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§1. Introduction

In the stable homotopy theory, one of the main problems is to compute homotopy
groups of a spectrum. We usually compute them after localizing by a prime number
p, say, homotopy groups of p-localized spectrum. One method to compute them is
the one using an E-Adams spectral sequence for a ring spectrum E, which is first
introduced by F. Adams taking the Eilenberg-MaclLane spectrum for the ring spectrum
E. Then S. P. Novikov developed the theory to the Brown-Peterson spectrum BP and
succeeded to compute the first line of its E,-term, which is formerly known as the
J-image for an odd prime. Here the Brown-Peterson spectrum BP is a ring spectrum
and has the coefficient ring Z,[v;, v,,---]. After that, H. Miller, D. Ravenel and
S. Wilson showed the computability of the BP-Adams spectral sequence. Their theory
is not only showing the computability but also giving the deep insight in the stable
homotopy theory. One of them is related to Bousfield’s localization theory with
respect to a spectrum. In view of these, D. Ravenel introduces the chromatic filtration
in the stable homotopy category. This is closely related to the n-th Johnson-Wilson
spectrum E(n). This spectrum is characterized by the coefficient ring E(0),, = @, and
E(n), = Z,)[vy,+,0, vy ']. These theories are developed under the hypothesis that
E(n) is a ring spectrum, which is stated in [6, Cor. 2. 16]. Unfortunately, T. Ohkawa
found an error in their proofs that E(n) is a ring spectrum. So far, we have no
alternative proof for it, though Ohkawa proved that v, ! BP is a ring spectrum (see
[10] for the proof). Here we notice that v, ! BP gives the same Bousfield class as
E(n), which means that there’s no distinction between v, ' BP-localized spectra and
E(n)-localized ones. Thus there seems everything goes well if we use v, ! BP instead
of E(n). But when we compute the E,-term of the generalized Adams spectral
sequence computing homotopy groups of Ly, X, it is sometimes easier to use E(n)
than to do v, ' BP. Here we define E(n)-Adams spectral sequence although E(n) is
not a ring spectrum.

We call a spectrum E BP-associated spectrum if it satisfies E, (X) = E,(S%) & gp,
BP,(X) for all spectra X. The typical example of BP-associated spectrum is E(n)
by Landweber’s exact functor theorem ([4]). In this paper we give a generalized
Adams spectral sequence based on BP-associated spectrum E and show that it
converges to the homotopy groups of E-local spectrum for E = E(n). That is,
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THEOREM. * For any prime p, we have the E(n)-Adams spectral sequence converging
to the homotopy groups of E(n)-localized spectrum Ly, X with E,-term

E;ﬁ’* = EXtE(,;l;*(E(n)) (E(n)* s E(”)* (X))

As is seen in the definition, we can define R-associated spectrum E for a ring
spectrum R, and give a E-Adams spectral sequence. But it does not seem much
interesting and so we give here only for R = BP.

In the next section we define BP-associated spectrum, and in §3, we introduce
E-Adams spectral sequence, and then discuss the E-nilpotency in §4 and E-completion
in §5. In the last section we prove the main theorem by using the results of
M. Hopkins and D. Ravenel.

§2. BP-associated spectrum

Let BP denotes the Brown-Peterson spectrum at the prime p. Then the
homotopy group 7z, (BP A —) = BP,(—) is well known to be a homology theory over
the category of CW-spectra. The coefficient group BP, = BP,(S°) is a polynomial
algebra Z,[v,, v,,---] over Hazewinkel’s generators v, and it acts on BP,(X) from
the left by vx = (u A X)(v A x) for ve BP, and xeBP,(X), where u: BP A BP — BP
denotes the multiplication of the ring spectrum BP. Since BP is a ring spectrum, we
obtain a Hopf algebroid (BP,, BP,(BP)) by a well known fashion (¢f. [1], [7]).

