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Realization of a subalgebra of a generalized Steenrod algebra
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§1. Introduction

For a ring spectrum E, (A, I') = (E,, E,(E)) is a Hopf algebroid if I" is flat over
A (¢f. [8],[1]). In this case, the homology groups E.(X) of a spectrum X have a
I'-comodule structure in the natural way (¢/. [1]). What can be said for the converse
statement? In other words, for a given I'-comodule M, is therc a spectrum X such
that E,(X) = M? This is called a problem of realizability of a comodule. Originally,
this problem was stated in the language of cohomologies. That is to say, it asks if
there is any spectrum X such that H*(X; Z/p) = # for a given subalgebra # of the
Steenrod algebra of = H*(HZ/p; Z/p) at each prime number p, where HZ/p denotes
the mod p Eilenberg-MacLane spectrum. Since H*(HZ/p; Z/p) = [HZ/p, HZ/p]*
as homotopy sets, we can ask what is going on if we generalize this by replacing
HZ/p with a ring spectrum E. Furthermore, this is rewritten in the language of
homologies, which is treated here.

One of the ways to solve this is a way to use the Adams-Bousfield resolution,
which is explained as follows:

For a spectrum X, we can construct an Adams-Bousfield resolution

pte— X e— X, e .-

such that X, > X, ,; = E A E" A X for each n is a cofiber sequence (up to suspension),
where E denotes the cofiber of the unit map i: $° > E of the ring spectrum E. Then
we see that E (X) = E,(X"), where X" =1lim, X,. Our idea to find a solution. for
the problem is construct this kind of resolution without X.:: By this, we mean that
we construct the resolution out of a spectrum EM such that n.(EM)= M for the
given comodule M. This M corresponds to E,(X) (i.e. EA X = EM), if X exists. In
fact, we study whether or not we can construct a cofibration X, - X,,, —» EM A E"
for each n. If we construct them for all n, then we see that M* = lim, X, satisfies
E.M")=n (EM)=M. Thatis, EM =EAM".

Under this idea, several authors have ‘succeéded to construct spéctra'. Set first
E = HZ/p, the mod p Eilenberg-MacLane spectrum. Then the dual of the Steenrod
algebra o/, = E,(E) for odd p is known to be the tensor product of the polynomial
algebra 2, = F,[¢,, &,,---] with [£,| =2p" — 2, the dual of the algebra & of the
reduced power operations, and the exterior. algebra A(vo, 74,---) with [z,] = 2p" — 1.
For p=2, &, = E.(E)= F2[51,§2, -] with |, =2"—1, where the dual of the
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algebra 2 of the square operations (mod 2 reduced power operations) are embedded
as P, = F,[&3, &3,---]. Then define the spectra BP and V(n) (n > 0) by E,(BP) = 2,
and E,(V(n) = A(tq,---,7,). Now take the o/, ,-module M to be #, or Al(to, 74,
1,, T3). Using the method explained above, E. Brown and F. Peterson showed the
existence of the spectrum BP in [3], which is known to be the Brown-Peterson
spectrum, and H. Toda showed in [11] the existence of the spectrum V(3) for p > 5,
which is called the Toda-Smith spectrum. (V(n) for n < 3 had been constructed by
then for a prime number p > 2n in different methods by H. Toda and L. Smith.)

Instead of HZ/p, take the Brown-Peterson spectrum BP (resp. Johnson-Wilson
spectrum E(n) for n >0 ([6])), where the coefficient ring BP, (resp. E(n),) is the
polynomial algebra Z,)[v,, v,,---] (resp. Z,[v(, v3,+7, 0, v, 1]) over the generators v,
with |v,| = 2p* — 2. Then we found some condition for the existence of the spectrum
X with BP*(X) = vr:lBP*/(pi(’, Uill"",vfu"—jll) (I'CSp‘ E(m)*(X) = E(m)*/(pioa Uill""’vrix"—_li))
in [10] (resp. [9]). In this case, if such a resolution exists, then BPM = BP AM",
which is what we want to study here. To do this, for a ring spectrum E with E,(E)
E -flat, we give the general result:

THEOREM. Let E, F and G be spectra of such that E and F are ring spectra and
that E,(F) and E,(G) are Hopf algebroids over F, with E (G) F,-free and GG F
inducing the map of Hopf algebroids E, (G)— E,(F). Furthermore, assume that there
exists a map E — F which induces the map E,(E)— E,(F) of Hopf algebroids. Then
there exists a spectrum X such that

XAG=F.

The proof is given in §3 by setting F = E. For general result, it is almost
identical to the case F = E but a little more complicated, and so we omit here.

Let p=2 and D(A,) denote the cofiber of the essential map X°M, A M, —
M,AM,, and E(2)/2 = E(2) A M,. Here M, for aen,(S° denotes the cofiber of the
map f: ' — S° which represents «. Here nen,(S°) = Z/2 and ven;(S°) = Z/8 are
the generators. Note that E(2), = n (E(2)) = Z/2[v;, v;, 03 7. As a corollary,

COROLLARY. There exists a specirum X at the prime 2 such that
X A D(A,)/2 = E(@2)/2.

