On the discrepancy of (V, μ) -uniformly distributed sequence

Kazuo Goto*

(Received August 20, 1995)

1 Abstract

[GK] and [G] generalized the discrepancy of weighted uniformly distributed sequence using the regular summation method. We obtained the upper and lower bounds estimation of the generalized discrepancy (called *V*-discrepancy) of a weighted uniformly distributed sequence having a continuous distribution function.

For the computation of the discrepancy D_N^* of ordinary uniformly distributed sequence, there exists a simple algorithm ([N; Chap. 2 Th. 1.4). [NT] obtained the algorithm which gives the discrepancy of the weighted uniformly distributed sequence.

In this paper, we have the similar algorithm for the discrepancy of the (V, μ) -uniformly distributed sequence ([G], [GK]), and the relation between the discrepancy of the weighted uniformly distributed sequence and that of the ordinary uniformly distributed sequence. Our methods mainly owe to [N1][N2][NK] and [NT].

2 Definitions and Notations

Let V_N be a regular summation method of the sequence g(1), g(2),..., g(N). Let μ be a Borel probability measure on an arbitrary compact metric space X.

We assume that X = [0, 1] and $F(x) = \mu([0, x])$ is a continuous function.

DEFINITION 1. Let (g(n)) be a sequence and $V_N(g(n))$ be a summation of $g(1), \dots, g(N)$. If $\lim_{N\to\infty} V_N(g(n)) = \sigma$, then (g(n)) is said to be V-summable to σ .

DEFINITION 2 ([GK]). The sequence (g(n)) is said to be (V, μ) -u.d. if for all intervals $J \in X$, we have

$$\lim_{N\to\infty} V_N(C_J(g(n))) = \int_X C_J d\mu,$$

where C_J denotes the characteristic function of J.

DEFINITION 3 ([GK]). Let (g(n)) be a sequence of real numbers and $J = [\alpha, \beta) \subseteq [0, 1]$. The number

$$D_N = \sup_J \left| V_N(C_J(g(n))) - \int_X C_J d\mu \right|,$$

^{*} Department of Mathematics, Faculty of Education, Tottori University, Tottori, 680, Japan

112

and

$$D_N^* = \sup_{0 \le \alpha < 1} \left| V_N(C_{[0,\alpha)}(g(n))) - \int_X C_{[0,\alpha)} d\mu \right|,$$

are called the (V, μ) -discrepancy.

Setting $V_N(\bullet) = \frac{1}{s(N)} \sum_{n=1}^N p(n) \bullet$, we have the ordinary weighted uniform distribution i.e. $(p(n), \mu) - u.d.$

Definition 4. For $0 \le \alpha < \beta \le 1$, let $A([\alpha, \beta): g(n))$ be the number of terms $g(n), 1 \le n \le N$, for which the fractional part of $g(n) \in [\alpha, \beta)$. We set

$$D_{N}^{(p)} = \sup_{\alpha,\beta} \left| \frac{1}{S(N)} \sum_{n=1}^{N} p(n) A([\alpha,\beta) : g(n)) - (\beta - \alpha)) \right|,$$

$$D_{N} = \sup_{\alpha,\beta} \left| \frac{1}{N} \sum_{n=1}^{N} A([\alpha,\beta) : g(n)) - (\beta - \alpha)) \right|,$$

$$D_{N}^{(p,\mu)} = \sup_{\alpha,\beta} \left| \frac{1}{S(N)} \sum_{n=1}^{N} p(n) A([\alpha,\beta) : g(n)) - (F(\beta) - F(\alpha))) \right|,$$

$$D_{N}^{(1,\mu)} = \sup_{\alpha,\beta} \left| \frac{1}{N} \sum_{n=1}^{N} A([\alpha,\beta) : g(n)) - (F(\beta) - F(\alpha))) \right|.$$

3 Theorems

By the Definition 3, we obtain the following Theorem 1 immediately.

THEOREM 1. The sequence (g(n)) is (V, μ) -u.d. mod 1 if and only if

$$\lim_{N\to\infty}D_N=0.$$

Remark. $D_N^* \le D_N \le 2D_N^*$.

[NT] obtained the following: for $0 \le x_1 \le \cdots \le x_N$,

$$\begin{split} &D_N^*(P, x_n) = \max_{1 \le n \le N} \max \left(\left| x_n - \frac{1}{P(N)} \sum_{j=1}^n p_j \right|, \left| x_n - \frac{1}{P(N)} \sum_{j=1}^{n-1} p_j \right| \right) \\ &= \max_{1 \le n \le N} \left(\frac{p_n}{2P(N)} + \left| x_n - \frac{1}{P(N)} \sum_{j=1}^{n-1} p_j - \frac{p_n}{2P(N)} \right| \right) \ge \frac{\max \left(p_1, \dots, p_N \right)}{2P(N)}. \end{split}$$

The following theorem is a generalization of the result of [NT].

