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Introduction

Let p denote a fixed prime number. The Brown-Peterson ring spectrum BP at the
prime p gives rise to the Hopf algebroid

(4, I') = (BP,, BP,BP),

and the BP,-homology theory with the coefficient ring BP,=n,BP
= Z vy, vy, -7 (cf. [8], see also §2). The BP,-homology BP,X of a spectrum X
turns into a I'-comodule. We can consider homological algebra over the Hopf
algebroid. We shall denote

H**M = Extt*(4, M),

the derived functor of Hom {4, ), for a I'-comodule M (¢f. §2). One of the typical
examples of right I'-comodules is A/I, for each n >0 whose structure map is the
induced one from the right unit 5, of the Hopf algebroid. Here I, denotes the
invariant prime ideal (p, vy, -, v,_;). The Toda-Smith spectrum V(n) for n > — 1 is
defined to be the one satisfying

BP* V(n) = A/In+1>

which is known to exist if n <3 and p>2n+ 1 (V(— 1) =S, the sphere spectrum)
([13], [14]). We have the Adams-Novikov spectral sequence converging to the
homotopy groups =, V(n) with

E¥* = H**BP,V(n).

We get a family {Ni, M.} of comodules out of the comodule 4/I,, whose members are

n

defined inductively by
NY = A/L,, M} = v, 4N, and N,"'= M,/N,.

In their paper [2], Miller, Ravenel, and Wilson constructed the chromatic spectral
sequence from the family {Ni, M.}, which converges to the E,-term of the above
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spectral sequence and have the trigraded E,-term
EY* = H" M4,
and they determined
H'M;
in the following cases:
a) t>0,5s=1, and n=0 at any prime p,
by t=0,s=1, and n=>0 at any prime p, and
¢) t=0,s=2 and n=0 at an odd prime p,
by using the results in the cases:
d t>0,s=0, and n=0 or 1 at any prime p, and
e) t=0o0r 1, s=0 and n>=0 at any prime p

determined by Ravenel [7](cf. [8]). For other modules, the author determined the
E,-term in the case:

¢y t=0,s=2, and n=0 at the prime 2
in [9], and in the case:
f) t=0,s=1,and n=1 at a prime p>3
in [10] by using the result
fY t=1,s=1, and n=1 at a prime p> 3

given in [12].

In this paper we determine the E,-term H'M} at a prime > 3 by using the short
exact sequence 0 — M3 — M} % M1 — 0 and the determined modules H'M} for i
=0, 1 and 2. Since this is the E,-term, we get some information about its E,-term, in
other words, the E,-term of the Adams-Novikov spectral sequence converging to
7, V(1). As an application, we apply the first results on the chromatic E;-term to give
some families of non-trivial elements of the homotopy groups w, V(1) of the Toda-
Smith spectrum V(1) relating to the product of a f-element and a y-element of =,S.

§1. Statement of results

Before stating our result, we begin with preparing some notations. We denote the
polynomial algebras

(1.1) k(n)y = Z/plv,] and K(n), = Z/p[v, v, '],

in which the generator v, originates from those of the polynomial 4 = BP,
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= Zplvy, 03, -+ ], and k(2),-modules by

L,(x) the cyclic k(2),-module generated by the element

x with vhx = 0.
1.2) L{x;} the k(2),-module isomorphic to
K(2),/K(2),
with Z/[p-basis {x;} such that vyx; = x;_; and x, = 0.
We have integers

(1.3) v(k) = max{n: p"|k} and e(k)=2"1(1— (= 1Y
Recall [11, (3.3.2)] the integers

aiy =p'+ (p— D'~ = 1)/(p? —1) for odd i>1, and

= pa(i — 1) for even i = 2;

14 O =p P> +p+1) for i >2;

c(i)=p' —2(p* —p—1); and

e() = (p' — D/(p — 1);

for each non-negative integer i. We further prepare integers:

AMk) =2 Jor k with p fk(k—1),
= 2p for k=up + 1 with pYu(u—1),
=a(l)+1 for k= up' + e(l) with | even>2, and pfu—1, or

for k=up' + 1 with [ even > 2 and p tu,

=a(l) + 2 for k=up' + e(l) with | odd >3 and pku—1,
=a(l) +p for k=up'+ 1 with [ odd >3 and ptu,
=p+1 for k = up with p fu,

(1.5) = b(l) — 1 for k=up' with =2, 4, and p fu,
=b)—~p+1 for k= up" with | odd >3 and p¥u,
=b()—p for k = up' with | even>6 and p fu;

u(k) = 2 for k with p ¥ k(k + 1),
=2p for k =up with p ¥ u(u + 1),

=2al)—p+1 for k = up' with | even > 2, and p ¥ u(u + 1),



66 SHIMOMURA, K

=2a)—p+2 Sfor k = up' with | odd > 3, and p ¥ u(u + 1),
=p—Da@r +1)  for k= (up'+ p*— U)p" with r >0 and | > 2; and
a(k) = a(l) for k = up' with ptu.
We are now ready to state our main result of this paper.

