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1 Introduction

In [4] LeVeque obtained an upper bound of the discrepancy in terms of the
exponential sums different from [1].

In [2], using summation method, we defined the discrepancy (called V-
discrepancy) of a weighted uniformly distributed sequence having a continuous
distribution function. In [2: Theorem 8], we mentioned the LeVeque’s type upper
bound without proof.

In this paper, we shall show the detailed proof. Our methods mainly owe to
[3: Theorem 1.4, 2.4 and 2.5 of Chapter 2] and [4].

2 Definitions, Notations and Assertion

Let V, be a regular summation method of the sequence g(1), g(2),---,g(N). Let
¢ be a Borel probability measure on X = [0, 1], F(x) = u([0, x)) be a continuous
function and {x} mean the fractional part of x.

Definition 1. Let (g(n)) be a sequence and Vi(g(n)) be a regular summation method
of g(1),---,g(N). If limn-o Vy(g(n) =0, then (g(n)) is said to be V-summable to o.

Definition 2. The sequence (g(n)) is said to be (V, w-u.d. mod 1 if for all intervals
JeX, we have

Jim H(Cilg(m)) =j Cydps
X

where C; denotes the characteristic function of J.

Definition 3. Let (g(n)) be a sequence of real numbers and J = [a, f) < [0, 1].
The number

W(Cy(g(m)) — f

X

Dy = sup de,u{,
J

is called the (V, w)-discrepancy of g{n)).
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N
Setting Vy(® ( Z n) ®, we have the ordinary weighted uniform distribu-
~ s(N) S
tion i.e. (p(n), p) — u.d..
By Definition 3, we obtain the following

Assertion 1. The sequence (g(n)) is (V, u)-u.d. mod 1 if and only if

lim Dy =0.

N—ow

3 Lemma and Theorems
Theorem 1. If we set, for g(n)e[0,1], n=1,2,-,
Ay(y) = W (Cro,n(g(m)) — F(),

then
2

1
—21tihg(n)) _ J e—Znihde(y)

0

1 1 &
J Ay(y)?dy = (Vylg(n) — o Z

0

1
where G =J ydF(y).

0

Proof. We remark that Ay(y) is a piecewise continuous function in [0, 1] with
finitely many discontinuities at y = g(l),--‘,g(N). Moreover, we have 4,(0) = 4x(1).
We expand 4y(y) into a Fourie series Z a,e®™™ which will represent 4y(y)
h=—o0

apart from finitely many points. So we have

1
4y = J Ane > dy,

0

AN y)dy = VN(J C[o,y>(g(n))> - J F(y)dy
0 0 0

Wl —gm) — (1 — G) = — Wylg(n) — G),

and

|I

Il

1
where G = J ydF(y).

0

For h # 0, we obtain

1 L 1
a, = J AN(y)e“zﬂihy = %(j C[O’y)(g(n))e‘ZnihYdy) . J\ F(y)e—Znihydy

0 0 ¢
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1 . F ) 1 1 ,— 2=nihy
— VE\I(J\ e—anhydy> _ <|: (y) e—27uhy:] + J\ € ' dF(y))
() —2zih 0 o 2mih

1
1 <VN(e—2nhg(n)) _J e—Znihde(y)>.

" 2nih 0

By Parseval’s identity, we have
1 0
| #or=a2§
0 h=1
and the desired result follows immediately.
We have the following result (see [2]).

Lemma 1 [2: Theorem 5]. Let F be a continuous distribution function. If (g(n))
is (V, wy-u.d., then we have

6 4.2 /1 1 .
Dy — + — o )| Vi (e?mihem)
WS nh:1<h m+1>l R
4 (! sin?(m + N)x
;o f (Fly) — ) ST g,
m+1J, sin® wy

The following is an analogue of LeVeque’s Inequality (cf. [2: Chap. 2 Rh. 2.4]).
Theorem 2 [2: Theorem 6]. Under the F(y) = u([0, y)) = y, we have

6 &1 2nihg(n)y|2 %
ms(; ,,;ﬁ'VN(e 92 )"
Proof. We put

1

Sy=Wlgl) -06), G= j ydF(y)

0
and
Ty(y) = VN(C[O,y)(g(n))) — F(y) + Sy for 0<y<l.