Let E, be a BP,-algebra such that the action of BP, satisfies

vx=xv for xeE, and wveBP,

and the functor
E*(_) = E* ®BP* BP*(_)

is a homology theory. Then we have a spectrum E representing the homology theory
E.(—). 'In other words,

E(X)=n,(EArX)
for a spectrum X. We call the spectrum E BP-associated spectrum. This spectrum

is constructed by Brown’s representation theorem as follows: By the properties of
S-duality, for a finite spectra X, we have

E*X)=E_,(DX)=E, ®gp, BP_,(DX)
= E* @ pp BP*(X),

where DX denotes the S-dual of X. Note that every spectrum X has a direct system
{X,} consisting of finite spectra X, such that X = colim X,. We have Milnor’s short
exact sequence

0 —— lim" E*(X,) —> E*(X) — lim E*(X,) — 0.
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Thus we have a commutative diagram

00— lim' E*(X,) — E*(X) — lim E*(X,)  ——0
H l |

0 — lim! E* ® pps BP*(X,) — E* ® pps BP*(X) — lim E* ® ppe BP*(X,) — 0,

and obtain an isomorphism
E*¥(X) = E* X gp« BP¥*(X) for any X
by the Five Lemma. Now we apply Brown’s representation theorem to obtain the
spectrum E such that
E*(X) = [X, E],.
Here, the natural isomorphism ¢: [X, E], — E*(X) = E* @ gp BP*(X) is defined by
@(x) = x*(u) for a unit ue E*(E) that represents the homotopy class of the identity map

1,: E—> E. By this isomorphism, we have an element x of BP*(E) such that
u=1®x. Then we have

(2.1) p(x)=1® x*() =1 & Kx.
Take X'= S° and we have a map i,: S° — E that represents the unit 1 of the
algebra E* = E*(S%. That is,
el =1®1
for the unit map i: S° — BP of the ring spectrum BP. Furthermore we have a map
1: BP — E such that 1 corresponds to the unit 1 ® [ € E*(BP) = E* &) gp- BP* (BP) by
the isomorphism ¢, where 1 on the left is the unit of E* as above and 1 on the
right is the unit that represents the identity map 1: BP — BP. Then
(2.2) I1®1=0e0=1®1%k)
=1® xi,

and we have

LemMMa 2.3. Let i: S°— BP be the unit map of the ring spectrum BP.  Then we
have

1= Ig.

Proof. It suffices to show that i*: E*(BP)— E*(S°) = E* maps 1 to iy. The
map i* is induced from another i*: BP*(BP) — BP*(S% = BP*, which sends the unit
1, the homotopy class of the identity, to the unit 1, the homotopy class of i. So
we compute ¢@(i*(1)) = (1 ® i*)(@(1)) by the naturality of ¢, which equals to (1 ® i*)
(1IN =1Ri*()=1Qi=e¢(iy). , g.e.d.

LemMma 2.4 1k = 1€[E, E],.
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ProOOF. Since ¢ is an isomorphism, it is sufficient to show that ¢(ix) = @(1) =
1 ®x. Thus we compute

oK) =1® (x)* (k) =1 ® ki
=1®x*(x) =(1& c*)(1 ® ki)
=(1®@x"(1®1) by (22)
=1®«k.
g.e.d.

LEmMMA 2.5. Let E be a BP-associated spectrum. Then the induced map
1, BP*(X)— E*(X) = E* @ gps BP*(X) is given by

L(x)=1®x.

Proor. By definition, we compute 7,(x) =1 ® (1x)* (k) = x*(1 @ *(x)) = x*(1 ® 1)
=1 ® x*(1).

LeMMma 2.6. Let E be a BP-associated spectrum. Then we have a map
v: EA BP — E such that

v(iig A BP) =1
Proor. In E*(S% = E* Q) gp BP*(S°), we see that
1®kip=1@kii=*(1Rx)=*1R)=1®i
by Lemmas 2.3 and 2.5. Thus we compute

p(i*()=1,()=1®i (by Lemma 2.5)

=1® xig (by the above equation)
=1 ® KiKig (by Lemma 2.4)
= @ (ixig) (by (2.1))

= @(ifK*(1)).

Note that these induced maps are those of BP*(BP)-algebras, and ¢ is a generator
of E*¥(BP). These arguments give the commutative diagram

%

E*(E) —%» E*
E*(BP).

We obtain an isomorphism BP*(X A BP) = BP*(X) & gp« BP*(BP) by comparing
homology theories. We further see that

E*(X) @ pp« BP*(BP) = E* Q) gp+ BP*(X) & pp BP*(BP)



A generalized Adams spectral sequence 5

= E* & pp» BP*(X A BP) = E*(X A BP).

Thus tensoring BP*(BP) over BP* to the above diagram from the right gives another
commutative diagram

(ixx A BP)*

E*(E A BP) 25 E*(BP)
I(KABP)*

E*(BP A BP).

