Pf..
Definition 6.12. For neP and i, jeN, we put

(n) (n)
o PR, x) pi(t, x)
fn(17 ]a ta x) = Z (n) (n) ’
(t, x) piP(t, x)

o<k<l|Dj

(6.3)

where p{?(t, x) is as in Theorem 5.1.

If n is even, by virtue of Lemma 6.1 (1) we can express the sum of determinants
in Theorem 54 by a pfaffian as in the following theorem. If n is odd, we remove
the first row from the rectangular array of Theorem 5.4 and then apply Lemma 6.1 (1).

Theorem 6.8. Let neP.

(1) U n is even, Z tﬁ(Y)xy = an(fn(lf], t’ x))OSi,jsn—l .
ye¥n

(2) If n iS Odd’ Z tﬁ(”xy = an~1 (.f;:(la]: t: x))lsi,anﬁl .
y€€n

S. Okada pointed out that Lemma 6.1, which transform the sum of minors into
a pfaffian, is appliable to Theorem 5.1. From now on we try to simplify the pfaffian
as far as possible. Set y;:=t;x;, X;i=[[Lo %y Tii=[]0_;t,and T:= T, = []}_, ¢,
Proposition 6.4. For i, je N we have
fn(i,j;ta x)=TXi Z e£i+j)(y1_1>"':yi_—11, ’I;-:iYi_1> }’1,"',)71'—1, T}+1yj)
rz2i—j
! (6.4)
+ TX] Z e£i+j)(y1>”',yi—1’ Ti+1yi9 ylnla'”,yj_Jl’ T):‘iyj_l)

r>2j—i
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Proof. Let S be the linear operator which associates the constant term a, with a

Laurent series Y. a,z™" (meZ). If f(z)= ) a,z"is a pdlynomial, then we have

n<m n=0

S( th_lf(z)>= Y a, (6.5)

11—z n=m

We use this formula to transform f,(i, j; t, x). Let f,(i,j;t, x) be as in Definition
6.1, then we have

PR (€ %) Pt x)
PRt x) PP, x)

fn(i>j; L x) = Z Z

k=0 1>k
(6.6)
PRt x) ), PR (L x)
1=k
20 pW (e x) Y PPt x)
I>k
From (6.5), we have
Z—k
£ 0 =5( 1 T e s 67)
I>k 1—z >0

Using the generating function of the elementary symmetric functions, we express the

sum Y2 pi(t, x)z' as a product:

PP, x)zt = e vimt T y)2

0 1

Mg
s

[l

!

It

(]

—23 e,y Yiers T )z ™
IZ% 1 1 1 +1 (68)

i—1
Z([T A+ »,2)0 + Tiyyy;2).
v=1
Combining (6.7) and (6.8), we express (6.6) as follows
Julis j5 8, X)

—k i—1
PPt %) S<1 £ (T +5,2) 0+ 7;+1y,-z)>
v=1

~ Z—k .j—l
01 P, x) S< zf(n(1+yvz>>(1+T,-+1yjz)>
1

-1
1—z v

i—1
| 2 PR )z ([T (A +»2)( + Ty 3:2)
k>0 v=1

1 — _ it
2L Y o0z (] A+ 32)(A + Ty y;2)
v=1

k=0
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i—-1

| Z”i(ﬂl(l+va_1))(1+Ti+1in_1)

-1 -1

_J(U +J’vz_1))(1+Tj+1YjZ_1)

zf(ﬁ 1+ 3,2) (1 + Ty 1:2)

H + y,2)) (1 + 7}+1sz)

- V=

:S(IZ_ TX(H(1+y )+ Ty (T + 92+ Ty

—2j+i
- 1Z—z TX(H(1+va))(1+ +1y12)(1—[(1+yv ) + y,-"IZ))-

This proves the lemma. []

From now on we deal with special cases since we are mainly concerned with the
problem to count the number of TSSCPP and it is very complicated to simplify the
entries of the pfaffian in the multivaliable case. Fix an integer k such that
0<k<n-—1 We substitute x,=1 for 1 <i<n, t;=1 for 1<i<n, i#k and
t,=t into f,(i,j;t, x). We denote by g;(t) the function obtained by this
substitution. Notice that g;;(t) is independent of k and written as follows.

If i=j=0, then g;;(t) =0.

