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§1. Introduction

A spectral sequence is a sequence of modules {E*} provided with a differential
d,: E; —> E:*" for each r > 0, which satisfies

ESyy = Ker{d,: Ef — E*"}/Im {d,: ES™" — E3).

If there is an integer r, > 1 for each s such that Ef = ES, for any r > r,, then we
write E3, = E; . Consider a filtration 0 < -- <= F,,, c F, < --- < Fy = M of a module
M with (},F,=0. We say that a spectral sequence {E,, d,} converges to a module
M, if there exists E2 for each s and the filtration satisfies

Fo/Fg, = E%.
We call the module @ F /F,,, = @, ES, associated graded module. 1f all differentials

d, are null for r > 1, it is easy to study about the spectral sequence, since El=E},
for r > 1. In this case tne spectral sequence is said to collapse. 1f a spectral sequence
collapses and converges, we get almost all information on the target module M from
its E,-term. Generally E,-terms E¥ has a computable expression and so the target
module M is computable up to extension problem if it collapses.

It is well known that an exact couple gives a spectral sequence. Let E be a
ring spectrum. Then the cofiber sequence obtained from the unit map gives rise to
the exact couple of homotopy groups, which defines the E-Adams spectral sequence
converging to the homotopy 7,(X) of a spectrum X under some conditions on E
and X (cf §3). The generalized Adams spectral sequence is a powerful tool to
compute homotopy groups of a spectrum especially when it collapses at E,-
term. Contrary to the E,-term, the differentials are not known how to compute
algebraically. So it is hard to see how the differential behaves and we usually use
some facts on homotopy to tell the behavior. When we have a cofiber sequence
involving a spectrum whose homotopy groups are known, we can dig out more
information on the homotopy groups from the spectral sequence for each spectrum
in the cofiber sequence, that is, we can get formulae on the differential even if it is
not collapse. The well known example of this kind is the Geometric Boundary
Theorem ([4]) and generalized one (¢f. [5]). Here we give some more formulae for
the differentials out of information on the spectral sequence whose homotopy is
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known as well as the differentials of the spectral sequence. ,

A homotopy element & of m(X) is said to be detected by x of the E,-term
EX¥(X) if x is a permanent cycle and the corresponding element to x in the E-term
is a corresponding one to ¢ in the associated graded module 97, (X).

In order to state our results, we give some notation and assumption. We consider
a cofiber sequence

(1.1) —sx-Ly- Sz brx —s.
Suppose that

(1.2) E,(h)=0: E (Z) — E(X)
induced from h in (1.1) and

(1.3) E. (E) is flat over E,

for the spectrum E. Then it induces the exact sequence
— E3(X) - E4(Y) ¥ E$(Z) " B3 TH(X) —

of E,-terms. In fact the E,-term is given by the Ext-groups in this case. For
example, it is satisfied for the case E = BP, the Brown-Peterson spectrum, and a
cofiber sequence (1.1) such that BP,,, (U) =0 for te Z and for U = X, Yand Z. We
further suppose that

(1.4) E$¥ (W) =0 for W=X, Y, and Z, and E¥(Y) = EX(Y).

Note that this means that the differential d,, is null for ¢ >0, and in particular
EX = E¥. Our results are on the map g,: 7, (Y)—>n,(Z). Consider an element
nen,(Y) such that y is detected by f,(x) for some xe E¥(X) with

(1.5) d21+1(x)=x07é0€E2,+1(X).
Moreover suppose that

(1.6) E-Adams spectral sequences for these spectra converge Lo the homotopy groups of
them.

These assumptions imply that f, (xo) = 0 EX(Y) for some r, and so
(1.7) fi(x0) =0, or f,(xo) = d3(yo) for some y,€ EF(Y).
Then under these circumstances, we have

THEOREM. (1) If fo(xo) =ds(yo) # 0 in E3(Y)= E3(Y), then gemen (Z) is
detected by ¢,(vo)e ES(Z).