THEOREM A. Let p be a prime > 5. Then the E,-term H'M} of the chromatic
spectral sequence is the direct sum of k(2),-modules:

@ L{z;}, L{x,;} (¢ =0, 1), and L{Z}};
(b)y L,—,<x(k)> for keZ;

© Lywlek)y for keZ;
(
(

~—

d) L,<w(k)y for keZ;and
o Law(®)> for keZ.
Here degrees of these generators are given by:
|2l = = 2j(p* — 1),
|Xel = 20°(0 — 1) = 20> = 1) for &=0,1,
21 =20p + 1 = )* - 1),
Lx(R)| = 2(kp — D(p> — 1) + 2p*(p — 1) — 20 — H(P* — 1),
| (k)| = 2k(p> — 1) + 2p*CO* D(p — 1) — 2A(k)(p* — 1),
Y (k)| = 2k(p> — 1) + 2p* O (p — 1) — 2u(k)(p* — 1),
L) = 2k(p® — 1) — 2a(k)(p* — 1).

Let S denote the sphere spectrum localized at the prime p, «, en,S (¢ = 2p — 2) be
the Hopf invariant one element (cf. [8]), and consider the y-families {y;: s = 1} and
{(Vispzy: s = 1} in m, V(1) for a prime > 7 given by results of Toda [14] and Oka
[4]. Then Theorem A and a standard argument of spectral sequences imply

~—

ProPOSITION B.  Let p be a prime = 5 and r and s be non-negative integers such that
pAs>0. Then we have

V¥ =0 in m V(1)
if ¥ is odd, or if r is even and either p¥s+ 1 or p?|s + 1.

By a result of Smith [13], we also have the p-elements f§, 8, and 5 of the stable
homotopy =,S for a prime > 5. Using a proposition which appears when we prove
Theorem A brings another information to show the following
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THEOREM C. Let p be a prime =71, and v and s non-negative integers with
pts. Then in n, V(1) we have

Visr1B1 # 0 # Vigpry21 B
if ris even or p¥s+ 1,
Visp1 P2 # 0 # Vispri21 B3
ifr#0,2 or p2¥s+p+ 1, and
Vispri21 B2 # 0

Here the integer r in Y5,y is positive.

§2. Some elements of v; ' BP,

In this section and the next we set the prime p odd. Let BP denote the Brown-
Peterson spectrum BP at a prime p. Then we have the Hopf algebroid

(4, I') = (BP,, BP,BP) = (Z,)[vy, v3,-- 1, BP,[ty, t5,-+- 1)

(lv;] = |t;] = 2p* — 2) with the right and the left units 5y, n,: A — I', the coproduct
4:I'-> T @ I, the counit ¢: I'—> A and the conjugation ¢: I'— I'(cf.[8]). These
structure maps are characterized by: ez =ey, =1, (,Qed=(ER1p4
=1lp(r@ N4 =A4® 194, cng =1, ¢y, =ng and cc = 1. The explicit formulae
for this Hopf algebroid will appear later where they are needed.

A (right) A-module M is said to be a (right) I'-comodule M if there exists a counitary
and coassociative (right) A-linear map y: M > M ® ,I, ie, A-linear map Y with
(1 ® ey = 1, (which denotes the identity of M) and (1, @ AW = Y @ 1 V.

We note here that we have dng = (1 ® 1ng for the Hopf algebroid (4, I
= (BP,, BP,BP) and so A is a I'-comodule with the structure map #y(cf. [8]).

Let M be a I-comodule with the structure map . Then the cobar complex
(Q*M, d,) is a pair of comodules given by

(2.1) QM =ML Q4 Q4
(t copies of I') and differentials d,: Q'M — Q'**M given by:
dm=ym—-—m@L dm@x=dmRx + m® d;x
(2.2) dix=1® x—4dx+x® 1 and
dm@x@y=dmRx)@y —mOX® d,_,y

for meM, xeQ'4 and yeQ'"'4. Here we note that QM =M ® Q4 as a
comodule. The cohomology of the complex (Q*M, d,) is denoted by

2.3) H*M = Ext}(4, M).
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From here on we use the following notation:

A, = v, ' BP,, the I'-comodule with coaction ng; and

(2.4) L= (p, vy, vy—y) and J(k) = (p, vy, v5),
the invariant ideals generated by the every entry.

We recall [11] the definition of the elements u,; of 4, and w,; of Q'4,:
(2.5)[11, (2.8)] Upo =0y and Yy oy vl =0 for r> 1,
which inductively gives
(2.6)[11, (2.8)] Y itjerth Vs ;=0 mod (p).

