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§1. Introduction

In his paper [2], Mahowald shows the way to construct a ring spectrum from
Thom complexes of a fibration. As an example, there is a ring spectrum X {1)
obtained from the fibration classified by the canonical generator 25?2 - BO. Consider
the Brown-Peterson homology BP,(—) at the prime 2, whose coeflcient is the
polynomial algebra BP,(S) = Z,,[v,, v,,---], and we see that

BP,(X (1)) = BP,/(2)[ ;]

as a subcomodule algebra of BP,BP/(2), where BP,BP = BP,[t, t,,---]. We also
consider the ring spectrum E(2) whose coefficient is a polynomial ring
Z vy, 05, 05']. In this note we study about the E,-term of the Adams-Novikov
spectral sequence for the E(2)-localization L, X (1> of the spectrum X (1> and obtain
the first few lines. Here the E,-term is Extyp gp(BP,, (v; ' BP,/(2))[t,]). In order to
state our theorem we prepare some notation. Let

6 Extyp, gp (BPy, (07 BP,/(2, v7)) [£,]) = EXt}p, 5p (BP,, (v; * BP, /(D)) [£,])
denote the boundary homomorphism associated to the exact sequence
0 — (v3 ' BP,/(2))[t:1 — (v1 'v; *BP,/(2)) [t,] — (v; ' BP,/(2, v7)) [£,] — 0.
We also use the integers A, and ¢, defined by
Ao=1, Ay =44, _,+2, and A,,, =24,,;and
co=—1, and ¢,y =4dc, + 4,
and an algebra K(2), = Z/2[v,, v; *].

THEOREM.  The E,-term of the Adams-Novikov spectral sequence for L,X {1> at the
Jiltration degree less than 3 is given as follows:

0) EY* =Z/2[v,, v,]
1) EY* is a direct sum of Z/2[v{, v,]{hyo} and M.
2) E3* is a direct sum of M{hy,}, a free K(2),-module generated by
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St hao/v; and 6% p/vy
Jor t >0, and cyclic K(2),[v,]-modules generated by
O3 T hyo vy, SV3 hyo/vE (E#0) and  Svyhyy /v,
Jor >0 and t¢G = 2% s + ¢, + 1|k>0}.

Here h;j and p are the elements represented by cycles ¥ and vit, + t2 of the cobar
complex, and M denotes a direct sum of cyclic K(2),[v,]-modules generated by

Oxy /v

for n=>0, an odd integer t > 0, and some element x, such that x, = v3" mod (2, v,)(see

§3).

This proved by using v, Bockstein spectral sequence. First we give the structure
of the E,-term of the Adams-Novikov spectral sequence for the E(2)-localization
L,N(1, 1) of the cofiber N(1, 1) of the map v,:2*X<{1) —» X (1), which is a tensor
product of an exterior and a polynomial algebras (see Prop.2.5). We note that we
study in [3] about the homotopy group of L, N(1, 1) and see that the E -term of the
spectral sequence is a tensor product of an exterior and a stunted polynomial. The
E,-terms E5* for any s are non-trivial in our case, though most of them are trivial at
an odd prime p. In a same way as the proof of our theorem it seems to be computed
the E,-term for higher filtration, but here we only give some differentials for them
(Lemma 3.7).

Most part of this is done during the author’s visiting at Northwestern
University. The author would like to express his gratitude to Professor Mark
Mahowald for his suggestions and hearty hospitality.

§2. Change of rings

In this section we give some theorems for the comodule (v;'BP,/(2, vy))[t;]
similarly to those of [6] and [7].

Let BP denote the Brown-Peterson spectrum at the prime 2 and K(k) the Morava
K-spectrum whose coefficient rings are Z,,[vy, v,---] and Z/(2)[vy, v, 17, respectively,
on Hazewinkel’s generators v’s with degree 2*'—2. Then I'=BP,BP =
BP,[t,, t,, -] for the generators t/s with degree 2'"' — 2, and we define 2'(k) =
K(k), K (k) to be K(k)y ® pp, BP, BPQ gp, K(k),. These give rise to Hopf algebroids
(BP,, I') and (K(k),, ~(k)) and the natural map I'— Z(k) of Hopf algebroids. For
a Hopf algebroid (4, L), the Ext-group Extj(4, M) of a comodule M with structure
map  is defined to be a cohomology of the cobar complex Qf M with Q] M =
M® L&, ® 4L (s copies of L) provided by the differential d: Q3 M — ;"' M
given by dm®@x) = ym@x + Y, (—1)fm®@ 4 x —(—1m @ x ® 1 where 4, =1,
® 4 ® 1,_, for the identity map 1,: L — L®". We have the following change of rings
theorem:
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(2.1)[4, Th. 2,107 If M is vy-local and 2M = 0, then
Ext}(BP,, M) = Ext},,(K(1),, K(1), ® pp,M)
under the natural map, and if M is v,-local and 2M =0 = v M, then
Ext}-(BP,, M) = Ext},) (K (2),, K(2)y @ pp, M)
under the natural map.
Then for Hopf algebroid (K(1), (1)), we have
(2.2) [8, Cor. 6.5.6] Exty,(K(1),, K1), [t; 1 = K(1),[v,] ® E(h;).