(i A BP)*

Since BP is a ring spectrum, we have an epimorphism
(i A BPy*: BP*(BP A BP) — BP*(BP).
Now tensoring E* to it from the left induces another epimorphism
(i A BP)*: E¥(BP A BP) — E*(BP),

since E*(X) = E* Qgp« BP*(X) for any X.

The above diagram gives (i A BP)* = (i A BP)*(x A BP)* and so we have
an epimorphism (i A BP)*: E*(E A BP) —» E*(BP). Now we have an eclement ve
E*(E A BP) such that (i A BP)*(v) =1 as desired. g.e.d.

Lemma 2.7. Let E be a BP-associated spectrum. For any spectrum X, the
map ig A X: X > EAX induces the epimorphism

(e AXY [EAX,EAY], —[X,EnTY],.
Proor. For any element xe[X, EAY],, define X by the composition
(vAYHE A (kA Y)x). Then
(g A X¥E)=0AYWEA@AY)X)(izAX)
=WAY)igABPAY)xAY)x=0AY)rAY)x=x
g.e.d.
LemMa 2.8. For a BP-associated spectrum E, we have isomorphisms
(X AE)= 7, (X ABP)Rpp, E,, and
m4(BP A E A X) = BP,(BP) Qgp, Ey @ gp, BP,(X).

Proor. First we show that there exists a canonical isomorphism ¥ : 7, (X A E) =
(X A BP)®yp, E,,. Here the right action ¢: 7, (X A BP) ®p, BP, —» 7, (X A BF)
is defined by @(x ® v) = (X A p)(x Av) for xen, (X A BP) and ve BP,. Now consider
amap T': E, & gp, BP(X)— n (X A BP) ®pp, E, defined by T'(e ® x) = ¢(x) ® e for
¢=T,: BP,(X)=n,(BP A X)—r,(X A BP), the induced map of the switching one.
Then the definition of the right action shows that the map T’ is an isomorphism, and
define the desired isomorphism by the commutative diagram



6 Katsumi SHIMOMURA

. -
E* ®BP* BP*(X) - ﬂ*(X A BP) ®BP* E*

| I

c

E(X) — 7 (X A E).

We further consider the commutative diagram

(BP AE),(X) —>  (EABP)X)

| H

BP (EAX) — E.(BP A X)

” | |
BP(E) ® pp, BP,(X) — E, ® gp, BP,(BP A X)

to define a natural isomorphism ¥. " ge.d.

COROLLARY 2.9. For a BP-associated spectrum E, we have isomorphisms
E (E)=E, ®gp, BP,(BP) Qgp, E,, and
E EAX)2E (E)Rp, E (X).
Proor. The first equation is obtained as follows:
E (E)=E, Qgp, BP,(E) = E, Qpp, 1. (BP A E)
=E, Qpp, 7 (BP A BP) Qpp, E,
= E* ®BP* BP*(BP) ®BP* E*

by using the isomorphism of Lemma 2.8.
The second isomorphism of Lemma 2.8 gives us as follows:

E(EAX)=E, Qpgp, BP (E A X)
=E, Qpp, 1. (BP AEAX)
= E* ®BP* BP*(BP) ®BP* E* ®BP* BP*(X)
‘= E, ®Qpgp, BP,(BP) @ pp, E,, D5, E, Qpp, BP(X).

- This corollary immediately implies the following
COROLLARY 2.10. Let E be a BP-associated spectrum.  Then we have
E*(E)‘"—‘v E, Qpp, BP,(BP) ®gp, E,, and
E (E A E) = E,(E) Qp, E,(E).
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By this corollary, we obtain a Hopf algebroid (Ey4, EL(E)) whose structure is
induced from that of (BP,, BP_(BP)). We have canonical homomorphism i: (BP,,
BP, (BP)) — (Ey, E(E)) defined by iln)=1® veE, and i(x)=1®x® 1 ek, (E) for
ve BP, and xeBP_(BP), respectively. Then this map i is a map of Hopf algebroids.