(2) Suppose that f,(xo) =0 in E¥(Y)= E$(Y). Then we have an element z in
EX(Z) with h,(z) = xo and g, (n)en,(Z) is detected by z.

The second part of this holds under some weaker conditions and may be known
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to some experts. This theorem, especially the first part, will be applied to the.case
for E = BP, the Brown-Peterson spectrum at the prime 2, which will appear
somewhere. Furthermore we note that this is still true for the case that d, =0 on
Y in (1.1) other than » =2p — | for an odd prime p, instead of r =3 in our case.
But I write down this only for the case r = 3 for simplicity.

In the next section we give a well known result, whose proof here is due to
M. Hikida, which is applied to prove the theorem in the last section. - In §3, we
restate the construction of generalized Adams spectral sequences whose notation we
use in the proof of Theorem.

§2. K"e)"' lemma

We first recall [3, Lemma 6.2] the well known fact on the cofiber sequences.
Consider a commutative diagram - ~

N

2 — I;
— X, N oy, s oz, M oxx, —

lx‘ 1“ l - lu

2.1) s ox, oy, 2oz, By oyx,

I S

— X, oy, 2 oz, B oyx, —

whose rows and columns are all cofiber sequences of spectra. Applying the homotopy
functor 7, (—) to this diagram, we get the induced one

lm lm 13 lxa*

— X)) IS oa (Y IS o Z) S on (X)) —

lxl* l)’l* 121* l.\‘l*

(2.2) — m (X)) DS () IS n(Z) S or, (X)) —

le* . J;J’z* b JY'ZZ* ’ N ‘1x2*~

— Xy P (V) S a2y S m (X)) —,

vas* C 1)’3* ’ 123* o : l“x‘a*"
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where the rows and the columns are all exact. We now rewrite [3, Lemma 6.2] to
fit our purpose:

Lemma 23. Suppose that elements {en (Z;) and n,en (Y,) satisfy

Zx*(zﬁ) = g24(12)

in the above diagram (2.2). Then there exists an element &yem, (X3) satisfying
J3x(83) = yaulny) and  hy ({y) = — x3(E3).

Proor. First of all we will show that we can replace the maps fy, f,, x; and
yy in the diagram (2.1) by inclusions. Consider W= Y, J,, (X, AI")U,, X,, in which
I is the unit interval [0, 1], I, the disjoint union of I and a point, and f,(x) ~ (x, 0)
and x,(x) ~ (x, 1) for xe X, and define a map j: W— Y, by jly, =y, jlx, = f; and
jlx, ~ 1+ = a homotopy between y, f; and f,x,. Set

Xi=X A{1/2}7, X5 =X A1) Uy, X, Y = YiUp (X A lg) and
,=Y, Uj(W/\ 1),
where I, and I, are the closed intervals [0, 1/2] and [1/2, 1], respectively. Then
we have homotopy equivalences X;~ X;, X;~X,, Y{~Y, and Y, ~Y,. Note
that X] = X4,nY/. Therefore replacing spectra in (2.1) by the spectra with primes

and maps by the canonical inclusions, we see that the homotopy commutative diagram
{(2.1) are homotopy equivalent to the strict commutative diagram

lx3 lys lZS li
—_— X, <4y, 2 oz orx, —

ﬂx1 ﬂ}’x ﬂzx ﬂxx

.4) —_— X, <5y 2, oz M oyx,

l.\-z lyz ln lxz

— X, <y B, oz, By vy,

with X, = X,nY,, in which we omitted the primes on the spectra,

Z;=Y/X,for i=1,2,3, and U;=U,/U, for U= X, Y, Z.