The function is monotonely decreasing except finite positive jumps at g(n),
n=0,1,---N. Since Ty(0) = Sy = Ty(1), we can extend Ty(y) to R with a period of 1.

Let o and f be numbers in [0, 1], with Ty(x) > 0 and Ty(f) < 0. Such numbers
exist because

1

J Tv(Wdy = J W (Cro, (g (m))dy — J F(y)dy + Sy

4] 0 0

1 1
= VN(f C[o,y)(g(n))dY> - J F(y)dy + Sy

0 0
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1
=Wl —gn) - <1 - j de(y)> + Sy = W(G —gm) + Sy=0.
¢

In the interval [a, o + Ty{e)], the graph of T,(y) will not lie below the curve
segment joining the points (o, Ty(e)) and (x + Ty(a), 0).

By the periodicity of Ty, there exists 5, e€[o, a + 1] will T(5,) = Ty(f).

In the interval [, + Ty(f4), ﬁ1j, the graph of Ty will not lie above the curve
segment joining (8, + Ty(f1), 0) and (B, Ty(B,); therefore the graph of |Ty| will not
lie below the curve segment joining (f; + Ty(B;), 0) and (B, — Ty(B1)). Moreover, the
intervals [o, o + Ty(e)] and [B, + Ty(B;), 1] can have at most one point in common,
because of the properties that the graph of T, satisfies there. Thus

1 a+1 a+ Tn{a) 1
j Ty ()dy =J T ()dy Zj T3 (y)dy +J Ti(y)dy

o] [ a B1+Tn(f1)

0 ~Tn{f1) 1 1
> j (—y)Pdy + J Y2y = = Ty(@)® + —(— Ty(B1))°.
- Tn(@) 0 3 3

For non-negative real numbers » and s, we put t =1(r +s) and u=1(r —s).
Then

1
r3+s3:(t+u)3+(t—~u)3=2t3+6tu222t3:2(r+s)3.

Applying this inequality with » = Ty{a) and s = — Ty(f), we have

1

1
(v — Ty(B))? SJ TV (y)dy.

0

So

1

1
E(VN(C[ﬂ,a)(g(n)) ~ (F(a) — F(8)))° SJ TyO)*dy  for all « p.

0

Hence we obtain

1 1
ED?V < j T (v)dy. (1)

0

Now we compute the right-hand side of (1).

1 1

Ay(y)dy + 2SNJ Ay(y)dy + S%
0

1 1
J TNZ(y)dy=J (Ay(y) + SN)zdy=J

0 0 0

(1 1 =1 .
= J Ay(y)dy — 253 + Sk = P Y [ Wle?™ ey, )

2
0 ¥ h=1h

because of Theorem 1.
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By (1) and (2), we obtain

Wi

6 2 1 )
DN < <__2 Z ZIVN(eZnthg(n))l2> )

This completes the proof.
Corollary 1. If (g(n), gn)e[0, 1] is a (V, p)-u.d., then
1
6 & 1 , 3
D <| - ~ WA ethF(g(n)) 2 ,
N <n2 ;,; h2| n( )| )
where F(y) = pu(10, y)) is continuous on 0 <y < 1.

Proof. Since F(g(n)) is a (¥, 1)-u.d., we obviously obtain by applying the
Theorem 2.

Theorem 3. Under the condition such that F'(y) < oo exists for 0 <y < 1,

; 2\3
VN<ezm'hyg(n) _j eZ"i"de(Y)> > ’
0

where ||F'|| is a supremum norm of F'.