§3. A generalized Adams SS based on a BP-associated spectrum

Let E be a BP-associated spectrum and i: S° > E denotes a map of spectra
representing the unit element le E,, which is denoted by iy in the previous section. In
the same way as the case for a ring spectrum, we can construct a generalized Adams
spectral sequence. Let E denotes a cofiber of i. Then we have the cofiber sequences

an 0 Fan LA 1n Fan _dn Tant1 kn AN

Er=SOANEM Z S EAE — F — 2FE
for integers n > 0. Put Dy* =, (E*) and Ev* = E (E™), and we have an exact

i j * . . . .
exact couple D, - E, —J>D1 - D,;. This exact couple gives rise to the generalized
Adams spectral sequence based on E. Now we observe the E,-term.

i

. J o=,
LEMMA 3.1. The cofiber sequence S° > E L E induces a short exact sequence

0~—>E*(X)LE*(EAX)LE*(EAX)'—»O

Jor a spectrum X, which is split as E-modules.

Proor. By Corollary 2.9, E(EAX)=E_(E) &g, EL(X). Furthermore this is
natural on X. For X = SO, Iy is the map induced from Nr: E,— E,(E), and so we
have iy =4, ® 1. Now we have a splitting s: E (E)®g, E (X)—>E.(X) by setting
s=¢® 1 for the structure map ¢: E, (E) > E,. g.e.d.

This lemma gives a resolution of the module E. (X):

(i)«

0——>E*(X)——>E*(E/\X)——)E*(E/\E—/\X)

(i)« (i)« (1

—> E (EAEM? A X) — E(EAES A X)L
In fact, E.(EAY) is an extended comodule by Corollary 2.9 and the sequence is
E,-split exact by Lemma 3.1 and the definition of the map (ij),. Noticing that
ET¥(X) = Homy, (E,, E, (E* A X))
= Homg, 4 (E,, E_(E) &z, EL(E*" A X)).
Here the second isomorphism is defined by sending f to (1 ® )4, whose inverse map
sends f to (e®1)f, for the structure maps A: E(E)— E(E) &pr, EL(E) and

e E.(E)—> E, of the Hopf algebroid E,(E). Now apply the functor Homy, 4 (E,, —)
to the resolution, and we get the E,-term
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ESZ’*(X) = EXt%:le) (E*7 E* (X))
Summarizing these we have

PROPOSITION 3.2. Let E be a BP-associated spectrum and X a spectrum. Then
we have a spectral sequence {ES*(X)} abutting to m,(X) with E,-term

E3*(X) = Extyfp (Ey, E(X)).

§4. E-nilpotent resolution

We begin with defining the E-nilpotent spectrum, which was first defined only for
a ring spectrum. Let E be a spectrum. Then consider the smallest class % of spectra
such that

(i) Ee%;

(i) If N and X are spectra and Ne%, then N A X e,

(iii) If X - Y— Z is a cofiber sequence and two of the spectra X, Yand Z are
in €, then so is the third; and

(iv) If Ne® and M is a retract of N, then Me%.

Each element of ¢ is called E-nilpotent.

We call a spectrum X E-prenilpotent if there is a map f: X —>N with Ne%
such that f, @ E (X) = E,(N) is an isomorphism. The following is given in [2, Prop.
3. 9] for a ring spectrum E.

ProrosiTiON 4.1, If the sphere spectrum SY is E-prenilpotent, then so is any
spectrum.

ProOF. Since S° is E-prenilpotent, we have a E-nilpotent spectrum N and a
mapf: S® - N such that f: E,(S°) 2 E,(N) is an isomorphism. Take any spectrum
X, and we have a map (f A X),: E,(X)— E,(N A X). We prove that (f A X), is
an isomorphism by a well known method. For a finite spectrum X, it can be proved
by induction on the number of the cells of X by using the Five lemma. For the
infinite spectrum X, we have a set {X,},.4 of finite spectra such that X = colim,, X .
Then E,(X)= E,(colim, X,) = colim, E.(X,) is isomorphic to colim, E,(N A X,) =
E (colim,N A X,) = E, (N A X) as desired. g.e.d.

We call a sequence {W,} of maps k,: W,— W,_, a tower under X if there are
maps a,: X — W, such that ksa, = a,_;.