(27)[11, 29)] For an element xeA,, the element e, (x)eQ'A,/I, is the one which
satisfies

ngx = ¢,(x) mod I,
(2.8)[11, (2.10)] Wao =0, and w,, =Y - e, )TV " (n>2,1r> 1),
where T; is the element of I' which satisfies ([11, p. 78])
S o tmrUE = Y000, T2 mod (p) and
T;=t! mod I
The relation between these elements is:
(2.9)[11, Prop. 2.2] For non-negative integers n and r with n> 2,
NRUn, = Zi+j=run ;tf WE, = Uy (W1 Tg0y | mod I,y + (v5_,).
For n = 2, we define
(2.10) wj = 050w, = v5w, ;e Q' 4,
by using the notations given in (1.4), (2.4) and (2.8), and especially we have
(2.11) wi =t} and w), = v5Z"* — v,ctd — v4t2 mod I,
by (2.8) and (2.5). The d,-image is:

1 /

diw,=—0v8 'w._, @2 mod J(p" ! + p""?) and,

(2.12) , ,
diws = — 05 W, @t — 05 P ®t, + by mod I,
which is obtained from

(2.13)[11, Prop. 2.3]1  For positive integers n and r with n > 2,

! In this proposition of [11] the definition of C,, must be changed to v,_,C,, = dt,_y — 4,t,_; mod 1,4,
and C(n) in (2.12) of [11] must be replaced by C(n) = C(n) + Z/p{v,-,}[ty, t3, 1.
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d Wnr= ZO<L<rwnx® tr i + Cnr mOd Im

where C,, is a certain element in Q*A,, and especially

_ PN i
Cn,n+1:bn—2:_p 120<i<p""‘< ; 11®t117 e

LemMmA 2.14. Let r and s be integers with r = s > 0. Then
w, = vV, e Ay and u, = (— 1) 05" ™97y, mod J(p),
and hence for the element of (2.10),
wo=(— 1) 7505097 Wl mod J(p*TY).
For r =3, we further have
Wy = — viw, + vB (58T — v,t8) mod J(p + 1).
Here J(k) = (p, vy, V) denotes the ideal of Ay =v;'BP,.

Proor. In this proof we use the abbreviation u, =u,, If k=0, then v§Vu,
= 1€ A;. By definition (2.5), we have

u __De(k+1)u _ _Z o ve(: 1)pu/p_‘i,

which belongs to 4; under the inductive hypothesis u;e A, for j < k. This shows the
first statement by induction. We also have a similar equality

u - ve(k+1)u = — l;—(} ek —i— 1)p‘+1u102+k ;
by (2.6). This shows u, = — v 'u,_, mod J(p*~ 1), and so inductively we obtain
(2.15) w, = (— 1) 750 "9y, mod J(p).

Now apply this to the equality in the definition (2.8) of w,,, and we get
w, =352 v Vpeu T, mod 1,
= Yo (= 17 0 Do P mod J(p*Y)
=w, mod J(p* ™Y
as desired. Use the congruence

u, = — vu;, — v8v, mod J(p + 1)

instead of (2.15) to get the case for » = 3. g.e.d.
We also consider the elements {, of Q'A4,/I, relating to u,, by

(2.16)[3, Th. 6.2.1.1] dott, , = (, — (% mod I,

for n > 1, which is one of generators of H*M?C([7], cf. [3]) (see (4.1) for the definition
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of M?). In particular we have
(2172, Prop. 3.18] {, = ugt, — ubcth + uytf = — ugct, + w,eQ'4,/1,, and dou, ,
={, -
In [11], we farther define the elements X; of A5 to satisfy:

ProrosiTion 2.18 ([11, Prop. 3.1]).
1) X;=v8 mod J(p+ 1) = (p, vy, 8" for i>2,
and

Xo =0y and X, = v5 — vhv3 to,

2) Mod J(I + b(i)),

doX; = 0,1} = 00, W, i=0,
=008, — vt T W, i=1,
= X — PP (v e, — W) i=2,

= X5, — BN (wy + 03 'ty — C = W) =3,

VOXPT eE — B0, — {5 + vy ttEy) even i >4,

= 30X — BP0, — (5 + wy) odd i>5,

where b(0) =1 and b(1)=p+ 1, w, = w,, = 077t — ne(v; ? " *03)t2, C = v3*(t,ctt’
+t3) and W, = w, .

§3. Some elements of vy ' BP, BP

In this section the prime p is also odd and we also use the notation given in
(2.4). We shall give the elements which will generate our E -term.

Hereafter we use same notation for both a homology class and its representing
cycle. Consider the elements

hiC3 = tlfi @Ca:

=20t +i"ed",
B.1) o . .

k=28 @t + 't and

1 pi P+l 1 i+l

bi=—zo<k<pi+1;<k>tﬁ®ﬂl’ k:;dlﬂl’ .
of Q%45 (4; = v3 ' BP,). We remark here that (k; here) = — 2(k; in [7]). Let K(3),
denotes the field Z/p[vs, v3']. Then,

(3.2)[7, Th. 24] H?*A,/J(1) is isomorphic to the K(3),-vector space spanned by the
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cycles his, g;, k; and b; for i=0,1 and 2.
We also have the cycles
(3.3) =28 Q' + 12" @ 2" and k; =288 @ et + ¥ @ ¥

which are homologous to g; and k; in Q24,/J(1), respectively, where ¢ denotes the
conjugation and its explicit formulae are:

G [7]) cty = — b, and ety = 2 — 1.
In fact, we have the elements

o N
G; = 288" — 2P0 gpd

(3.5) o o
Kl- - 2tglt11)'+1 _ tll,1+2px+1
such that
(3.6) d,G,=g;,—g;, mod I, and dK; =k, — k; mod I,.

