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Note on the Bousfield Localization
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§1. Introduction

For a generalized homology theory E,, Bousfield [2] defines the localization LgX.
of a spectrum X with respect to E,, and discuss about convergence of a generalized
Adams spectral sequence based on E,. Consider the Johnson-Wilson spectrum E(n)
([3]) for each positive integer n and a prime p, whose coefficient ring is E(n),
= Z[vy,-+,v,, v, '] This spectrum induces a generalized homology theory
E(n),. Then there exists the generalized Adams spectral sequence converging to a
homotopy group 7, (Lg,X) of E(n)-localization of a spectrum X with E,-term E3*
= BxtHm.em(E(M)y, E(n),(X)) which we denote E(n)3'(X). On the other hand, we
also have the Adams-Novikov spectral sequence converging to a homotopy group
n,(X) of a p-local connected spectrum X with E,-term E5' = Extyp gp(BP,, BP,(X))
which we denote BP$'(X).

Let X be a p-local connected spectrum and #y: X — Ly, X be the localization
map, that is, the homology theory E(n),(—) induces an isomorphism
E(n),(nx): E(n),(X)— E(n),(Lg,yX). Then this gives rise to a map ny,:BP5(X)
— E(m)3'(X). We also have a map @,: BP3(X)— E(n)5'(X) induced by the Thom
map &: BP — E(n). Here we have ‘

THEOREM. The Thom map @: BP — E(n) induces the localization map ny: X
— Ly, X via the generalized Adams spectral sequences.

This theorem means that the maps between the E,-terms given above arc the
same. It seems that it is a forklore but there does not seem to appear anywhere.

§2. Bousfield localization

Throughout this paper we work on the homotopy category of spectra.

We begin with the definition of the Bousfield localization ([2], see also [4]). Let
E,(—) denote a generalized homology theory. We call X E_-local if [C, X],, = 0 for
any C with E, (C)=0. This definition implies immediately

COROLLARY 2.1. Let L be E.-local spectrum. Then each map f: X — Y with
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E (f) isomorphism induces an isomorphism

Sy, L1, = [X, L],

Proor. Consider the cofibering X L, Y C. Then the assumption on f implies
E,.(C) = 0, which shows [C, L], =0 since Lis E,-local. Now the corollary follows
from the exact sequence induced from the cofibering above. g.e.d.

COROLLARY 2.2. Suppose that both of spectra X and Y are E,-local. If a map
/X > Y induces an isomorphism E,(f), then f is a homotopy equivalence.

ProoF. The corollary above shows an isomorphism f*: [Y, X ], 2 [X, X ], and
define a map g: Y= X by g =(f*)"*(lx). Then gf=f*(g) = 1x.

Similarly the map ¢ gives rise to a map f* defined by f" =g~ '(1y) using the
isomorphism ¢~ *: [X, Y], = [Y, Y], shown by Corollary 2.1. Therefore we have f'g
= 1y.

Note that f=1,f=f"gf=f"14 = f', and we see that fis a homotopy equivalence.

g.e.d.

We call a E-local spectrum LgX the localization of a spectrum X with respect to
E,(—) if there exists a map #y: X — Ly X, which is called the localization map, such
that:

(i) the induced map E, () is an isomorphism, and

(ii) if there is a map f: X — Y with Y E-local such that E,(f) is an isomorphism,
then there exists uniquely a map g: Y— Ly X such that gf = #,.

Tueorem 2.3 ([2]). Every homology theory E. (=) has its localization Ly X of a
spectrum X . Furthermore Ly is functorial.

By the definition of the localization map #y, we give E,(LyX) the same structure
as E,(X) by #ny. Therefore we assume that E_(ny) is the identity 1:E,(X)
= E,(LyX). The localization has the following elementary properties:

Proposition 2.4. For a spactrum X, we have

(i) LgX is uniquely defined.

(il) LpLp=Lg.

(iii) if there is a map f: X — Y with Y E-local such that E,(f) is an isomorphism,
then there exists a map h: Ly X — Y such that hny = f.

PROOF. (i) Suppose that there exists another E,-localization Ly X of a spectrum
X. Then we have an E,-equivalence #y: X - Ly X. The second condition of the
definition indicates the existence of the map g: Ly — Ly such that gy = nx. Since
both ny and 5y are E ~equivalences, g is also an E-equivalence. Therefore the map g
turns out to be a homotopy equivalent by Corollary 2.2.

(ii) Both L;X and LyLyX are E,-local and the map #y, x: Ly X — LyLyX is an
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E,-equivalence. This case again follows from Corollary 2.2.
(iii) Consider the fiber F;X of the map #yx: X — Ly X, and we have the long exact

sequence -~ — [LgX, Y], —5 [X, Y], - [FgX, Y], — . Note that E (FzX)=0
since n% is E,-equivalent. Thus [F X, Y], =0 by the definition of the E,-local
spectrum, which shows that #% is an epimorphism. Hence we obtain the desired map
h. g.ed.

PROPOSITION 2.5.  Suppose that X — Y— Z is a cofiber sequence. If any two of X,
Y and Z are E-local, so is the other.

Proor. Let W be any E,-acyclic spectrum and suppose that X and Y are E,-
local. Then [W, X],=0=[W, Y],. Furthermore the cofibering induces the exact
sequence [W, Y], - [W, Z1, - [W, X1,. Therefore we see that [W, Z], = 0, which
shows that Z is E-local g.ed.