DErINITION 4.2. Let E be a BP-associated spectrum. An E-nilpotent resolution
of a spectrum X is a tower {W,},., of spectra under X such that

(i) W, is E-nilpotent for each s > 0.
(i) For each E-nilpotent spectrum N, the map colim,[W,, N], = [X, N1, is
isomorphic.
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Now consider again the cofiber sequences
EmAX =S AE"AX 25 EAEMAX
LRt x B sE A X
for integers n >0, obtained from the above one by taking smash product with
X. Using the map k,, we define a map
k' =koky -k, ENMAX — X

and denote the cofiber of k, by E, A X. We then have a tower {E, A X} under X,
whose maps are the induced ones v from the commutative diagram of cofiber

sequences .

kn

ErMAX — X EAX — EMAX

“3) [ £ foe-

—_ _ fn-1 Un—1 — _ B
EMIAX — X ——>E,_ AX—E" ' AX

LEMMA 4.4. The spectrum E, defined above is E-nilpotent.

Proor. Note that £, A X =EA X, and so it is E-nilpotent. Suppose that
E,A X is E-nilpotent. The above diagram gives rise to a cofiber sequence
EAXS>EANEYAX>E;,,AXby3x3Lemma. In the cofiber sequence, the first
and the second terms are both E-nilpotent, and so is the other. Thus we have the
lemma inductively. g.e.d.

Lemma 4.5. For a BP-associated spectrum E and a spectrum X, the tower
{E, A X} is an E-nilpotent resolution of X.

Proor. The first condition to be the resolution is certified by Lemma 4.4. Now
we consider the second one. Suppose that N be an E-nilpotent spectrum. By the
definition of E,, we have an exact sequence

s [ A X, Nlysy — [Es A X, N1, — [X, N1, — [E** A X, N, — ---.

The diagram (4.3) enables us to take colimit of the above sequence, and we have
another exact sequence

+ ——colim [E** A X, N], ., — colim [E, A X, N1, *, [X, N1,
—colim [E** A X, N], —> -

If N =E A Y for some Y, Lemma 2.7 shows that the map [E** A X, N] > [E**1 A X,
N] is null. Therefore we have colim,[E**A X, N]=0 for the case N=EA Y.
Every E-nilpotent spectrum is obtained after finite steps of a construction using a
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cofibering and a retracting out of spectra of the form N = E A X. Suppose that if
N is obtained after k steps in such a way, then we have colim,[E"* A X, N]=0. If
N is a retract of E-nilpotent spectrum N’ obtained after k steps, then we have an
inclusion colim, [E** A X, N] < colim, [E"* A X, N'] = 0. Thus it follows the desired
equation. If N is a cofiber of a map f: N, — N, of spectra obtained after k steps,
then we have an exact sequence

colim, [E"* A X, Z7'N,] — colim, [E** A X, N] — colim, [E** A X, N].

By the inductive hypothesis, the outer modules are null, and so is the center. This
completes the proof for the spectrum of the (k + 1)-st step. Therefore we have

colim [E"*A X, N], =0

for any E-nilpotent spectrum N, inductively, and we have the desired isomorphism.
g-e.d.

Consider the homotopy limit E*X of the tower {E A X}. We call the limit
E*X E-nilpotent completion, which provides a map «: X - E*X such that each map
a,: X — E_ is obtained from a.

Here we recall [3, Ch. 8] the category Jow-o/ associated to a category /. By
a tower {V} in a category </, we mean a sequence of objects ¥ e/ for s > 0 together
with maps ¥,, — ¥ for s > 0. An object of the category Jow-of associated to &
is a tower in the category 7 and the set of morphism is defined by

Hom ({¥{}, {W,}) = lim, colim, Hom (¥, W,).

Note that if {¥,} is a cofinal subtower of {V,}, then {¥,} is isomorphic to {K} in
T ow-of. Furthermore a tower {W,} under Y in ./ corresponds to a map
v:{Y} > {W,} in Tow-o for a constant tower {Y}:

LEMMA 4.6.  Assume that E is a BP-associated spectrum. If {W,} is an E-nilpotent
resolution of Y in the stable homotopy category & of spectra, then there exists a
unique isomorphism e: {E,A Y} = {W,} in Tow-S such that

Yy — {1}

L

(E,A Y} — (W}

Proor. Since {W,} is a E-nilpotent resolution of ¥, we have an isomorphism
colim,[E, A ¥, N] = [Y, N] for any E-nilpotent spectrum N. Take N = W, Then
the isomorphism pulls back each map a,: Y — W, to a map e,: Ei(s, AY - W, for an
integer i(s). These maps give rise to the morphism e that makes the diagram
commutative. In a similar fashion we get the inverse of e and then e is an
isomorphism. g.e.d.
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We call a morphism f: {¥,} — {Ws} in Tow-F a weak equivalence if it induces
an isomorphism f, : {m(¥)} = {n(W,)} in FTow-s£¢ for each i, where /¢ is the
category of abelian gxoups ~Then we have

LemMmA 4.7. Let f: {V} = {W,} be a weak equlvalence in Tow-F. If V,, and
W,, are homotopy limit of towers {V,} and {W.}, respectively, then there exists an
equivalence u: V,, ~ W, such that

V) 5 ()

(Vy — (W}
commutes in Jow-F.