This can be checked by the first two equalities of the following:
(3.7)(cf- [6, Th. 8]) dit; =0, dit, =—1t,®t mod I,, and
dity=—t, @ 8 — 1, ® 8" — v,b, mod I,.
This also gives
(3.8) dyct; =0 and dict, = —t; ®t{ mod I,.
Define elements P,; and P, for r >2 and i =0, 1 of Q'4; and Y, for teZ by
P, o = ctyngvs — Ut 15 + vats — 085Gy,
2P, | = 13Pngvy — 20,8505 + V5130,
(3.9 P, =0v""2"pP,,
P,i=P, + (= ywt", and
Y, = X' 05t8 + v,0Fcth + (£ — Dos X'ty — w5 o' P ik,
Here the elements w; and w} are those given in (2.10). Then we have following lemmas.

LEmMMA 3.10. Let i and r be non-negative integers with i =0, 1 and r > 2. Then we
have

diPyo= —03b; +v8go+2z®1t; mod I,,

diP, =27 v,9, — vhko)+z®t] mod I,
d\Ph o= —vib; + v8gy — t; @w, mod J(p + 1),
diP, o= — 030§ DPh, + (— 1yw, ®t; mod J(3),
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di P, =27 0,08 PPg, 4+ (— Y'w, @t mod J(2),

diP o= — 030 PPh — (— 1Yt @ w, mod J(3), and

diP, =27 0,080 " PPg — (— 1y @w, mod J(2),
where

z = 05* 1, = vht, — v,cth — v5th
= w), mod J(p).
Proor. By (2.2) we have
B.ID(ef 12, (2.3.2)]) di(xngv) = d;x(1 @ Hgv) — x @ dgv
Jor xeQ Ay and ve A, and
dixy)=dixdy +x@1+1®x)d,y—x®y — yRX.

We also have v, — tiyzv;y = z + v4ct, mod I, by (2.17). Here we have Landweber’s
formula:

(3.12) NV = Uy + V85" — 0f_yt; mod 1,4,

Note that the structure map of the I'-comodule A4, is the one associated to the right
unit ngz: A — I of the Hopf algebroid. Then a routine calculation with (3.12), (3.7) and
(3.4) brings the case r = 2. For r > 2, use the congruence

Wh= (= 17 o™ w; mod J(p*Y)
given in Lemma 2.14. The case with a prime follows from (2.12), (3.11) and the one

with no prime. g.ed.

t
Lemma 3.13. 4,Y, = <2>vz”v”’ lgo mod J(2p + 1).

t
ProoF. Noticing that X'vy = v*! — tv§v? v, + <2>v§”v‘3"_2"_1v§, we compute
di Xjvatf =& + & + &5+ &y — &5 mod J(2p + 1),

t
where &, = 0,007 @15, & = (t — Voot @15, &y = t0h 1o " Pery @1, &, = <2>v§p
Wl @t and &5 =t — 1)o2Pvf P ly,t, @ t8 by the formulae (3.11), (3.12) and
NrVa = Vg + 0585 + 0518 — tynpe — 1,08 mod (p, vy).

If we put &= tv‘z’+1 VWPt @cty and &, =t — Do, ®t,, then we get
divyfetyb =6 — &, di(t— DosXit, =&, — &, + &5 and d 5 PPt = &y + &g
mod J(2p + 1). Collect terms and we obtain the lemma. g.e.d.
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Let x be an element of 4; = vy 'BP, such that
(3.14) dox = v3vt? mod J(a + k)

for some ve A; and non-negative integers i, a and k with a > k, and define elements
0x*, px, px, fx and ox of Q' A5/I, by

0X* = dogx® + sx* 7P doxPL vipx = v5utd — dyx,
(3.15) puapx = prixP~ ol — dox? + (dox)?,

Bx = xP"totd' — px, and o, = x°t0 + 27 Lsvix® T Lotd¥,
Here px and pgx are both well defined since the maps

v4: QY A4/1, — QY A,/1, and prd~ % QA1 —Q AL /(p?, 1))
are monomorphic. Furthermore, if v = w?~1, then we define
(3.16) T = WP 4+ sw TP px,
Then,
Lemma 3.17. For the above elements, we have the following in Q*Aj,:

1 .
(@) ox°'= <S _{2_ >v§“02xs‘2z%’" mod J(2a + k),

(b) dipx=dyw@t? mod I,,

) ditx=w @t + sdgw* P @ px mod I,, and

(d) diogx=2"1stx Y —20x® ' + dyv ® t27) mod J(2a).
If we assume that dyv = 0 mod J(k), then

() dipx =doex? o2 + v vPb, mod J(ap — a + k), and

) d,px=—v¥ *"b, mod J(ap — a + k).