Furthermore consider diagrams of the cofiber sequences
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— X, Iy Y, TSN Z, AL orx, —s

ln N N ln
25 — X; <> vuX, % zZ,vx, 4% rx, —

III Ui, Ui TH
— X, 2% X, Y X, NP C— and
—  Z, %z, 2 0z, 2, yz o
b ]
(2.6) — YUX, =% v, X z, 5 SY,uX, —
R
— X, oy s oz yx,

Then (2.6) gives the commutative diagram

— n. (Z)) = n(Z;) =5 n (Z3) =5 Tye-1(Z4) —

2.7 Ty}* I”,z* ) T” Ty'n*

— (MUX,) 5 (V) TS n(Zy) -5 n, (YLUX,) —

by applying the functor =, (—). In this diagram, since

214(81) = g2, (n2)
by the hypothesis, we see that

pri(ny) = Z3x924(M2) = Zy4214((1) = 0.

The exactness gives an element vern,(Y; UX,) such that
(2.8) e, (v) =1y,
and we compute
215 915(V) = oy i€, (v) = g5,(12) = 2, (1),
This also gives an element {yemn,(Z;) such that

234(03) = {1~ 91, ().

Put now
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(2.9) V =+ 0,(05)en, (Y UX,),
and we get
(2.10) g1 () = 5.

We note that this is also proved using a Mayer-Vietoris type exact sequence induced
from (2.7). We also have an element &;enm,(X;) defined by

(2.11) &3 = x5, 0).
Then we calculate to show
V25 (12) = yauine, (V) (by (2.8))
= yagine, (V) (by (29))
= 34 X24(V) (by (2.6))
= f35(03) (by (2.11)).
Thus we get the first equation in the lemma.

Consider next the commutative diagram

I n*(X1) —fﬁ* n*(Y1) s ”*(Z1) "ﬂ*" ”*—1(X1) I
lll lil* ‘[i;* ln
212) — m X)) 5 2, (MUXy) I m (2 vXy) o (X)) —

In T ‘ Iilz* In

X% X2 X3

- ”*(X1) — n*(Xz) - ”*(Xs) B 7I*—1(X1) >

induced from (2.5). Then we see that
P (V) = (g1 (), x2,01)) = (L4, €3)
in 7, (Y, UX,/X)) = m(Zy v X3) = 1,(Z,) ®7,(X3), by (2.10) and (2.11) and so
0 =dy(pe (V) = d ({15 £3)) = Iy, (01) + X3,(85).

Thus we have the other equation. g.e.d.

§3. Generalized Adams spectral sequence

Here we recall [1] the construction of a generalized Adams spectral sequence {o
argue about the differential in a closer look.

Let E be a ring spectrum such that E,(E) = n,(E A E) is flat over E, = 7, (E)
as a right module whose structure is induced from the multiplication u: E— E A E.
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Let i: S° > E denote the unit of the ring spectrum E, where S° means the sphere
spectrum, and the unit i induces the cofiber sequence — S°-5>E -5 E-5S! . For

a spectrum X, define
X,=E""AX and EX,=EAX,,
and
iy=inid: X,=8°AX,—> EnrX,=EX,,
ju=jAid:EX,=EArX,—EAX,=X,,,, and
k,=knid: X,,,=EAX,—S' A X, =23X,

where Z"" =Z A---AZ (n copies of Z), and id denotes the identity maps. Then
we have the E-Adams tower

(3.1) X=X, yix &M bt yony K
and a cofiber sequence
(32) XnL)EXnJ"_)Xn+1 L’Z‘Xn’

on which applying the homotopy functor z,(—), we obtain the exact couple

ﬂ*(X"+1) —EL) 7Z*(X")
(3.3) e e
. (EX,).

The exact couple gives the spectral sequence by setting E*(X) = n,(EX,) in a usual
fashion. That is to say, take

E9*(X) = m, (EX,) = E,(X,), and

(34) : ; S, % s+1,%
di =i 14 sy s ETF(X) — E3T1*(X),

and inductively define

E}¥ = Ker {d,: Ep* — EZ*"*}/Im{d,: Ei™"* — ES*}  forr > 1, and
dr = is+r*ks_+1r—1* ;+11 js* forr > 1.