Proor. This proof is the same as that of [2, Lemma 5.11]. First suppose that
f is represented by a strict tower map {f;}, where f,: ¥, —» W,e& for s >0. Then
choose u: V,, - W, so that

Ve == I, — 1 — 21,

lu 1r1fs les lzu

W, — W, — W, — X W,
commutes. In the induced diagram

0 — lim! 7,4 (¥) — 7w (V) — lim 7 (}) —0

R

0 — lim" 7,y (W) — 7, (W) — lim 7, (W,) —0,

the outer vertical maps are isomorphisms by the hypothesis. Thus u,: 7, (V)=
n.(W,) and u:V, ~W, as desired. In the general case, f can be factored as

{V} e, Vot o9, (W}, where {t,}: {¥,} — {¥} is the canonical map from some

cofinal subtower to {¥}, and {¢,} is a strict tower map. Since {t;} and {¢} are
both strict weak equivalences, we can construct equivalences v: ¥, ~V¥, and
w: Vi =~ W,, as above. Here ¥, is a homotopy inverse limit of {Vis}- We have
the lemma by letting u = wo™!. ' g.e.d.

Now combining above two lemmas show the following
PROPOSITION 4.8.  For a BP-associated spectrum E and a spectrum Y, let {W,} be
an E-nilpotent resolution of Y with homotopy inverse limit W,,.. Then W, ~ E"Y.

B Proor. Lemma 4.6 guarantees the existence of an isomorphism e: {W,} —
{E; A Y}, which induces a weak equivalence. Therefore we obtain the proposition
by Lemma 4.7. g.ce.d.
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§5. E-localization and E-nilpotent completion

In this section we rewrite Bousfield’s theory for a BP-associated spectrum instead
of a ring spectrum.

First we define the localization. Let E be a spectrum. A spectrum X is said
to be E-local if the homotopy group [C, X ], = 0 for any C with 7, (E A C)=0. The
E-localization functor Ly: & — & is equipped with a natural transformation #: 1 - Ly
providing that

(i) #nx: X — LgX induces an isomorphism #y,: E, (X)= E, (LpX), and
(ii) for any f: X — Y with an isomorphism f, : E_(X) = E_(Y), there is a unique
r: Y- Ly X such that rf = ny.

Then the following is well known (c¢f. [6]; see [9] for the proof):
ProroSITION 5.1. For a spectrum X, we have

(i) LgX is uniquely defined.

(it) Lg(LgX)= LgX.

(i) If there is a map f: X — Y with Y E-local such that E (f) is an isomorphism,
then there exists a map h: LgX — Y such that hyy = f.

LemMma 5.2.  For a BP-associated spectrum E and a spectrum X, E A X is E-local.

Proor. Let C be a spectrum such that 7, (E A C)=0. Take an element x in
[C, EAX]. Then we compute

(YAXYEAKAXYEAX)(igA C)
=WAX)EArAX)(igAEAX)x
=WAX)(igABPAX)(kAX)x

(1A X)(x A X)x {by Lemma 2.6)

=X (by Lemma 2.4),

Il

in the commutative diagram

c -2 EAx X5 BPAx

liE/\l liEAl ,\v/\l li};/\l

E/\CgEAE/\X“—’f—A—»IE/\BP/\XA

Since E A C is contractible, we get x =0 in [C, EA X],, and so [C,EAX], =0
as desired. g.e.d.

LEmMMA 5.3. Let E be a BP-associated spectrum. Then E-nilpotent spectrum Iis
a E-local.
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PrOOF. We here again follow Bousfield’s proof. First filter the E-nilpotent class
% as folows. Let &, consist of all spectra equivalent to E A X for some spectrum
X. Inductively suppose that %, with m >0 is given. Then %, consists of all
spectra N such that either N is a retract of a member of %, or there is a cofiber
sequence X - N - Z with X, Z¢¥%,,.