Consider the Hopf algebroid (K(2),,2)=(K(2),, 2(2)/(ty)) such that the
projection X'(2) —» 2 is a map of Hopf algebroids. We then have the following

(2.3) [8, Th. 6.5.5]
Ext} ) (K(2),, K(2),[t1]) = K(2),[v3] @ g2y, Ext5(K(2),, K(2)y)-

As in [8,Th. 6.3.7], the manner developed in [6] and [7] to compute
Exty,,(K(2),, K(2),) is applied to obtain

(2.4) There is a spectral sequence
E(hy0s hz15 haos Bats haos hat) @ P(bso, bay) = Ext5(K(2),, K(2)y)
with differential
dyhgj=h3;+ by sy,

where h; and b,; for je Z|2 are represented by t¥ and 137 & 1}, respectively, and h};
= by, in the cobar complex 2%, K(2),. Here E and P stand for the exterior and the
polynomial algebras over K(2),[v4].

This shows the following
ProPosITION 2.5.
EXtBP*BP(BP*’ (Uz_lBP*/(z, o)) [t ]) = K(Z)*[v3, hyol1 @ Alhyy, b, hays P)-

Here hy;, hy; and p is represented by t¥', t3' and vit, + t2, respectively.

§3. The Bockstein spectral sequence

In this section we compute the Bockstein spectral sequence to give the chromatic
E -terms for computing our target Extgp gp(BP,, (v; ' BP,/(2))[¢,]), and consider the
following I" = BP, BP-comodules:
A=0v;'BP/(2), B=v;'4, C=B/A, and D =uv;'BP,/(2,v,),
and the notation
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H*'M = Ext(BP,, M).

These notations give rise to short exact sequences:

0—4-5B—C—0, and

0—>D—C5HC— 0,
which induces the long exact sequences:

0—H°A —>H°B-—HCSH'A— ...

3.1)
—H*4 —HB > H*C > H*"14 — ...
and
0— H°D — HC — H°C 5 H'D — ...
(3.2)

—H*A —H*C — H*C 2 H**1p — ...

We call the sequences (3.1) and (3.2) the chromatic and the Bockstein exact
sequences, respectively.
Now define integers:

as =1, aper =4a, +2;
by =0, bryq1 = 4b, + 3;
co=—1, ¢y =4c, +4;
and element of v; ' BP,:
Xg = U3
x; = v% — v?v; to,
Xy = x1 — v3v8vy — vty vix; — V805 3vs + vS0y S vy02
and
Xga1 = X — 070y L Ap 200,

2 4ay  4by Ao f,,—6,,10 —
Xopt2 = X341 — V1707 03%(v; °03° X,

+ v o§03 + vivy dvtus + viv; Svivd

+ 07 P03 x; + viviviv, + vy %05x,)

for k> 1, where Xx; = x? — v3v§vy; —viv3x,. The O-th differential d of the cobar
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complex is ng — 1, where #, is the inclusion BP, — BP, BP, since comodules which we
treat here have the structure maps induced from the right unit map nz. Then we have

Lemma 3.3. In (v;'BP,/(2))[t,, t5,-+- ],

dx, = vt — vit,

dx, = vivit, + viv; 113 mod (v}

dxqy, = viE§oi g + vfod T %, mod (vp )
%+2b"l)§+zckt2

428
dXpp+1 = V10

2 + —
+ vlakvg‘ 2bkv§ckt§. + U}+2ak1)2 1+2bkv§+2ckt§ mod (U%+2ak)

Proor. This follows from a direct calculation using

dv, =0
dUZ B O
(34) dvy = v 13 — v,

dvg = 055 — 05ty + vyt — vivst; mod (v})

dvs = vyts — vit, + v,t5 — 051, mod (v)),

which are verified easily by Hazewinkel’s and Quillen’s formulae (¢f. [8]): v, = pm,
— 3 ma2, and ngm, =Y. -,mit? . The first one in the lemma is the immediate
consequence of the third equality in (3.4). Noting that dx =y mod (a) implies
dx? = y? mod (a?) enables us to go forward by inductive steps. The first result shows
dv? = v*t4 mod (v}) and a direct calculation brings dv?v; ‘v, = vivy H(v,t5 — V5L,
+ 0,12 — v2v,t3) mod (v}), the sum of which is the second one of the lemma.

This shows dx? = viv§t2 + vSv; 2t5 + v8v; %0315 mod (v1°). Then we get

dx, =80y 2th + 080313 + v8v; 20315 mod (v))

by the results dvivv; = v3v§(v, 13 — vit,) and dvivdx, = viv3(V3v3t, + viv; 't3) mod
(v]) obtained by (3.4). The third one for k =1 now follows from more calculation
dvto; ®vix, = vio; Ovi(0Iv3t,),  dvSuyvs = vSv; 3(vats — vdt, + vyt — v363) and
dv$vs 3v,03 = 0S5 v3(v3es — v§13) all modulo (v]).