PROPOSITION 2.6. If W— X — Y is a cofiber sequence, then so is LgW— LgX
_)LEY

Proor. Let f denote the map W— X and C denote the cofiber of Lgf: LW
— L;X. Then the proposition 2.5 shows that C is E,-local. Consider the diagram

Lw L x —— C

lh
Lef Leg

LW =0 L x 5 Ly Y,

in which g stands for the map X — Y. We also see that LygL;f = 0 since gf =0 and
L, is functorial. Hence we have a map h in the diagram above. Applying E.(—) to
the diagram, we obtain a commutative diagram with two exact rows, which gives us an
isomorphism E,(h) by the five lemma, since E,(L;?) = E,(?), where “?” may be
substituted by a spectrum or a map. Therefore Corollary 2.2 implies that h is a
homotopy equivalence. g.e.d.

§3. Generalized Adams spectral sequence

Next recall [1] the generalized Adams spectral sequence. For a ring spectrum E,
we have an E-Adams resolution X « X, « X, < -~ of a spectrum X, in which
Xpayq is a fiber of the induced map X, - E A X, from the unit map i: S— E of
E. Then the E-Adams spectral sequence {E}'(X)} for a spectrum X is the one
associated with the exact couple 7, (Xg 1 1) = 714(Xg,) = E (Xg,) induced from the E-
Adams resolution. Bousfield [2] gives a different resolution from this E-Adams
one. Let X% be the cofiber of the map X,,— X and consider the associated
resolution pt« Xh«< X2« ... Then we construct the homotopy inverse limit
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lim_ X% of this resolution. We call this E-nilpotent completion of X and denote it by
E~X. Then we have

TueoreMm 3.1 ([2]). Let E and X be connective spectra. Suppose that for each s
and t, there exists a finite v such that EY*(X)=0. Then the E-Adams spectral sequence
{E3'(X)} converges to m,_(E" X).

Let BP be the Brown-Peterson spectrum at a prime p. Then it is known [2] not
only that BP satisfies the hypothesis of Theorem 3.1 but also that BP" X = Lg, X
= X, for a connective spectrum X, and so we have

TueoreM 3.2 ([1] and [2]). For each prime p we have the Adams-Novikov spectral
sequence converging to a homotopy group n.(X) of a p-local connective spectrum X with
E,-term Ext§ikgp/(BP,, BP (X))

Let E(n) for n > 0 and a prime p denote the ring spectrum introduced by Johnson
and Wilson whose coefficient ring is Z,[v;, -, v,, v, Y (cf. [4, Cor. 2.16]). We also
use the notation L, for the Bousfield localization Ly, following Ravenel. For small n,
E(n) satisfies the condition of Bousfield’s Convergence Theorem and we have

TaeoreM 3.3 ([1], [2], and [4]). Let p be a prime number and n a positive integer
with n <p— 1. Then we have E(n)" X = L, X and the En)-Adams spectral sequence
converging to m,(L,X) with E,-term ExtES pon(EM),, E(), (X))

§4. Relation between the maps

Let E and F be ring spectra and f: E —» F a map of ring spectra. Then this map f
induces the map of resolutions f*: E*X —» F*X and so we have an induced map
f* E~X—-F*X for a spectrum X. Here E*X and F*X denote the resolutions
given in the previous section. That is, E"X denotes X7%.

Let y: X - L, X be the E(n)-localization map of a spectrum X and @: BP —E(n)
the Thom map. Suppose that X is p-local and connective. Then as noted in the
previous section, we have

BP*X =X and Em*X =L,X.

Therefore we see that the induced map @*: BP*"X > E(n)* X is ®": X - L, X. Now
the theorem in the introduction means the following

THEOREM 4.1. Let n be positive integer and X a p-local connective spectrum. The
En)-localization map ny: X — L, X is the same as the induced map ®": X - L X.

ProOF. Suppose that the map &”: X — L, X induces an isomorphism E{n),(®"):
E(n),(X)— E(n),(L,X). Then by definition, we have a map ¢g: L,X — L,X such that
g®" =ny. Since E(n),(nx) and E(n),(®") are both isomorphism, we have an
isomorphism E(n),(9). Now apply Corollary 22 to obtain the the homotopy
equivalence g.
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Therefore it is sufficient to show that the map @" induces an isomorphism
E(n),(®@"). The map & induces the map of E,-terms

D, BxtEplpp(BP,, BP (E(n) A X)) — ExtE5 o (E(M)y, E(n),(Em) A X))
By the change of rings theorem, we have isomorphisms
Ext 5% pp (BP,, BP (E(n) A X)) = E(n),(X), and
Ext S mon (EM)y, E()y(E(n) A X)) = E(n),(X),

since we have isomorphisms BP,(E(n) A X) = BP,(BP) ® gp, E(n),.(X) and E(n), (E(n)
A X) = EM)y(En) @ gw, EM)4(X). The Thom map & induces the canonical ring
map:

BP,(BP) — E(n),(E(n)) = E(n)y Qpp, BPy(BP,) @ gp, E(),,

where BP, acts on E(n), by sending v; to v; for i < n and 0 for the other i. Therefore
observing the change of rings theorem shows that the map @, is an isomorphism.
Since these spectral sequence for E(n) A X collapse, this isomorphism induces the
desired one. g.ed
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