By the same manner given in [5], the connected cover of X gives a counter
example to the result of [4] which claims that «///</, is not realizable as a
cohomology of a spectrum. Here 7, denotes the subalgebra of the Steenrod algebra
generated by Sg?' with i =0, 1, 2.

§2. Adams-Bousfield resolution and geometric resolution

Let E denote a ring spectrum such that E_(E) is flat over E, and M be a
E, (E)-comodule. Consider the diagram
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pre— X, — X, —

1) \ /,1\ /1 u\ /,z

of spectra and maps such that every triangle is a cofibering, and that the compositions
ir+1iklke Z) yield the long exact sequence
(2.2) E,(F) =" E,(F)) 1% E,(F;) —

with Keri,, = M. The maps k;: X;,, - X, induce the map «,: lim X; —» X, by the
canonical projection. Let F, denote the kernel of k,. Then we have a filtration

lim X, = Fy > F, >

Now suppose that
23) NF,=0.
k

Then we have
THEOREM 2.4.
E (limX,)=M

Proor. Apply the functor E (—) to the diagram (2.1), and we obtain an exact
couple. This yields the spectral sequence

Ei = E (F,) = E(lim X ),

which converges by the assumption (2.3). Furthermore, d, is given by i j,_, (jo = id).
Thus, E,-term is the cohomology of the complex (E¥, d,) which is the one given in
(2.2). Since it is exact, the homology turns out to be

. {M s=0
E; = .
0 otherwise.

Thus this spectral sequence collapses and we have the result. g.e.d.

As an example, we have the Adams-Bousfield resolution which is given as

follows: Let E denote the cofiber of the unit map i: S°— E, and we have the

cofibering X = S°A X 2“5 EA X > EA X. Then we have the diagram:

pt < X, X, e
l / 1;'/\% li/\E_/\X
EArX EAEAX EAE*AX

Since E is a ring spectrum, we have the long exact sequence corresponding to
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(2.2). Furthermore it is shown in [2] that the diagram above yields the filtration
Fy, > F; o .- satisfying (2.3). Thus this shows the converging spectral sequence

E%t = EXt%,:(E)(E*’ E*(E)) :>nt~s(X£)»

where X} = lim X,. This spectral sequence is called the generalized Adams spectral
sequence based on E. In particular, if we take E = BP, we call it the Adams-Novikov
spectral sequence.

§3. Smash decomposition of a ring spectrum

~ Let E be a ring spectrum with E (F) being flat over E,. Suppose that F is a
spectrum such that E (F) is a Hopf algebroid over E, as well as a free left E, -module.

LemMa 3.1. Suppose that E(F) is a free left E -module. Then
EANF~VE

Proor. Put E, (F)=E,{g,]Ae4}, a free E,-module over the generators
{9,}. Suppose that a map f,: S° > E A F represents the generator g,. Here note
that everything is considered up to suspension. Then we have a map f;: E—
EASCEMS EAEAF 2L EAF for the multiplication u: E A E — E, which induces
the E,-module map ¢,: E, - E (F) such that ¢,(1) =g,. Thus we obtain a map

Vi ;\E/AE—>EAF’

which induces an isomorphism on homotopy n,(—). Now use the J.H.C. Whitehead
theorem to get the desired homotopy equivalence. g.e.d.

Lemma 3.2, Suppose that E(F) is a free right E -module. Then there exists a
map @:. EAF A E— EAF, which represents the right action. That is to say, the right
action xy for xe E(F) and y€ E, is given by the composition S* *25EAF AESE A F.

Proor. Let {g;} denote the free generators of the right E,-module E_(F). Then
in the same way as above, we obtain an equivalence

g= Vg, \/{E:E/\F.
Now define the map ¢ by the composition

EAFAEM\A/EAEJ"—»\A/E_L»EAF.

Then for a generator g, and an element yeE,, g,y is represented by the composition
o(g; Ay)." In fact, @(g;, A 1) = g, as in the following commutative diagram, since
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1eE, is represented by the unit i: S°—> E.

EAFAELE VEANE-YS VE LS EAF
ngiI ini i -
// 9a
SO

g.e.d.

Consider the homology theories h,(—) = E,(FA —) and k,(—) = E,(F) ®p,
E.(—), and the natural transformation ¥:k, — h, defined by Yx(x ® y) = @(x A ¥)
for the map ¢ in Lemma 3.2, where yx: k, (X) - h,(X). Then, s turns out to be
an isomorphism, and so is ¥, for any spectrum X. In particular, we have

(3.3) E,FAE)=E(F)QgEE), E,FAF)=EJ(F)QpgE,F).
Now consider a cobar resolution
E, —> E (F) — E(F)®*> — E(F)®* — ...

Assume that E (F)— E,(E) is an inclusion as comodules. Put A = E_(E) O, ) E,.
Applying 4 @, — to the resolution, we have a resolution

A—E(F)— E(E) Qg E (F) — E (E) ®p, E*(F)®2 — aan

Note that [E A F¥, E A F¥] = Homy, g (E(E A F¥), E(E A F¥)). Therefore, by (3.3),
we have a sequence

E——ENF—EANFAF —-,

whose E_-homology is the above resolution. We call this séquence of' spectra a
geometric resolution.