Suppose the congruenece for 2k, which brings dx3, = v3*v3™ v} %15 +
viapdt2beplaq  mod  (v3t2%). We also  compute  doi*ui o3ty =
pRapdb= 12+ 20y 14— 03¢, + v,t3) mod (v *2*) to obtain the congruence for 2k + 1.

The inductive hypothesis implies dx3, ., = v}*viP o3 WSvit2 + v§13 + vivy 2v§e3)
mod (v} 74%). Note here that ¢, is a multiple of 4 and so 4¢, is of 2*, which indicates
that dvi* =0 mod (v}°). We now certify the last one by computing mod (v3)
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dv; 030 %, =07 0300Svs 2t% + v8vits + odvy 2vied)
doy 0303 = o5 ' o5v3(v,13)
dv}vy 3vivs = vivy 3vi(vsts — vit, + 0,15 — vity)
dvtoy *v3v; = viv; *0j(W3t3 — v3td)
dvi v xy = vy 03 (01718 (0303t, + v313))
dvivjviv, = vivjvi(vyt3 — v3t,)
dv; ®v3x, = vy *v3(vivit,).
g.e.d.

In order to study about the § in the sequence (3.2), we give another representative
of hy:

by, = 13 + 010303 + vivst, + 0383 + vts,

which equals to vy !(dv, — v,t5 — v3t,). Since v, acts monomorphically on the
complex and v, and ¢, are primitives, we see

LEmMMa 3.5. dh;; =0 in (BP /() [t,, t5,+- ]

PROPOSITION 3.6. The clements v,, hy; for i€ Z/2, and hyy are all cycles in the
cobar complex Q% C. In the sequence (3.2) 5-images of the elements vy, h,; and hy, are
all trivial.

In the next lemma, we do not write the multiples of v,’s, because we can tell them
by virtue of degrees of eclements and furthermore they made the formula more
complicated though they have no influenece on the module structure which we want to
determine.

LemMma 3.7. Lei & be the map in the sequence (3.2), then for any elements
2 K(2),[hyo] & A(hay, hyy) and integers t = 2s + 1 > 0.

v3h,, 0 (n=0)

V3 hyoo (n=1)

P2t st 22
N /ety =" o
+v§n+ls+2€kh31“ n=2k+1,k=1)

+ 1
v%" s+ck+1h21a

+ U§n+ls+ckh30(x (n = 2k, k > 1)
vFhy hagot + Vi3 (n=0)

2) 5(X;h300(/171) = {Ugnthz; ‘;0 e (}’l > O)
3 20
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D st = e
03" hy hyo + 05 TP hyohy 0 (n>0)
Here A, is an integer a, if n =2k and 2a, if n=2k + 1.
PrOOF. By virture of Proposition 3.6, we see that
S(xo) = 6(x)ax,

and so it is enough to show that the lemma for « = 1. Then 1) follows immediately
from the definition of & together with Lemma 3.3. Using Quillen’s formula
SitjeamAtY =Y pumemity @17 and  Hazewinkel's  formula v, = pm,
— S Imt2l,, we compute

Atz =t @1+ 1 Q@13 + v, 1,
Aty =1, @1+, @5+ 1@ty + vt3 ®ts + 025 Q 5
Ats =ts @1+, Q3+ L, QO+ 1@ty + 0,33 + 031313
The first formula gives the one
d(xhyo/v1) = 8(x/v )30 + xh3,
and by the others together with (3.4) we compufe
0(p/vy) = v3hy hay + V303hy0 by
Thus we obtain 2) and 3) from Lemma 3.3. g.e.d.

It seems that this enables us to compute all dimension of the groups H*C, but the
complexity of integers appears in the exponent of v; prevents us to write down the
explicit generators of H*C. Once we write down them, we conjecture that we need
only a few more differentials to compute all groups H kC. Here we give the first two
groups as follows, though we can write down H kC for more small value k, inductively,
by routine computation.

PrROPOSITION 3.8. 1) HOC is a tensor product of K(2), and a direct sum of
(Z/2[vy, o7 D/(Z/2[v,]) and cyclic Z]2[v,]-modules generated by

x,/v1"

for n>0 and t =2s+ 1 with s > 0.
2) HC is a tensor product of K(2), and a direct sum of H°C & Z/2{hs},
Z/2[v3]{hs0/vy, p/v1}, and cyclic Z]2[v,]-modules generated by

03  hyo/vy, hao/v1, v3'hyo/vi (¢ # 0) and vhhy, /vy
for s >0 and t¢G = {2 s + ¢, + 1]k = 0}.

Recall the exact sequence (3.1)
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£

0 —>H°A—H°B-——H°C S H'A—H'B—H'C
(3.9)
2 H?4A —H?B —> -

In the sequence, the structure of H*B and H*C are given in (2.2) and Proposition 3.8.

Proor oF THEOREM. Since H*B is isomorphic to K(1),[v,] & E(h,o) by (2.1)
and (2.2), H°B = K(1),[v,], H'B = K(1),.[v,]{hy0} and H*B = 0 for k > 1. Notice
that vh,o/v? = hy, /v, seen by the second congruence in Lemma 3.3, Then Theorem
follows immediately from the exact sequence (3.9). g.e.d.
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