THEOREM 2. (see [N1], [N2], [NT]) Let $0 \le g(1) \le g(2) \le \cdots \le g(N) \le 1$ be N numbers in [0, 1]. Then the discrepancy D_N^* is given by

$$D_N^* = \max_{1 \le i \le N} \max (|V_N(C_J(g(n))) - F(g(i))|, |V_N(C_J(g(n))) - F(g(i+1))|).$$

PROOF. We set g(0) = 0, g(N+1) = 1, $J = [0, \alpha)$ and $F(\alpha) = \int_X c_J d\mu$ for convinience. For the distinct values of the numbers g(i), $0 \le i \le N+1$, we have

$$D_N^* = \max_{0 \le i \le N, g(i) < g(i+1)} \sup_{g(i) < \alpha < g(i+1)} |V_N(C_J(g(n)) - F(\alpha)|.$$

Whenever g(i) < g(i+1), the function of α , $|V_N(C_J(g(n)) - F(\alpha)|$ attains its maximum in [g(i), g(i+1)] at one of the end point of the interval. Therefore

$$D_N^* = \max_{0 \le i \le N, g(i) \le g(i+1)} \max \left(|V_N(C_J(g(n)) - F(g(i))|, |V_N(C_J(g(n)) - F(g(i+1))| \right). \tag{1}$$

Now we show that we may drop the restriction g(i) < g(i+1) in the first maximum. Suppose we have $g(i) < g(i+1) = \cdots = g(i+s) < g(i+s+1)$ with some $s \ge 2$. The indices not admitted in the first maximum in (1) are the integers i+j with $1 \le j \le s-1$. We prove that for $1 \le j \le r-1$,

$$|V_N(C_J(g(n))) - F(g(i+j))|$$
 and $|V_N(C_J(g(n))) - F(g(i+j+1))|$,

where $\widetilde{V_N}$ is the summation for $g(0), g(1), \dots, g(i+j)$, which are excluded in (1), are dominated by numbers appear in (1).

For $1 \le i \le s - 1$, we get by the same reasoning

$$|\widetilde{V_N}(C_J(g(n))) - F(g(i+j))| = |\widetilde{V_N}(C_J(g(n))) - F(g(i+1))|$$

$$< \max(|V_N^1(C_J(g(n))) - F(g(i+1))|, |V_N^2(C_J(g(n))) - F(g(i+1))|),$$

$$= \max(|V_N^1(C_J(g(n))) - F(g(i+1))|, |V_N^2(C_J(g(n))) - F(g(i+s))|),$$

where V_N^1 is the summation of $g(0), \dots, g(i)$ and V_N^2 is the summation of $g(0), \dots, g(i), \dots, g(i+s)$ and both numbers in the last maximum occure in (1).

Thus, considering

$$|\widetilde{V_N}(C_I(g(n))) - F(g(i+j+1))|, \quad 1 \le j \le s-1,$$

we have the desired result.

We have the following theorem from definition 4.

THEOREM 3. We have

$$D_N^{(p)} \leq \frac{1}{S(N)} P_N,$$

$$D_N^{(p,\mu)} \leq \frac{1}{S(N)} \, P_N^{(1,\mu)} \leq$$

114 Кадио Сото

$$\leq \frac{1}{S(N)} \left\{ P_N + (N_p(N) + \sum_{j=1}^{N-1} j | p(j) - p(j-1)|) \sup_{\alpha,\beta} \left((\beta - \alpha) - (F(\beta) - F(\alpha)) \right) \right\},$$

$$D_N \leq \frac{1}{N} Q_N^{(p)} \quad and \quad D_N^{(1,\mu)} \leq \frac{1}{N} Q_N^{(p,\mu)},$$

where

$$\begin{split} P_N &= D_N N p(N) + \sum_{j=1}^{N-1} j |p(j) - p(j+1)| D_j, \\ P_N^{(1,\mu)} &= D_N^{(1,\mu)} N p(N) + \sum_{j=1}^{N-1} j |p(j) - p(j+1)| D_j^{(1,\mu)}, \\ D_n^{(1,\mu)} &\leq D_n + \sup_{\alpha,\beta} \left((\beta - \alpha) - (F(\beta) - F(\alpha)) \right), \\ Q_N^{(p)} &= D_N^{(p)} \frac{S(N)}{p(N)} + \sum_{n=1}^{N-1} S(n) \left| \frac{1}{p(n)} - \frac{1}{p(n-1)} \right| D_n^{(p)}, \\ Q_N^{(p,\mu)} &= D_N^{(p,\mu)} \frac{S(N)}{p(N)} + \sum_{n=1}^{N-1} S(n) \left| \frac{1}{p(n)} - \frac{1}{p(n-1)} \right| D_n^{(p,\mu)}. \end{split}$$

Proof. We set

$$x_n = \frac{1}{n} \sum_{j=1}^n A([\alpha, \beta): g(j)) - (\beta - \alpha),$$

then we have $|x_n| \le D_n$ for all n.