Proor. (a) follows immediately from the equality doX' = (X + d,X) — X* for any
integer ¢t and element X € A5, given by the definition (2.2) of d,. Since (1, ® AW
=y ® 1 J, the definition (2.2) also implies that d,d,Y=0 for YeA;, and that
dVet'=dyV @t mod(p) in Q2A4, for Ve A, since d,t? =0 mod (p). Furthermore,
we see that

div,x =v,d;x mod I,
by (3.12) and (2.4). Use these equalities to wverify (b) and (c). Notice that
d;x* = sv8x " (vt — px) mod J(2a) and d,13¥ = — 2tP'® 2" mod (p), and we have

(d). We further have d,(d, V) = do VY @1 —([dyV® 1 + 1 QdoV)! + 1 ®(dy V) since
4dyV=dyV®1l + 1®d,V followed from d,d,Y=0. Noticing the equality 1®v
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=v®]1 given by the hypothesis dyv = 0, we have p~'d,(dox)’ = v¥vPb; mod J(ap
+ k). Combining these gives (¢) and (f). For (b) and (¢), we also consider the
monomorphisms v% and pv?~ 109 as we define those elements. g.e.d.

We next consider the following elements:
2wy = 2wy + v8 vyt — pEB TP B IG ) — B TPK
(3.18) Zy = 2w; — 5P 2, X552, and
Yy, =0,X, — 47 Lsth® 0@ (Z — 205 B lysdp, )
for an integer s and the integer:
(3.19) es, iy =sp' —pi~t —pi~2,

In a same way as the above lemmas, we easily obtain the following lemma from (3.6),
(2.11) and (2.12):

LEMMA 320. 2d,w, =05 lg, 4+ 05" Pky + 205 P b mod I,

Lemva 321, d,Z, = 5PvEP 05 P9, + 305 ke — 205272 ®1t5) mod J(b(2)) and
d,Y,, = — 38109k, mod J(b(4)).

Proor. Notice that
w3 = — v§w, + 55T — v,28) mod J(p + 1)
by Lemma 2.14 and
X071 = pfsMr 4 plpdsP 2071y mod J(p + 1)
by definition in Proposition 2.18, and we have
X3 1y = — o9, + 08Pt mod J(p + 1) (by (2.11)),
= — vz + v2o>Yt, mod J(p + 1) (by (2.17)),
and then we compute
d 203 X 5§ = 3P0 N0y Py + vy ko — 20,7z @ 1
+ 2010 — T @ - ®1)
mod J(b(2)) by (3.11), Proposition 2.18 and Lemma 3.20. We get
— 2d, 5P 2L, XS0 = — 2057 1§D d 2t, mod J(b(2))
from Proposition 2.18, which equals
205 SRR @ f + 1, @13F + ] ® 1, + £, ®1F) mod J(b(2))

by (3.11). Adding these shows the first congruence of the lemma. In Lemma 3.17 (d),
take x = X,, and we see a=a(4), k=p>—1, v=X4"! and i=1 by Proposition
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2.18. Therefore we obtain
dio Xy = —sof® P 150 @t — 27 Lspb ™~ 195Dk mod J(b(4)),
and so we have the last congruence by Lemma 3.10. g.e.d.
We further consider the elements y; of 4 = BP, defined by
Y, =103, ¥, =y, + 08I "1y for even i > 4, and
y;=yf., for odd i=3.

Notice that a(r — 1) — a(r — 3) = p"~! — p"~* seen by (1.4). Then we see the following
inductively by (3.12):

Lemma 3.22. dyy; =08 8 — o5 D™ mod I,, for i > 2.
We lastly define elements w, for r >4 of Q'A4; by
(3.23) @, = (= 1w, — o8 T W ey, _s) + U;(r—l)Pr—l,e(r)'
Then we have the following by (2.12), Lemmas 3.10, 3.22 and (3.11).
ProposITION 3.24. If an integer v is odd = 3, then
diw, =27 o3~ VHuer=3rg  mod J(a(r — 1) + 2).
If v is even = 4, then

diw, = — v~ D 2p8r=3rp  mod J(a(r — 1) + 3).

§4. H'M!

Here the prime p is greater than 3. We also use the notation (4, I)
= (BP,, BP, BP).
A is a I'-comodule with coaction ng, and we obtain the I'-comodules given by

) NP =A/l,, Mi=uv, N\ and the exact sequence:

0 — N, > M, — Ni*' —0.
By definition every element of M is a linear combination of following elements:
(42) x/v for xev, LA/ and v = o8V 0%, €A (e; > 0), such that
x/v =0 if and only if v, ,_, divides x for some j (0 <j < i).
The definition of the comodule M, give rise to the short exact sequence
0— M3y 2 ML ML — 0 (,x = x/v,).

This sequence induces the long exact one:
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0— H'MiJ, - - = H M,
(4.3)
O, HEMESY s HEME s HEME s

where & is the boundary homomorphism.

In this section we determine the structure of H'M?} by virtue of the following

LeMMA 4.4. Let 1,: H*M4 — H*M. be the map in (4.3) and B a direct sum of the
k(n)-submodules L{g, ;} (AeA) and L<k,»(ueM) of H*M: If B satisfies
(@) Imy, = B, and
(b) {0k,: peMj} is linearly independent,
then
B = H*M:.