We now -prove the lemma. For a spectrum of %,, we have the lemma by
Lemma 5.2. If a spectrum X of %, is a retract of a spectrum Y of %, then
[C, X],<[C, Y], and so we have [C, X],=0 for any spectrum C with
n.(E A C) =0 by the inductive hypothesis that Y is E-local. Consider now the case
that X fits into the cofiber sequence Y — X — Z with Y and Z in %,,. Now applying
the homotopy functor [C, —~], to it, we see that the hypothesis [C, W], =0 for
W=Y, Z shows [C, X], =0 as we desired. Now we complete the induction.

g.e.d.

We also see that a homotopy limit of E-local spectra is also E-local, since we
have the Milnor sequence 0— liml, [C, X, ], .+, — [C, lim, X,], — lim, [C, X,], — 0.
Therefore, we obtain

COROLLARY 5.4. Let E be a BP-associated spectrum, and W, denote a homotopy
limit of an E-nilpotent resolution {W,}. Then W, is E-local.

This together with Lemma 4.5 shows that the E-nilpotent resolution E*X is
E-local. Then by Proposition 5.1, we have a map f:LgX — E"X such that
Py =0 X - E"X.

§6. Convergence of GASS

In order to investigate the map f: Ly X — E*X, we prepare some more notation
on a generalized spectral sequence. Recall the convergence of a spectral sequence.
First filter the homotopy groups 7, (E"X) by letting

Frn, (E"X) = Ker (n (E"X) — T (Eg— A X)).
Then the map
6.1) n (E*"X) — lim (7 (E"X)/F*n (E" X))

is always surjective. Note that E, is defined only for nonnegative integers s. Thus
the E,-terms has the property that
E¥ (X)) < EX'(X) for r > s,

which enables us to define

E3(X) = () E'(X)

r>s

and gives a monomorphism
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(6.2) P (ErX)/FS i (EAX) —— ESSH(X).
* *

We call the spectral sequence {E}‘} converging completely to m (E"X) if both of
(6.1) and (6.2) are isomorphisms. Then the following is the general result:

PROPOSITION 6.3. The E-Adams spectral sequence {E}'(X)} converges completely
to n (E*X) if for each s, t there is a finite v such that E}'(X) = E3/(X).

In fact, if the hypothesis ES'(X) = E%'(X) for some finite r is valid, then the
inverse system {m (E"X)/F*n,(E"X)}, satisfies the Mittag-Leffler condition and we
see that (6.1) is an isomorphism. The monomorphism (6.2) is seen to be an
isomorphism by a standard argument of a spectral sequences.

LEMMA 6.4. If X is an E-prenilpotent spectrum, then LpX is E-nilpotent.

Proor. Since X is E-prenilpotent, we have an E-nilpotent spectrum N and a
map f: X — N such that f,: E,(X)— E,(N) is an isomorphism. Noticing that
L;N=N by Lemma 5.3, we have an induced map Lyf:L,X—> N and an
isomorphism (Lgf),: E,(LgX)— E,(X). Therefore Ly X is homotopic to N, since
both of them are E-local. g-e.d.

PROPOSITION 6.5. For an E-prenilpotent spectrum X, E-Adams spectral sequence
converges completely to m, (LpX).

Proor. The tower {LpX} is an E-nilpotent resolution of X by Lemma
6.4. Then by Lemma 4.6 we have an equivalence {LzX} = {E;A X} and L, X ~ E"X
by Proposition 4.8. This equivalence gives the convergence, since {L; X} is a constant
tower. In fact, a constant tower gives rise to trivial E,-terms, other than EQ*, of
the spectral sequence associated to the tower. Therefore, it satisfies the condition of
Proposition 6.3. : i g.c.d.

M. Hopkins and D. Ravenel show (¢f. [8]) the following
THEOREM 6.6. The sphere spectrum S° is v, ! BP-prenilpotent.
By Lemma 2.4, E(n) is a retract of v, ' BP and so

COROLLARY 6.7. The sphere spectrum S° is E{(n)-prenilpotent.

‘As we have noticed in the.introduction, the Landweber exact functor theorem
([4]) shows that E(n) is a BP-associated spectrum. Therefore we apply Propositions
3.2 and 6.5 and Corollary 6.7, and obtain our main result:

COROLLARY 6.8. E(n)-Adams spectral sequence {ES'(X)} converges to . (LguyX)
for any specitrum X. '
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