PROPOSITION 3.4.  Suppose that Exty)s" ' (E,, E,) =0 for n <s. Then we have
the following exact couple: »

pt < X, & X, e—e— X, e

| folo2t L )

ETEAF——»EAFZ———»---‘H——I-)E/\FST...

in which the bottom sequence is the geometric resolution.

Proor. We construct this by the induction on s. For s = 1, we just put X, = E.
Suppose that we have the exact couple up to s. Apply G*"(—)=[—, EA F**1]_,
to the exact couple and obtain the algebraic exact couple which gives rise to the
spectral sequence

E{ = G*(E A F') == G*(X,).
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By this, we obtain
GO(XS) = KCI' d:‘—l (_D Es—l(Fs+1):

in which Kerd,_; = Imj* ,. Take d,i,e G°(X,). Then j* ,(d,i)=dd,_;=0, and
so dgi;, = ok for some o,eE,_(F**'). Here k =k k,---k,_,. Since k, is mono-
morphic, d,_;(0,k) = dq, ,di, = 0 implies o,e Exty! i 1(E,, E,) =0. Thus o,eImd,.
Put o, =d,0,. Define i,=1i,—o;k. Then i j,_,=d,_,, and d i =d,i;,— ok =0.
Now define X, to be a cofiber of i;, and we have the case for s + 1. g.e.d.

THEOREM 3.5. If Extpih" Y(E,, E,) =0 for n>2, then we have a spectrum X
such that

E=FAX.

Proor. Put X = lim X, and consider the spectral sequence obtained by applying
F,(—) to the exact couple. Since F,(EAY) = E,(F)®pg E,(Y), the E,-term yields
the cobar resolution over E,. Therefore, we have

F (X)=E,.
g.e.d.

Note that there exist maps i: F g E (by the assumption) and k: X > X, =E
which yields the homotopy equivalence p{i Ak): F A X - E.

Remark. This will hold true for E, F and G such that E and F are ring spectra,
and E,(F) and E,(G) are Hopf algebroids with G g F inducing the map of Hopf
algebroids. In the later, we consider the case for E = E(2), F = E(2)}/(2) and
G = D(A,) at the prime 2.

§4. Application

As is remarked in the previous section, we have consider for E(2), E(2)/(2) and
D(A;) A M, at the prime 2. Here D(A,) is the cofiber of the essential map

hoo: M, AM, —> M, AM,,

where M, denotes the mapping cone of the elements aen,(S°). The existence of
h,o is shown in [5]. Then our start line is

(4.1) There is a map D(A,) s E(2), that induces E(2),(D(4,)) - E(2),(E(2)) the map
of coalgebras.

Proor. Note that E(2)=v; ! BP{2) and so E(2)/2=v, ! BP{2> A M,. Consider
the cofiber sequence S*5S°— M,. Then the unit map i: S°— BP(2) is extended
to i M, — BP(2}, since the composition i =0:S' — BP(2), for odd . We also
have the cofiber sequence Z°M, > M, —» M, A M, in which 23M, = S*ye®. There-
fore, we have [2*M,, BP{2)],=0 and so the map i is extended to M, AM,-»BP{2>.
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In the same way, we have D(4,) > BP<2), and compose with BP{(2> 5 E(2). By
this construction, we see that the induced map E(2),(D(4,))— E(2),(E(2)) is an
inclusion, which is map of comodules by the universal coefficient isomorphism

[D(4:) A M, E(2)/(2)], = HomE), 50y (E(2),(D(4,) A M), E(2),(E(2)/(2))).
The coalgebra structure of E(2),(D(4;)) is now read off from this inclusion. gq.e.d.
COROLLARY 4.2. There exists a spectrum EQ, at the prime 2 such that
EO, A D(A)/2 = E(2)/2.

This EO, gives a counter example to the result of [4] which states that </ //.«/,
is not representable. The existence of EO, is stated in [5] but their proof seems to
have some subtle gaps. Here they use the notation EOQ, by the analogy of BO. In
fact, BO is given as a fixed point set of the Z/2-action on BU, and EO, is defined
as a homotopy fixed point set of an action on E,, which is a completion of
E(2). Then using the spectral sequence, we obtain

4.3) E,(EO; A M, A Ay) = K(2),1h0].
In fact,
E,(EO, A M, A Ay) = ExXtp),m@)(E@)y, EQ2)(EOy, A M, A Ay))
= Bxtgo),men(EQ@)y, EQ),(EQ) OcEQ2),(M, A 4)))
= Extc(EQ2)y, E(2)4 (M, A 4;))
= Extp(K(2),, K(2),)
= K(2),[h20],

where C = EQ2),[t, t,1/(t}, t3) and D = K(2),[1,]/(t?) for the Morava K-theory
K(2), = Fylv5, 03]
In the same way as above, we also have W which relates to EQ, at the prime 3:

COROLLARY 4.4. There exists a spectrum W at the prime 3 such that
Wa X = E(Q),
Sfor X =8°{,, e* U,, €&
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