(3.5)

We call this spectral sequence E-Adams spectral sequence. This spectral sequence is
natural with respect to a map f: X » Y of spectra, since it induces a map of exact
couples obtained from X and Y. The induced maps f,: X, — Y, and Ef,: EX, — EY,
are defined as follows:

fi=idAf: X, =E""AX ——Y,=E*""AY and

h

Ef,=idnf, . EX,=EAX,— EAY,=EY,
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Since Ef,,: 7 (EX,)—> n,(EY,) is the same map as Juxt EL(X,) = E,(Y,), we hereafter
will use the notation f,, instead of Ef,,. Consider the filtration --- cF,cF,_,
c - Fy=mn,(X) defined by

F,=1Im {k(n), = koykyykno147 T (X)) — 7,(Xo) = (X))}
Then the spectral sequence is said to converge to m,(X) if
ﬂnFn:() and EZO(X):FS/FS“I-l’

for E3,(X) = dirlim, E}(X). Note that there is a canonical map ¢: 7 (X) - 7, (E" X).
An element & of 7, (X) is said to be detected by an element x of E,-term if ¢(£)(# 0)
represents xe ¥n, (E"X) = @, F,/Fy+1 = E_(X) corresponding to x in the E,-term
E,(X).

By the assumption on E, which says that E,(E) is E,-flat, the E,-term is shown
(¢f. [1]) to be the Ext-group:

E%t(X) = EXt%:(E) (E*, E*(X))

Furthermore Bousfield showed [2] that it converges to n, (E" X). Here E* X is the
E-nilpotent completion of X defined as follows:

Consider the composition k(n) = kok, -+ k,—;: X, > X, = X and write its cofiber
by X”". Then 3 x 3 lemma gives the cofiber sequence:

Xn+1 Xn 2—n+1 EXn an+1,

which gives another spectral sequence in the same way as stated above. Here by
3 x 3 lemma, we mean that in the commutative diagram (2.1), if 5 rows and columns
out of 6 are cofiber sequences, then so is the other. Tt turns out that this spectral
sequence is the same as the one given above. Now define the E-nilpotent completion
by

E~ X = holim_X",

and we sec that the spectral sequence converges to the homotopy groups n(E"X)
[2]. Furthermore assume that the core of E, = 7, (E) is the ring Z[J '] for a set
of prime numbers J, or the cyclic ring Z/n, and denote LpX the Bousfield
E-localization, where the core of a ring is the subring {reR[r®1=1®reR X zR}.
Then if both of E and X are connective spectra, then the E-Adams spectral sequence
converges to the homotopy 7, (LyX) of the localization LyX. Besides, LpX is also
connective if so is X, by [2, This 6.5, 6.6 and Prop. 2.4]. Since LyLgX = LpX, the
spectral sequence for 7, (LX) converges to m,(LgX). So the hypothesis (1.6) is not
void.
We now consider a cofiber sequence

x-Syt z 1 yx

Then it induces the maps of E-Adams towers (see (3.1))
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X" Sn Y;l gn Zn hn ZX"

for each n > 0, which induces the natural maps of spectral sequences. In fact, we
have exact sequences

(3.6) (X)) L5 o (Y) 2% m (Z,) 2 7, (X,
and
(3.7) E, (X,) 7 E (Y) 25 E(Z,) 2 E (X,)

of E,-terms of the spectral sequence. The sequence (3.6) gives rise to the natural
map between the filtrations of the spectral sequence. Furthermore if we assume that

E.(E) is flat over E,
and
E.(h)=0,

then we have induced long exact sequence

of E,-terms, since the exact sequence (3.7) is split and the resulting short exact
sequence induces the long exact sequence of Ext groups which is the E,-terms.

§4. Proof of theorem

In this section we fix a cofiber sequence
x-Loy 2tz vy,
and a ring spectrum E such that
E (E) is flat over E,,
4.1 E,,_i(W)=0for W=S8° E, X, Y, and Z, and
E*"W=Wfor W=X, Y, and Z.