This is proved in the same manner as [12, Lemma 3.9] using [2, (3.12)].
We turn now to H'*MJL. First recall the following statement:

(4.5)[7, Th. 2.2](cf. [2, Prop. 3.18]) H'M3 is the K(3),-vector space generated by
elements

¢, and ¥ for i=0, 1 and 2.
Proposition 2.18 shows that
Gy, = v3/v, and G(sp) = X3/v3® for pts and i>1
belong to H°M1, and implies
@.6)[2, (5.18)] Let 6: H'MY — H*MS$ be the boundary homomorphism of (4.3). Then
8(Gyy) = svy~ 165 and (X 3/vg®) = sv§P~ P Y
for i>1, and ¢ of (1.3)

Observing the exact sequence (4.3) with the above results (4.5) and (4.6) brings the
following

LemMa 4.7. Im1, ¢ H'M} is the Z/p-vector space spanned by the bases represented
by the cycles y(up — 1/1), o(tp'/1), Y(sp'/1) and {(t/1) for i 20, ueZ, te(Z — pZ)u{0}
and seS = {seZ:pfs(s+1) or p2|s + 1}, where the cycles are represented by

wup = 1/1) = v "1 fo, @(p/1) = 0L}
Y(sp'/1) = vF' 8o, and {u/1) = v3{s/v,

peti+ 1)/02,
(4.8)

for & of (1.3).

Now we define the elements y(m/j), (m/j), ¥ (m/j) and {(m/]) of Q' M3 for me Z and
j > 1 which equal to those of (4.8) if j = 1, and some of which will give the generators

of H*M}.
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(4.9) x(up — 1/]) = v§F 7P By /vh;
(4.10) @(t/]) = v Hvst] + tv,cth)/v] if pe—1),
@up + 1/j) = Y,/v} if phnnp—1),
o(up' + e(l)/j) = X{w, 1 /vh — uX{PT Py g sue /0470 for 1> 2,
@up' + 1/j) = Xiz/vh + uXi27' Py Jv}~® for even 1> 2,
@up' + 1/j) = Xiz/v} + uX{27' P o/vf ™"
—uXPPTPX,  Jviedm Ut for odd ! >3,
@(tp/]) = 0, X fvh — 27 0w TP 0] — 20318 nR0,) 0477,
o(tp?/j) = 0. X,/vi,
@(tp*/)) = Yy /v, and

@p"/j) = 0. X, Jvh + maw§ P, ) 057POFPHL for =3 or > 5;
. . s+ 1\ _ .
4.11) Y(s/j) =X /vh — < ) )Ui P thpz’?R%/UJz 2

Y(sp/j) =t X,/vh
VD) = 2Ky 1J0h+ e ys(s + DOF 27 Py foh 204
for r = 2, and
Y((up' +p> + Op'/j) = XX, 0 /vh for 1> 2; and
(4.12) Lsp™/j) = X308 foh.
Here
m,=1if r=3 or even >4, and =2 if r is odd > 5.
By definition we can easily verify the following
Lemma 4.13. For every above element E(m/j) for & =y, o, ¥ and {,
vy~ 1Em/j) = &(m/1),
which is the element of (4.8).
Then the results of §§2-3 imply

PROPOSITION 4.14. Let §: H' M3 —» H2M3 = H?A,/J(1) be the boundary homomor-
phism in (4.3)(see (3.2) for its range). For the elements in (4.9), (4.10), (4.11) and (4.12),
we have the following:

L ox(up — 1/p — 1) = — v5 " Pby;
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2. S(/2) = (;)k

u —
So(up + 1/2p) = <2>v‘3” 9o,

So(up' + e(D/a(l) + 1) = 271 (1 — wyodr' T~ 2Pg,  for even 12 2,
So(up' + e(N/a(l) +2) = (u — D' +*¢=2%b, for odd 123,
So(up' + 1/al) + 1) = 27w """ 'g,  for even 1> 2,

So(up' + 1/a(l) + p) = wt?' ~?'"'g,  for odd 1 =3,

Soltp/p + 1) = — 271w "%k,

5e(tp?/b(2) — 1) = — 27 15" Pk,

S(tp*/b(4) — 1) = — 305" Yk,

do(tp"/b(r) — p + 1) = — mtv5""b,  for odd v > 3, and
Soltp"/b(r) — p) =27 'a§"g, for even r > 6;

3. Syls/2) = (S *2" 1>v§-p—lgz,

1
80 (sp/20) = <s ; )vg

| -
Sy(sp/2ar) —p + 1) = m,+1<s ; >v§”"2‘” g, Jfor even r =2,

SW(sp"/2a(r) —p + 2) = — s(s + WoF =2 b, for r =3, and
SY((wp' + p* — Dp"/p — Dalr + 1) = — o777 by,
for r>0 and 1> 2; and
4. Sl(sp"/a(r) = X'V @
Here we notice that the simbol ¢/> does not means the fraction and the right hand
side of ‘/* in each element denotes the integer of (1.5).
ProoOF. Since d is defined by dx = 151 {d,X} for % with v,X = x,
8&m/j) =13 {d,&(m/j + 1)} for &=y, ¢, ¥ and L.

Noticing that (d,x/v) = (d,x)/v}j and (d;x)/v) =y/vj if d,x=y mod J(j). Since
dovs = v,t2" — v8t, mod I, by (3.12), we have dovs? P =0 mod J(p) by the binomial
theorem and d,fv, = — v8~'h, mod J(p) by Lemma 3.17, which shows the equality 1.

