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Abstract

We construct a field *R of hyperreal numbers so that the field R of real numbers is
embeded as a subfield of *R. The set *R can be regarded as a metric space containing the
set R as a discrete subset and we can generalize this property.

1. Introduction and preliminaries

In the 1960s, Abraham Robinson showed that the set R of real numbers can be
regarded as a subset of a set *R of hyperreal numbers which contains infinitely small
and large numbers. We can contend the set *R is a metric space containing the set
R as a discrete subset. In the present paper we would like to generalize this property.

We shall first state some fundamental properties on filters. According to Comfort
and Negrepontis [1], we shall give the following definition.

DeFiNiTION 1.1, Let I, be an infinite set and &; be a filter on I; for each
i=1,23 We define sets F, - F,, (F,-F,) F3, ¥y - F, Ty, and F| (T, F3)
as follows.
F - Fry={AeP( x 12)|{J’1611|{YZ612|()’D }’z)EA}Eﬁz}egrl},
(F - Fo) F3 = {Ae2?(l, x I, x Iy, ya)el; x IH{yselsl
(Y1, V2, Va)EA} €T3 €T, Tt

L Ty ={AeP(; x I, x I3)|{Y1611|{)’2612H)’3613|
1> V2> )’3)€A}€?3}€972}€Jﬁ'1}a

N

7.
'y

F Ty Fy) = {AE?}(L x Iy % Is)i{hehl{()’z, yael, x I;]

(V1> V2, 3 €A} €Ty Fate T}
We immediately have the following proposition.

Prorosition 1.2. (1.1) &, - F, is a filter on I} x I,.
(12) (F, - Fp) Fs, F\-F,- Fs and F, - (F, - F3) are filters on 1, x I, x I and
we have

1‘(%2'973:971'(ﬁ2'973)-

g

(971 : 5;2) :

A
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The following proposition was .given in [3].

PROPOSITION 1.3. Let &, and F, be ultrafilters on I, and I, respectively. Then
F - F, is an ultrafilter on 1, x I,.

PROPOSITION 1.4. Let &, and F, be ultrafilters on I, and I, respectively, and
let F, or F, be a free (w-incomplete) ultrafilter, then F, - F, is a free ultrafilter on
I, xI,.

In order to prove Proposition 1.4, we use a lemma.

LemMa 1.5. Let &, and F, be filters on I, and I, respectively. = Then we have
the following.

(1.3) Let X, e, and X,e%F,, then X, >< X,eF, - F,.
(1.4) Let X, < I, and X, < 1,, and let X ¢ F, or X, &%,
then X | X X, &%, F,.
| PrROOF OF ProposITION 1.4. Let &, be a free ultrafilter, then there exists A4,

such that A,e%, for each neN and () A,¢%,, where N is the set of all positive
integers. . n=1
Using Lemma 1.5, we have A, x [,e#, - %, for each neN. Since

ﬁ (A, x I,)=( F\ A) x 1, and F\ A, & F,,
n=1 n=1 n=1
we have
( a A) x 1,&eF - F,.
n=1
Therefore F, - #, is a free ultrafilter. Q.E.D.

Let K be a nonempty set and

a(yl,"'7yn)> b(y1>"'>yn)€ H K.

(1, el X x gy

We define a relation R(n), by

a(yl’“'ayn)R(n)b(YU"'>yn)’ if and Only if

gg

{(ylf"’))n)E[l X X Inla(yh“'ayn) :.b(yl"”’yn)}egl‘l . 972,,, /~n'

The relation R(n) is an equivalence relation.
We would like to use a notation

[ K777,

ysyn)ely X Xy



On Sets of Hyperreal Numbers

in order to express the quotient space

I K/R(n).

(31, ymdely X oo X0y,

The quotient class determined by a function a(y,,---,y, will be denoted
[a(y17”'7yn)]'

THEOREM 1.6. The following formula is valid.

[T (Il K/7)/ 7. = [1 K/F -7,

viely yaels (1,y2)elr X I

Proor. If

(@ay2))0 HHK

el yaela

then we can contend

@yNoe [1 K

(vi.y2)ely X I

and we write

@) =aly ya)-

We immediately have this result by the following fact.
Let

[La(y)]1 )] [T )Ie TT (1 K/772)/

viely yaela

then we have

[[a(y)] ()] = [[b(y2) 1 ()]
< {y e 1[a)10m) = [b(y) ](yl)}eg"~
< {y el [{y,eL1a(,) (y) = b))y} e FrleF

105

by

< {(y1, ya)el, x Lila(y,, yz)— b(y,, )€, - F,. Q.E.D.