Here E,(W) stands for ¢ dimensional E,-homology group of W, not for E,-term of
the spectral sequence computing 7, (W). The E,-terms would involve superscripts
and we can tell the difference. For the ring spectrum E, we have the E-Adams
spectral sequence

EZ (W) = Extylp (Ey, EL(W)) ==, (E" W),

for a spectrum W. Note that the second condition on E in (4.1) gives not only
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but also on the spectral sequence,
ES* Y(W)=0 for W=X,Y, and Z,

which further gives a relation on the differentials of the spectral sequence:
d,, =0eE% (W) for W= X, Y, and Z.

Furthermore we assume that the spectrum Y satisfies the following conditions on the
spectral sequence:

d, =0 for r > 3.

Let n be an element of 7, (Y) detected by an element f, (x)e E5(Y) for xe E5(X)
with

dyer1(x) = xo # 0.
Then there exists an element 7en,(Y;) such that

(4.2) i () = f4(x).

Hereafter we abuse names for elements of E,-term and their representatives in the
E,-term. The equation d,,, (x) = x, is interpreted to give elements x;’s of 7 (X,.;)
for 1 <i<2t+ 1 such that

(4.3) js*(x) = X1 ks+z~1*(x1) =Xy and igyo4 1*(x2t+ 1) = Xg-

By the naturality of the differential of the spectral sequence, we see that f,(xo)
= f(da s 1 (X)) = days 1 (f1,(x)) = O since f,(x) is a permanent cycle. Therefore S (%0)
is zero in the E,-term or is hit by the differential d; by the hypothesis on Y that
d, =0 for r =2 and r > 3.

First we study the case that f, (xo) = d3(yo) # 0 in E3***(Y) = ES***(Y). In
this case, we see that

Serarr1a(2e41) #0 in 7, (Yio41)s

SINCE  Tgyorr 1 fst 20t 15(X2001) = Sowaeh 10 bs 4204 14 (X201 1) = fy(xo) #0. We also see
that f,11,(%1) = for 15 Jox () = Jos f2 (%) = Jiy i () = O, and so the hypothesis on Y that
E}{(Y)= EX(Y) indicates that

(4.4) js+2t—2*(y0) :f:s‘+2t-1*(x2t—1)'

This is shown as follows: if fiy;,(x) =0 and [, 1,(x;)#0 for an integer
i <2t—2, then there exists a non-zero element ue ESTH(Y) such that jo, ;)
= fi+i+15(Xi1 1) by the exactness since K.y, crin s X ) = Sor ks i (X 1) = Sowix (X))
=0. Besides, d,(u) is represented bY igyir3.(03) for vyem (Yoiiy3) such that
Kot it 1aKssiv2s(03) = Jori, (), and so we can take vy = fi4i434(Xie3). Then,
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d3(u) = i1 113, (03)
= is+i+3*(fs+i+3*(xi+3))
= dgriraaKorivaefirivan(Xiva))
=0

since igy;434ksrivae =0, where the existence of x;,, follows from the hypothesis
i <2t—2. The hypothesis that Ef(Y)= EX(Y) then implies that d,(u) = 0, which
means that u is a permanent cycle and so we have j, (1) = f;, ;1 1,(x;+ 1) = 0. This
contradicts to fiyiy1,.(x;4 1) # 0.

We also see that fi,,—1,(xz-,) # 0 since if it does not hold, then f;,,, 4, (xo)
should be hit by d;, which is a contradiction to f,(x,) # 0 in the E,-term. Thus we
have

Ss+20-24(x2-5) =0 and Jsrai—14(x2~1) # 0.

Put & =jii0-2400) — fsr2i—14X2-1). Then we see that k., ,,(£) =0, and
so there exists an element y,eE$"*72(Y) such that j,,,,(y,) =¢ Since
d3(yo) = fi(x0), we have an element { such that ko 5,1, Koy 004 (0) = joi 20— 24 (Vo) and
isy 204 15(0) = fi(x0), and put an element &3 = foy 504 1424 ) — & Then igyp11,(E5)
= f.(x0) — f.(x0) = 0, which shows d;(y;) =0 and so y, is a permanent cycle by the
hypothesis Ef(Y)= E¥(Y) in the same way as that shown for u above. Hence
Js+2i-24(y1) = ¢ =0, and we have (4.4).