Turn to the equalities of 2. We compute d,v5t5/v3 = w2 @ /3
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t
i <2>”t3”2!f"2 ®@th/v, and dytvy ety v} = t(t —~ D)o§ ' @ ctfv, — w0 MY @ £F/03 by

(2.2) and (3.12). Thus we obtain the first equality of 2 by refering the definition (3.3) of
k’. The second one follows immediately from Lemma 3.13. We further see that

1—_pl—1 — -—
dy X1 /o502 = uwf T @ wpy g fv5 4 27 TP el Deg )
for even | > 2 and
di X{w, o39*3 = uU‘S‘pl_pl—IH ® W41 /V3 — Ulépl+e(l‘2)pb1/vz
for odd >3 by (2.2), Propositions 2.18 and 3.24, and

— up—1p+ 2 -1 l-pl=1+e(l-1 ! tepl-1 ’ 2
udy X217 Plyq g /o3 = — 27w P Wm0 foy — (= Duf? ™7 ] @ Wi /03

for even [ > 2 and
- “d1X?1—711P2+1,0/03 = “ngl—pl_we(l_l)pbdvz - (= l)luvgplnpl_lh ® W4 1/17%
for odd 1>3 by Lemma 3.10. The definition (3.23) shows w;,; =(— )wj,,

mod J(3), so these equalities give rise to the third and fourth equalities of 2. We
obtain the equalities

d X{z/v5P* 2 = w7 ® 2/v3
for even | > 2, and
4y XYz P = P e @ zfup

for odd I > 3 from Proposition 2.18 and the fact that d,z =0 mod I, given by (2.16),
and the equalties

up—1 ’ 2 -1 upl —pl—1t upl —pt—1 ; 2
ud  XiP 1 PS oy = 27w TP gy /o, —wf TP @ wh/v;, and

up—1p7 +1 __ I—pl-1 upl —pt=1 upt—pt=1 N ED!
ud | X271 P, o8 = —utP TP b Ju, +ut? TP gofv, —uvt TPt @ wh/uh

from Lemma 3.10, and obtain
— ud XPZIPBX o0 = b fog

from lemma 3.17 and the fact that dyX,_, = v5¢~ De8 """t mod J(a(l — 1) + p)
shown by Proposition 2.18 with a(l} — a{l — 1) = pa(l — 1) — a(l — 1) + p — 1. These
equalities shows the fifth and sixth ones. Notice that we have W, = — v3 ™ 1t¥nz0,
+ 03 7t8" mod I, by (2.8), and pX, = v,08 ' W, mod J(2) by Proposition 2.18 and
(3.15). Then it follows from Lemma 3.17 that

dyo X, /v5"? = — wtsp_l(va_ptlz’z — 03 P RV @ Uy fvy + 270 T2 @ 130,

The direct calculation with (3.7), (3.11) and (3.12) shows
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— 27 Md TP TR (] vl — 20315 MRV4)/0;
= = 27N TR (= i @ (— 20504ty + V3137 + 03PE)
+ 2038 @ 137" + 20315 @ (3t — v3t,))/v;.

Therefore we obtain the seventh. The eighth follows from Lemma 3.17 since we have
0X, = v5v§?t, and dy X% ! = v3v5t, mod J{p + 1) by Proposition 2.18, and the ninth
immediately from Lemma 3.21.

We see

dlo't)(r/vg(r)_IHH2 = mrtX;_lw,Z @ tl/vg
for odd r > 3, and
dio X, /o507 P T = — 1 X7, @ 1] /0]

for even r > 6, since @X, = m 50 WP~y and d,X?-} =0 mod J(b(r) — a(r) — 1),
where we note that a(r — 1) = b(r) — a(#) — 1. Now the last two equalities in 2 follow
from the above equalities and Lemma 3.10.

For the equalities in 3, we compute

s+ 1
dyt X, /v5 = < 2 >Us3~2tfp2 ® t1/vy
+5(s + Dos™ ] @ (03788 — 037 Y Hgv)/vs,
s+ 1 _
dﬂst/U%pH =< 2 >Usap Ztl ® th/v,

+s(s + Do P e 1 @B TP 1, /,, and
2a(r) - p+2 —pr4p-1 +1 2
dyt X, 1 /039072 = s(s + Do PR @ (my o 05 D)) /03
for even r > 2 and
2a(—p+3 —prap—1 +1 3
Ayt X, o1 /03072 = s(s + DoF 7P @ (my 4 05T Pwh)/v3

for odd r > 3 from Proposition 2.18, Lemma 3.17 and (2.11). We further compute

s+1 2 e
B < 2 >dlvs3_l’—2t%p NRV4/V, = S(s + D5 2728 @ 27 ngv4/v,

s+1\
+< 5 >Us PTIEP @ (v31% — vBt)/v,

by (3.11), (3.12) and (3.7), and
M,y 18(s + 1)5111)831’”21]%1 ,2,1/17% =M, 15(s + 1)”s3pr_2pr‘l (2_10291 -t ®W,2)/U§

and
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M,y 1(s + 1)d o 20" %.0/U3 = m, (s + Doy =27 (= vdby — t; ® Wh)/v3.

