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A note on the chromatic convergence theorem
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§1. Introduction

Let C = C(p denote the homotopy category of p -local spectra for a prime number »
and E (#n), the Johnson-Wilson spectrum whose coefficient ring is E(#), = Z(p)[ Ve, U U
for each #n. Then we have the Bousfield localization functor Ln: C — C with respect to £ (#),.
Since LnL,= L, if m < n, the natural transformation #m: id — L,,yields another one L,
= L. In particular, we have the sequence

L0<_—L1<__—...<__—Ln(————Ln+l<_.—... (—'—Zd,

which is called the chromatic tower. Thus we can consider the homotopy inverse limit
lim L,X on a spectrum X. Then Mike Hopkins and Doug Ravenel show the following
<«

chromatic convergence theorem:

TueoreM ([8, Th. 7.5.71). For a p - local finite CW - complex X, the chromatic tower
converges in the sense that

X ~lim LnX.
In this paper, we will prove this by another method using results of [2].

§2. The Adams - Novikov spectral sequence

Let E be a ring spectrum. Then we have the cofiber sequence

§* ——»E—E—55!

for the unit map ¢ Applying —AE° to it, we have another cofiber sequence
E* ——ENE* — B sipe
This gives rise to the exact couple
2 (BN X) S EJE A X) — 2 (BTN X) 2z ((BPAX)

for a spectrum X. The E-Adams spectral sequence for computing the homotopy groups
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7, (X) is now defined to be the spectral sequence associated to the above exact couple.

Note that the pair (E,,E,(E)) is the Hopf algebroid with the canonical structure
maps. Besides, if E, (E) is flat over E,, the category of E, (E)-comodules has enough
injectives. So we can do homological algebra in the category. Let F be an £ - module
spectrum with structure map v: EAF—F. Then we can define the map »: [X, Fl.—
Homg, (E.(X), F.)by x(x) =v, (E Ax),. Furthermore, suppose that E.(E) is flat over £,
and » induces an isomorphism

x: Y, F1.= Homg,(E.(Y), F.,)

for a spectrum Y with E,(Y) is free over E, and an E,-module spectrum F. Then the
Ex-term of the E - Adams spectral sequence is given by

EN(X) =Extp, ) (E., E. (X)),

since the category of E, (E)-comodules has enough injectives, and we have the change of

rings theorem
Homg, (E.(Y), I,) = Hompg, g (E.(Y), E.(F)).

As examples, we have the Brown- Peterson spectrum BP and the Johnson - Wilson spec-
trum E (n). These spectra represent the homology theories BP, (—) and E (n), (—) with
coefficient rings

BP,=Z 4 [v1,v2, -] and E (n),= Zu [v1, "+, Vn, vy ).

Here v, is the Hazewinkel generators with |v,|=2(p"—1). We call these spectral
sequences the Adams -~ Novikov spectral sequences.
In this section we recall [2] its results. Following [2], we use the notation:

(A,r)=(BP,,BP,(BP)) and
(Aln), ' (n) =(E n),,(E (n).(E(n))),

in which E (%), (E(n)) =E (n),Qa I" Qa E (n),.

Let (B,2) denote one of the Hopf algebroids 7" and 7"(#)’s. Consider an ideal I,
generated by p, vy, ', v,_1. Then it is an invariant prime ideal. Now we define 3 -
comodules Bg and LBZ inductively out of B. First put B =B/I;. Thenitisa 3 - comodule
with structure map induced from the right unit #g: B — 3'. We denote it also by #p. Now
suppose that Bf is defined and put LBf =v,, Jrlj Bg . Then the canonical inclusion Bij —>LB17
is a map of comodules (see [5]) and induces its cokernel B/*'a comodule structure since
2 is flat over B. Thus we have completed the induction and Bz-j ’s are defined.

TuroreM 2.1. For i+7 < n, we denote t=n—1i—j. Then there exists an exact sequence
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- > Extp (A, AD) — = Extiy(A(n), An)?) —Exti (4, A7)
Extiti4, A —— -,

in ExtS™t =0 for s — ¢ <0,
To prove this we also showed in [2] the following

THEOREM 2.2. Let I, denote the invariant prime ideal of A = BP,.
1) ([6]) Let s and § be positive integers such that s > n? and 7 < n. Then we have

an isomorphism
Exts (A, A7) = Extgt =it 4, AD).
DI0<s<n—7jand 0<j< n then
Extp (A4, A/L) = Extiny(An), An)/I;).

3) ([5, Th. 2.10])  Exti(A4, v, A/L) = Extim)(A(n), A(n)®av A/ ).

§3. Thick subcategory

In this section we will give another proof of the theorem by using the results given in
[2]. Recall [3] first the definition of a thick subcategory. Let FH,) denote the category
of p -local finite spectra and homotopy classes of maps. The subcategory C of FH,) is
said to be thick if it satisfies the following:

(i) If two of three spectra in a cofiber sequence
X2ty —g

are in C, then so is the third; and
(ii) A retract of a spectrum in C isin C.