Consider now the commutative diagram

— X 'Ez, - EX, - Ey, - EZ, —

m m

lf l, l’ l,

-1 o + 1 St Gm+ 1
(45) 2 Zm+1 Xm+1 Ym+1 Zm+1
lk : lkm lkm lkm
7 fm X Sm b Ym gm b Zm

of Adams towers, in which

m=s+2t— 2.

We then apply Lemma 2.3 to this diagram and elements in (4.4), and obtain an
element {en, (Z,,-,) such that
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(4.6) hyioi—24(0) = kg 24(X5—1) and  goyp -2, (Vo) = — fgt 2240

Let k* = ks+l>[< ks+2tA3*: T[*(Zs+2t—2) _’”*(Zs+ 1) and {; = k*(C). Then hs+1*(Cl)
=Ryt 14Ky Q) = kyhgi a0 24 (0) = kykos a4 (X2 1) = x;.  We again apply Lemma 2.3
to the diagram

lks lks lk.\- lks
— iz, A xSy B oz
l 1 l l
— X'Ez, A Ex, Iy EY % Bz,
4.7) ljs ljs l] 11

-1 st 1 Js+ Gs+ 1
— 2Tz T Xy T Y T Z, —

lks 1k lks lks

- Z. Syoxx, Loy, B oxz

S N

and the relation
i (1) = £ (%)
of (4.2). Then we have an element ('en,(Z,) such that
(4.8) Joe(x) = hoi () and g, () = K, (0).

Here note that j,(x) = x, by (4.3). We can take (' to be ¢, in (4.6). In fact, if we
put v ={"—{;, then we compute h,, ,(v) = x; — x; = 0 by (4.8) and (4.6). We then
have an element pen,(Y,,;) such that g, . (p) =v. Put 4 =7 — k. (p), and we
see that

iou () = £, (0),
which enables us to use # instead of 7. The element 7 also satisfies
s () = sy () — ks Gsr 1,(0)
= ke (0') — kg (v)
= ko ({') = k(' = L))
= kg (1)

Thus we have shown the first statement in Theorem.

Next suppose that f (x,) is zero in the E,-term. In this case the argument used
in the proof is almost the same as that of the previous case. Then there exists an
element we E{"*(Y) = T (EY, 1) such that di(W) = iy o014 54205 (W) = fyr 20+ 14(X0)
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which is not null since Ay, 5, ,, = 0 and x, # 0. If fir(x)=0and f,,;, () #0
for I<2t—1, then there is an element u such that Jsr1eW) = forro 104 1)-

Furthermore, ko, - Rt 20s (for 20 16(X200 1) = ot 26 W) = fosra 1 (%14 ) implies ds(u)
=0 and hence u is a permanent cycle and f,,,,,(x,,) =0, which is a

contradiction. Thus f,,,,(x;) =0 and f,,,41(Xs.,) # 0, which shows

js+21*(W) = for o+ 16204 1)

Now apply Lemma 2.3 to this equation and we have an clement { such that

gs+21*(W) = lg124(0) and hs+2t*(€) = ks+2t*(x21+1)'

Moreover in the E,-term, the connected homomorphism §: E2(Z) — E3*1(X) is
shown to send g, ,,,(W) to x, by the definition of §.
Denote the composition ky, = koy -+ key g q,: Ty (Zgi2) = 7y (Zs, ) and put

(4.9) {1 = k(D)

Then hyy1,(C1) = Ry 14k () = kyhs s 205 (0) = ooy 20 (X2 1) = x;. We again apply
Lemma 2.3 to the relation iy () = f,(x) of (4.2). Then similarly to (4.8) we have
an element {'en,(Z) such that x, = j, (x) = hy, ,({’) and Gs ) = kg (). We can
take (' to be {, in (4.9) also in this case. Hence g.(n) is detected by the element
ze E3'(Z) represented by Gs+ 21 (W) Which satisfies 6(z) = x,.
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