Combining these equalities leads us to the first four of 3. The other one follows
immediately from Lemma 3.17 and Proposition 2.18.

The equality in 4 follows also from Proposition 2.18, since we get d,(8 " =0
mod J(p"*?!) from the binomial theorem. ged.

Proor oF THEOREM A. All the elements in Proposition 4.14 are linearly independent
by (3.2) and hence the theorem follows from lemmas 4.4 and 4.7 by setting

x(k) = x(kp — 1/p — 1), @(k) = o(k/MK)),
Y(k) = y(k/uk)) and {(k) = {(k/a(k)). q.e.d.

§5. Application to the stable homotopy

In this section we assume the prime p > 7. Let s denote the sphere spectrum, and
V(©0), V(1) and V(2), the cofibers of the maps pemn,S, ae[V(0), V(0)], and
BelV({1), V(1)1,+1), respectively. Here g = 2p — 2, o denotes the Adams map and f
the map given in [13]. Then the map ye[V(2), V(2)].3), With BP,y = v, exists by
[14], and gives the y-family {y, =/} of [V(1), V(1)], where
J2elV (2, VI]-p+1yg—1 and i, e[V(1), V(2)], are the canonical maps. Let ieny V(1)
denotes the canonical map, and we have the y-family {y;y = y4i} of 7, V(1). Consider
the Adams-Novikov spectral sequence converging to =, V(l), whose E,-term is
H*NY. In the E,-term we define the y-element according to [2] by

Vg = 0'v5/v, for v§/v,e HON)

for the boundary homomorphism &' associated to the short exact sequence 0 — N9
~ M9 — N} — 0, which survives to the same named element of =, V(1). Similarly

we have the p-family {f, = jp*i} of n,S for the canonical map je[V(1), S]_,-,, and of
the E,-term surviving to the same named map. For the f-family of E,-term we have

N

(5.1)[5, Lemma 4.4] B, = sv5 by + <2

>vs{2ko mod I, for s> 0.
THEOREM 5.2, Let r and s be non-negative integers with pfs> 0. Then in the
homotopy group m,V(1),
VispBL 0 if r is even or pks+ 1, and
VipB2 20 if r#0,2 or p>fs+p+ 1.

Proor. Since the filtration of these elements is three, nothing kills them in the
Adams-Novikov spectral sequence converging to =, V(1). Therefore we prove the non-
triviality in the E,-term H3*N9. Consider the diagram
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H2>MS —{5 H?NL 5 H3NY

J;.
H'M} - H*M$ 5 H*M}
which has two exact rows associated to the short ones in the above and §4

respectively. A is the localization map in (4.1). Put GB; = v§¥by/v, and GB,
= 0¥ ko/v,. Then we see that

AGB; #0 if r is even or pts+ 1, and

AGB, #0 ifr#0,2o0r p>ks+p+1,
since these do not belong to Im § by Proposition 4.14 and Theorem A. Furthermore
we see that Im Af is generated by b, /vy (k=1,2) and ' ® z/v} (i=0, 1) for j > 1 by

[7, Th. 2.4] and (3.7). Therefore GB,¢Imf by Lemma 3.10, and so y,mB:
= §'GB, # 0 if r and s satisfy the above condition. g.e.d.

We define the y-element yp,,5; (u > 0) of n, V(1) by the composition § — L, L5y,
— V(1) for the spectrum L, such that
BP,L, =BP,/J(2),
and the map f given in [4, Th. 4.2] which induces
fo=15:BP,/J(2) — BP,/J(2),

and for the canonical maps S — L, and L, — V(1). We also have the y-element in the
E,-term:

me/z] = 5/0'3'1/1)% (plm),
and hence

(5.3) Uzyfm/z] = me] and yEm/Z]ﬁ3 = 3)’{»;]52

in the E,-term by (5.1). Tt is known from the Geometric Boundary Theorem [1] that
these elements survive to the elements in n, V(1) of same name. Therefore we have

COROLLARY 54. Let r and s be positive integers with pXs. Then in =, V(1),
VispaB1 # 0 if v is even or p ks + 1, and
V{sprmﬂz # 0 # yEsp’/Z]ﬁ3 if r#2 or Pz*s +p+ L

Furthermore, v3f,/v3 = 20%bo/v, + v7ko/v3 by (5.1), which is non-trivial by
Proposition 4.14 and Theorem A. Thus in a same way as Theorem 5.2, we obtain

THEOREM 5.5. Let m be a positive integer with plm. Then,



The Chromatic E,-term H*M}

Vim2iB2 70 in 7w V(1)

83

The localization map A also induces the map A: H'Ni — H*M} and we have the

monomorphism &: H INL 1> H2NY at positive degree. Furthermore o, =t,
H'BP,(cf. [2]). Then Lemma 4.7 similarly implies the following

PROPOSITION 5.6. For non-negative integers r and s with pts > 0, we have
V@ 7 0 in m V(1)

if v is odd, or if r is even and either p¥s + 1 or p?|s + 1.
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