CororLLary 1.7. The fillowing formula is valid.

[T (Il C(I1 K/2)-)/ 7)) 7, = I1 K| Fy T,

viely yaelz yneln s yn)el g X o x Iy

2. On sets of hyperreal numbers

Now we shall give the following definition.

DeriNtTION 2.1, Let R* = {yeR|y >0} and let F={(0, y)lyeR*}. Then F
has the finite intersection property. We shall denote by % one of the ultrafilters
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containing F. The filter & is a free ultrafilter.
We Shall use the following notations:

Fl=F and F - F"=F"*' for neN,
(R*)'=R* and R" x (R*)"=(R*)"*! for neN,
O#R = R, "R =*R = [| R/%, and

y1eR*

"R = 11 R/F,---F, for neN.
e, yn)e(RT)"
We immediately have the following theorem.

THEOREM 2.2. ™R = *(""D*R) for neN.

An element of the set "*R is called a hyperreal number. The set "*R is made
into a commutative ordered field by defining the addition, the subtraction, the product,
the quotient and the order in the usual way.

We define absolute value in "*R as follows.
DerFmNITION 2.3, If x = [x(y¢, -+, y,) ] €"™*R, then
el = [1x(yy,-, ya)l]
We have the following theorem immediately.
THEOREM 2.4. ™R is a metric space with a usual metric
d(x, y) =y — x| for x, ye™R,

DeFmviTION 2.5 (Infinitesimal). We shall say that &= [s(y,,---,p)]e™R is
infinitesimal or infinitesimal small if for every e R* we have

(2.1) {2 eRY) ey, p)l < e g™
When ¢ and ¢ satisfy condition (2.1), we write || < J.
PropoOSITION 2.6. Let & R™ and ¢ = [e(y,,---,y,)1€"*R, then we have
{e sy eV ey, )l < 0y e F"
< {1 eR {2,y eRYY ey, oyl < 0}eF" e T
< {y eRT Uy e R {(ya, -, p)eRTY 72 [e(yy, -, p)| <O} eF " PleF e}
PR
= {y e R [{p,e R [ {y, e R*[|e(py, -, 0)| < S} e F -} e FleF
{01 )RV U3 p)eRYY 2 le(pr, -, p)l < S}eF" 2 e F?
e

<:>{(yl’".5},)1—1)E(R+)1171|{yn€R+l|8(yl’“"yn)| < 5}637}6"0/—:"71'
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The proof is easy, and we omit it.

PROPOSITION 2.7. Let ¢=[e(y,)]e*R and d€R™ which satisfy « condition
{yoeR"||e(y)| < d}eZF. Then we have

(s y)eR)e(y) < ofes™

Proor. Let A = {y,eR"||e(y,)] <}, then AeF. Since

{ sy e®RIY eyl <6} = (RT)' 7! x 4,

(RY)Y legF" ! and AeZ,

we have
(s iR ey)] < O} eF" L - F = 7. Q.E.D.
Let a, x, e€”*R and ¢ > 0. We define a set U(q, ¢) by
Ula, &) = {xe™R||x — a| < g}.

PropOSITION 2.8. Let a=[a(y,, ", Vu-1)1» X = [xX(¥1> > Vu-1)1€" " P*R and let
e = [e(y,)] be a positive infinitesimal, then

Ula, &) = {a}.
ProoF. Let a # x, and let
B = {(}’1,”',yn~1)€(R+)"—1l|X()’1:"'ayn~1) - a(y17"‘ayn—1)| > 0}

then we have Be#F" !,
Since

{(yl:"'vyn~I)G(R—F)nvll{yHER+l!x(yl"">Ypr—1) - a(y1>"'>yn-1)| > 8(}’11)}6'97} -2 B’
we have

n

{(yla'”ﬁyn)e(RJr)n*lx(y'1a"'ayn—1) - a(ylf'"yn—ln > 8(yn)}’e’g/7 >

which shows |x — a] > &.
Clearly we have U(a, ¢)2a. Hence we have

Ula, &) = {a}. Q.E.D.
Using Proposition 2.8 we have the following theorem.

THEOREM 2.9. A metric space " Y*R is a discrete subspace of a metric space
"R, for every neN.
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