If i=0 and j> 0, then g;;(t) =2""'(t + 1).

If j=0 and i> 0, then g;(t) = — 2" '(t + 1).
If i,j > 0, then

w3 () 500

Az () AT (T

(6.9)

If we use a recursion formula of binomial coefficients, we obtain the following
lemma by easy calculation.

Lemma 64. For i, j> 1 we have the recursive formula

i+j—2 i+j—2>}
) =2g,i-,(t) + +2 1+
i+j—2 i+j—2 i+j—-2 i+j—2
+{< i ]. >+2< i J. >+< .] j >+2< i J >}t.
20 —j—2 2i—j—1 \ 2i—j 2i—j+1
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If we utilize these recursive formulae and carry out some elementary
transformations in rows and columns on the pfaffian in Theorem 6.4, we obtain the
following theorem.

Theorem 6.9. Fix 0 <k <n-— 1. Then we have

T Ok = {(1 + ) PL (R ()2 <ij<n-1 if nis even,
i Pf, (h(t)1 <t j<n-1 if n is odd, (6.11)

where the entries h; ;(t) are as follows.
If i=j=1, then h; ;(t) =0.
If i=2 orj=2, then

= 20D =G =2 < 2 )(1 + )
’ (i+j—22i—HEj—d\2i—j—1

(—i)Ei—1Ej— 1){3(i2—ij+12)—(i+j)—2}< i+j—2 )t
G+j—2Ri—j+DHRi—NEZj—i+ D2j—1i) 2i—j—1 '

Proof. First we consider the case where n is odd. The one variable generating
function is given by Pf,_; (9;/(t))1 <i j<n—1- We carry out the elementary transforma-
tions on det (g;;(t)); <; j<n-1 Which is the square of the pfaffian. In the determinant
we subtract twice the (n — 2)-th column from the (n — 1)-th column, then subtract
twice the (n — 3)-th column from the (n — 2)-th column. We continue these steps
until we subtract twice the first column from the second column. By Lemma 6.5
the (i, j)-entry (j > 2} of the resulting matix is given by

{< i.+j.~2 >+2<i+'j ~.2>}(1 e
20 —j—1 2i—j

(6.12)

) ) 5 5 (6.13)
i+j— i+j— i+j— i+j—
S S e Gt I
2i—j—2 2i—j—1 2i—j 2i—j+1
And the i-th entry of the first column of the resulted matix is given by
0 (i=1),
j — 2+ 3t+2t% (i =2), (6.14)
=21+ 1Y) (i=3).

Next we perform the same elementary transformations with respect to rows. We
subtract twice the (n — 2)-th row from the (n — 1)-th row, twice the (n — 3)-th row
from the (n — 2)-th row and so on. The (i, j)-entry (j > 2) of the resulting matix is
given by

i3 i3 i3 i3
(55 G )Gl )LD e
2i—j 2i—j—1 2i—j—2 2i—j—3
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i+j—3 i+j—3 i+j—3
20, . +30 .0 )=, . (6.15)
2i—j+1 2i—j 2i—j—1
i3 i3 i3
o SRR B PAU) R CRUY £
2i—j—2 2i—j—3 2i—j—1

Further the i-th entry of the first column of the resulting matix is given by

0 (i=1)
—2+3t+2t2  (i=2) (6.16)
— 2t (i=3)
0 (i>4)

(6.16) coincides with (6.15) except when i=j=1. We calculate (6.15) and obtain
(6.12). If n is even, we carry out the same elementary transformations on rows and
columns. First we transform n— 1, n—2,.-.,2-th columns, then transform »n — 1,
n—2,---,2-th rows. We obtain the same entry as (6.15) except when i=0 or
j=0. When i =0, we obtain the entries

{0 (]:=Oorj22)‘ 6.17)
t+1 =1

We exand the pfaffian with respect to the top row and obtain the theorem. [
If we put ¢t =1 in the formula of Theorem 6.6, then we obtain the following
corollary.

Corollary 6.9.

# _ {zpfn(bij)Zgi,jsn—l lf n is even.
" an(bij)lgi,jgn—l if nisodd.

where the entry b; ; is given by

3G -)Bi+ DG+ <i+j>
MU+ NRi—j Qi — i+ D\2i—j)

(6.18)
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