Consider the Morava K-theory K (%), which is characterized by its homotopy groups , (K (%))
=Z/plvn, v;']. Denote Fp n the full subcategory of FH,) consisting of the spectra X with
Kn),(X)#0 and K (n — 1), (X)=0. Then we have the thick subcategory theorem:

Treorem 3.1 (Hopkins). Let F be a thick subcategory of FHp). Then F is either all
of FHy, the trivial category or Fp,, for some n.

Turorem 3.2. Let F={XEFHy| X =lim LnX}. Then F is a thick subcategory.
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Proor. By the definition of the product of spectra, we see that products preserve
cofiber sequences. Therefore the homotopy inverse limit preserves cofiber sequences. Thus
the five lemma shows the condition (i).

Let i: A = X be an inclution and »: X — A a retraction. Then 7= 1. Since both of lim
and L, are functors, we have maps <

lim L,(2) : lim L,,(A) —lim Ln(X) and lim L,(#) : lim Ln(X) — lim Ln(4)
«— «— pas pam «— “«—

such that lim L,(7) lim L,(¢) =1. Consider the diagram
“«— —

X T A
Sl
lim Lnd,

in which i’ZIEn Lp(Z) and 7'=lim Ly(7), and ¢’j=1 and j» =#". Therefore we compute
ri'j=vi=1 and ' =vi=1,
and so we have the homotopy equivalent
A= lgn LpA,

which shows A& F. g.e.d.

§4. The proof of the chromatic convergence theorem

By virtue of the thick subcategory theorem, it is sufficient to show that some spectrum
of F,n satisfies X = lim Ln,X. Consider an invariant regular sequence of the form:
’ «—

. e; €j—1
Jj P,V a"')vj—l .

Then Theorem 2.2 2) yields inductively an isomorphism
(4.1) At Extp(A,A7]5) = Extig)(A(n),An)/];),

for 0<s<n-—jand 0 <7< Itis known by [4] (see also [7]) that there exists a
spectrum XJ; whose BP,-homology is BP,/J; for each j, and XJ; belongs to Foj-

Lemma 4.2. Let x and y be elements of the Eq-terms Exty.(A,A/];) and Extr,(A(n) /];)
of the Adams - Novikov spectral sequences for m.(X];) and n.(LnX]}), respectively, such
that A (x) =y. Further suppose that
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lxl<v(n — 7).

Then if vy is a permanent cycle, then so is x. Heve v(s) is an integer p(p — 1)s if s is even,
and p(p — D (s —D+2(p — 1) if s is odd.

Proor. Let dr: ES'— ESTHHHT—1 he the differential of the Adams- Novikov spectral
sequence. Then we deduce, from the hypothesis on 3, that dr(x) =0 for » <n —j —s
inductively by the isomorphism (4.1) and the naturality of the differential. Furthermore,
Extpt (A,A/];) =0 if t < v(u) by the vanishing line theorem of the spectral sequence.
Therefore dr{x) =0 for » > n — j — s. g.ed.

Now we are ready to prove the chromatic convergence theorem.

Proor or THE THEOREM. Putting # to infinity, the isomorphisms (4.1) give rise to an
isomorphism of the E2-terms

A Extz(A, A/J;) = lim Bxtry (A (n), A /],
which shows the desired isomorphism of the homotopy groups
Lo m (X)) = lgn m (Ln X];)

by the naturality of the differentials of the Adams - Novikov spectral sequence. Here 7" (n)
and A (n) denote E (%), (E (n)) and E (n),, respectively. In fact, suppose that 1, (&) =0 in
m, (L, XJ;) and & is detected by x € Ext7(A4,A//;) . Then A, (x) dies or is killed. If it dies,

dr(d. (%)) = A, (dr(x)) #0,

and so d,(x) = 0, which shows that x dies. If it is killed, then there exists an element y such
that d-(y) =1, (x). Since A, is an epimorphism, we have an element w such that A, (w) =y.
Therefore the naturality shows that d-{(y) =x and x is killed. Thus we have seen that 1,:
m (X]) = lim 7, (L,XJ;) is a monomorphism.

Now turn to show that 1, is an epimorphism. Let /: lim z. (LnXJ)— m (L3 X]) be the
projection. For any element x Elim z, (Ln,XJj), there is an integer & such that /,(x) #0. Put
filt £,(x) =m, and take % so that #>m + j + 1 and |x| < v(n). Then In(x) is represented
by a permanent cycle x, and there exists an element y in Ext7(A4, A/J) such that 1. (y) =
%n by the isomorphism (4.1). Now apply Lemma 4.2 to see that ¥ is a permanent cycle. The
composition 7, (X])) = m (L, X]) — n*(lgn L, XJ;) sends y to x by definition, which shows
the map A, is epic. q.e.d.
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