6 2 1
DNS<IIF'H;2~ Y 5

2
h=1 h

Proof. We put

Sy=Wlgn)—-G), G= [ ydF(y)

0

and
Ty = W(Co,plg(m) — F(y) + Sy)  for 0<y <1

The function is a monotone decreasing except finite positive jump at g(n),
n=0,1,--N. Since Ty(0) = Sy = Ty(1), we can extend Ty(y) to R with a period of 1.
Let o« and f be numbers from [0, 1], with Ty() >0 and Ty(f) <0. Such
1

numbers exists because of f Tv(»dy =0, as in the proof of Theorem 2.
In the interval [o, o + y(:)] such that F(y, + o) = Ty(a) + F(x), we have
Ty = Ty(e) — F(y) + F(o) > 0.
In the interval [ + y;, f] such that F(f + y,) = Ty(f) + F(B), we have
Ty() < Ty(f) — F(y) + F(B) <.
As the similar way of Theorem 2, we obtain

1 a+yo B
J TNZ(y)dyZJ TNz(y)dy+f T (n)dy

[ 3 Bty
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a+yo it
> J (Tylw) — F(y) + F(o))*dy + J (Tw(B) — F(y) + F(B)*dy

o Bty

0 , dt ~ ik , dt
= t -—,—— + t ; .
~Tn@) F'(y) 0 F'(y)

Since F'(y) < ||F'|| = M by assumption, we have

! 1 1
J TN (ydy = % <3 Ty@)® + 5 (= TN(Bl))3>-

0
As the similar argument of Theorem 2, we have

1 1
D3 < T2(y)dy. 3
M N Jo N (ndy (3)

Now we compute the right-hand side of (3).

1 1 1
J Ty (y)dy = J (Ay(y) + Sy)*dy = J An(yYdy — 285 + Si

0 0 0
1 < 1 2wihg(n) ' 2mil 2
- V| e~ 2nihgm _ e mihy j I 4
27[2 h=1 hz N< J‘O (y)> ( )
By (3) and (4), we obtain
6 & 1 . v 2\3
DN < <||F/ ” — Z s VN<82mhg(n) . J\ ethde(y)> ) .
=1 h 0

This completes the proof.

Theorem A. [5: p. 226] If ¢'(t) is monotone and |g'(t)] <1 — 0 for some 6 >0
in (a, b) and p(t) is monotonically decreasing and differentiable, then

< A, 52, p(0)

b
Z p(n)eZnig(n) _ J p(t)eZnig(t)dt

a<n<b a

g'(®)

p(®)
Let g'(t) be monotonically decreasing and |g'(¢)] <1 — 06 and p(t) be monotonicallly
decreasing to zero and differentiable. Then we have

Theorem 4. Let 0 < K(t) = be monotone and differentiable 1T or | K > 0.

N
limsup | Y, p(n)e*™™| = co.
N=oo n=1

Proof. Assume that Lmsupy., Y., p()e*™®| = A < oco. There exists a
sequence (N, such that for sufficient large k,
Nr—1

Y p(n)er™® = A% 4 o(1).

n=1
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For any sufficiently large integer N, there exists a k such that N, < N < N,,,.
Applying Theorem A, we have

< A; max p(t).

a<t<N

N ) N )
Z p(n)eZnLg(n) _ J p(t)eZntg(t)dt

n=a

a

Thus, by using the estimation in the proof of [2: lemma 4],

N Ne—1 N
Z p(n)eZnig(n) — Z p(n)ehrig(n) + Z p(n)eZm‘g(n)
n=1 n=1 n=Ng

Ny—~1 ) N )
Y. p(n)e*™® + J p(£)e*™ 9O dt 4+ o(1)

n=1 Ni

— Ael® 5 1' (e2m9N) _ g2rigWidy 1 (1),

niK
and
i pn)e?™e) — N"i‘ 3 Nlix — Aot 4 __I__(EZnig(Nk+1) — 2N 4 o(1),
n=1 n=1 N+1 2niK
Therefore
0 = A(e!® — ¢+ 4 E;Tli?(ezniguw — e2migtN0 _ p2mig(Mis 1) 4 (1),

This leads a contradiction. Thus we have lim supy_, IZLI p(n)e*™ ™| = oo,
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