Since $A([\alpha, \beta): g(n)) - (\beta - \alpha) = Nx_N - (N-1)x_{N-1}$, we obtain by Abel's method,

$$\begin{split} \frac{1}{S(N)} \sum_{n=1}^{N} p(n) A([\alpha, \beta) \colon g(n)) - (\beta - \alpha) &= \frac{1}{S(N)} \sum_{n=1}^{N} p(n) (n x_n - (n-1) x_{n-1}) \\ &\leq \frac{1}{S(N)} (D_N N p(N) + (N-1) D_{N-1} |p(N-1) - p(N)| \\ &+ (N-2) D_{N-2} |p(N-2) - p(N-1)| + \dots + 1 \cdot D_1 |p(1) - p(2)|) = \frac{1}{S(N)} P_N. \end{split}$$

By the same way, we obtain

$$\frac{1}{S(N)} \sum_{n=1}^{N} p(n) A([\alpha, \beta) : g(n)) - (F(\beta) - F(\alpha))$$

$$\leq \frac{1}{S(N)} (D_N^{(1,\mu)} N p(N) + (N-1) D_{N-1}^{(1,\mu)} | p(N-1) - p(N)| + \dots) = \frac{1}{S(N)} P_N^{(1,\mu)}.$$

Therefore

$$D_N^{(p,\mu)} \le \frac{1}{S(N)} P_N^{(1,\mu)}.$$

Moreover we have

$$D_N^{(1,\mu)} \le D_N + \sup_{\alpha,\beta} ((\beta - \alpha) - (F(\beta) - F(\alpha))),$$

because

$$\frac{1}{N} \sum_{n=1}^{N} A([\alpha, \beta): g(n)) - (F(\beta) - F(\alpha))$$

$$= \frac{1}{N} \sum_{n=1}^{N} A([\alpha, \beta): g(n)) - (\beta - \alpha) + (\beta - \alpha) - (F(\beta) - F(\alpha))$$

$$\leq D_{N} + \sup_{\alpha, \beta} ((\beta - \alpha) - (F(\beta) - F(\alpha))).$$

Thus

$$\begin{split} &D_N^{(p,\mu)} \leq \frac{1}{S(N)} \, P_N^{(1,\mu)} \\ &\leq \frac{1}{S(N)} (P_N + (Np(N) + \sum_{j=1}^{N-1} j \, |p(j) - p(j-1)|) \cdot \sup_{\alpha,\beta} \left((\beta - \alpha) - (F(\beta) - F(\alpha)) \right). \end{split}$$

We set

$$y_n = \frac{1}{s(n)} \sum_{j=1}^n p(j) A([\alpha, \beta): g(j)) - (\beta - \alpha).$$

Then $|y_n| \le D_n^{(p)}$ and

$$A([\alpha, \beta): g(n)) - (\beta - \alpha) = \frac{1}{p(n)} (S(n)y_n - S(n-1)y_{n-1}).$$

So by Abel's method

$$\frac{1}{N} \sum_{n=1}^{N} A([\alpha, \beta): g(n)) - (\beta - \alpha) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{p(n)} (S(n) y_n - S(n-1) y_{n-1})$$

$$= \frac{1}{N} \left(\frac{S(N)}{p(N)} y_N + S(N-1) \left(\frac{1}{p(N-1)} - \frac{1}{p(N)} \right) y_{N-1}$$

$$+ S(N-2) \left(\frac{1}{p(N-2)} - \frac{1}{p(N-1)} \right) y_{N-2} + \dots + S(1) \left(\frac{1}{p(1)} - \frac{1}{p(2)} \right) y_1 \right) \le \frac{1}{N} Q_N^{(p)}.$$

Thus

$$D_N \leq \frac{1}{N} \, Q_N^{(p)}.$$

As the same way,

$$D_N^{(1,\mu)} \le \frac{1}{N} Q_N^{(p,\mu)}.$$

Therefore we obtain theorem 3.

Reference

- [GK] K. Goto and T. Kano: Discrepancy inequalities of Erdős-Turán and of LeVeque, RISM, Kyoto, Kokyuroku 837 (1993) 35-47.
- [G] K. Goto: Discrepancy inequality of LeVeque, J. Fac. Education Tottori Univ. Vol. 43, No. 1 (1994) 7-13.
- [N1] H. Niederreiter: Discrepancy and convex programing, Ann. Math. Pure Appl. (iv) 93 (1972) 89-97.
- [N2] H. Niederreiter: Metric theorems on the distribution of sequences, Proc. Symp. Pure Math. Vol. xxiv, Amer. Math. Society, Providence R.I. (1973) 195-212.
- [NK] L. Kuipers and H. Niederriter: Uniform Distribution of Sequences, Wiley, 1974.
- [NT] H. Niederreiter and R. F. Tichy: Beiträge zur Discrepanz Bezoglich gewichteter Mittle, manuscripta math. 42, (1983) 85–99.