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§1. Introduction

The Toda-Smith spectrum V(n) [5], [6] for n=0, 1,2, and 3 at a prime p greater
than 2n + 1 plays such an important role as giving periodic families in stable
homotopy groups of spheres. The BP,-homology of V(n) is known as

BP /1,4

for the invariant ideal I,,, = (p, v, v,,---, v,) for each n, where BP stands for the
Brown-Peterson spectrum at a prime p whose coefficient ring is the polynomial ring
Ziylvy, v5,---1  with  Hazewinkel’s generators v, (¢f, [3]). Ravenel’s spectrum
T(k) [2] (¢f. [3]) for each integer k > 0 satisfies:

BP,T(k) = BP,[t,,---, t,] = BP,BP

as a comodule algebra, where BP,-homology of BP, BP,BP, is the polynomial ring
BP_[1,t,,---]. Similarly to these spectra, we define a spectrum W,(n) to be

BP W, (n) = (BP, /L, )[ty, -, ;]

as a subcomodule of BP,BP/I,.,. Note then that Wy(n) = V(n) and W.(n)
= T(k) A V(n) if these spectra exist. We further have a ring spectrum P(n) with BP,-
homology

BP*P(n) = (BP*/IrH-l)[tla ty, ] = BP*BP/I,,+1

(¢f. [2, Cor. 2.14], whose P(n) is our P(n — 1)). We call W, (n) good if it is a ring
spectrum and if there exists a map i: W, (n) — P(n) of ring spectra which induces the
canonical inclusion iy : (BP,/I,,)[ty,, ;] 5 (BP,/I,.)[ty, t5,-+] on  BP,-
homology.

If n <3, then it is known [5], [6] that the spectrum V(n) exists if and only if the
prime p > 2n + 1. Though we know nothing about the existence of V(n) for n > 4, the
first named author shows the existence of the spectrum W, (4) [4]. Here we investigate
obstructions of the existence of W (n) in the E,-term of the Adams-Novikov spectral
sequence and we have

THEOREM A. Let k and n be non-negative integers with 'k >2 and n<k+3. If a
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good spectrum W, (n) exists, then there exists a spectrum W (n + 1).

In [6], Toda showed that V(3) is a ring spectrum if p > 11. Therefore the spectrum
Wi3)=T(k) A V(3) get a ring structure with the canonical inclusion i: W,(3)
— BP A V(3), which is a map of ring spectra, in other word, W,(3) is good. Thus we
have

COROLLARY B. W, (4) exists for k=2 if p > 11.

In §2 we prepare some Hopf algebroids which are used as computational tools, and
we show that there is no obstruction in our case in §3. We then prove Theorem A in
§4 by showing that the induced map satisfies the desired property.

§2. Camputatinal tools

Let p be a prime number and K denote the prime field of characteristic p. A pair
(4, I') of commutative K-algebras is said to be a Hopf algebroid if it provides structure
maps: a left and a right unit #,, ng: A > I', a coproduct 4: I' > I’ ® 4T, a counit &: I
— A, and a conjugation ¢: I'— I satisfying

(2.1) e =enp=1y (T Qed=ExRN4d=1,
IFMNA=U4D)4, cig=1n, cj,=1ng and cc= 1.

Here, I'® 41" is the tensor product of A-bimodules given by 7 and #,, and 4 and ¢
are A-bimodules maps. A right A-module M is said to be a right I'-comodule if it
provides a structure map ¥,,: M — M & ,I" which is a right A-linear map satisfying

2.2) (@ =1y and (Ly® AWy = @ 1 W

From here on, we assume that I” is flat over A.
For a (right) I'-comodule M, Ext¥(4, M) denotes the homology of the cobar
complex (QFM, d,) with

(2.3) QM=M LR,y QI (r copies of T)
and differential d,: QM — Q¥ ' M given by
Mm@y ® - @) =¥umMe1® - @
(2.4) Mm@y @ @4() @ ®Y,

+(—)"mene - ®nel.
This Ext is computed by another complex.

(2.5)[1, Lemma 1.17 Let

00— M —I°—5J —s..

be an exact sequence in which each entry is I'-comodule and Bxt'-(A, I)) =0 for all v
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> 0. Then Ext}(A4, M) is the homology of the complex Hom (A4, I*).
Put

(2.6) I'=K[t, t, ]

with |t;| = 2p' — 2, and define

2.7 ng=mn, K=—1TI

to be the canonical inclusion, and K-algebra maps given by

(2.8) A(t) = Yi-oti @B, 8(t,) = Sy0, and Yiooticth ;= 0,0

(to =1) for n >0, where §,; is Kronecker’s delta. Then the pair (K, I') is a Hopf
algebroid. In a similar way, we see that

(29) (K’ 21) = (K’ K[tD Lit1s J) and (K’ (I)i,j) = (K) K[tia s tj])

(i > j) are Hopf algebroids. Furthermore, the cocentral extension
(K, ®;,)) = (K, Z) 5 (K, Zj0 )

gives rise to the Cartan-Eilenberg spectral sequence

(2.10) E;,=H**®,;) @ H**(Z;,,) = H**Z).
Hereafter, we denote

(2.11) H**(Ly = Exty*(K, K),

for a Hopf algebroid (K, L), in which the first affix denotes the homology degree and
the second is the inner degree.

LeEmMMA 2.12. Let s and t be non-negative integers. Then
H¥(I) =0 if t<2s(p—1), and
H*(Z)=0=H"(®,;) if t<2s(p'— 1)

PrOOF. We have the normalized cobar complex (Q*M, d,) = (QFM, d,) for a Hopf
algebroid (K, L) with QM = M ® ,Kere ® 4+ ® 4, Kere (s copies of Kere¢), whose
homology is known to be same as that of the cobar complex. Since (Kere) =0 if
t<2p—1)for L=1T, and if t < 2(p' — 1) for L= X, or @, ;, we see that QK =0 if
t<2s(p—1) for L=1T, and if t <2s(p'— 1) for L=%; or ®,; This implies the
lemma. g.e.d.

COROLLARY 2.13.  Let m be a positive integer and s and t non-negative integers with t
—s=2p"—3. Then

H¥(X) = Hs't(q)i,m)
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for i < m.
PRrOOF. (2.10) says
H*(®,,) @ HZysy) = H™(Z) (s=a+c t=>b+4d).

By definition, the innerdegree is greater than the homological degree and so b — a > 0,
which implies

d—c<t—s=2p"—3.

Then H“YX,,,)=0 for ¢>1 since d<2p™—3+c<2(p™"* —1). Thus the
spectral sequence collapses and we have the corollary. g.e.d.

We here introduce another Hopf algebroid
(2.14) (K, ®) = (K, K[t])
with ¢; primitive. Then we have the cocentral extension
P, —,—>,
which give the Cartan-Eilenberg spectral sequence
(2.15) E, =H*¥®, ,_,) Q H**(®,) = H**(®,,).
This implies
rank (H**(®,,,.,) &® H**(®,))* > rank H>(®D,,,).
Now Corollary 2.13 together with this reduces to
COROLLARY 2.16. Let m, s and t be such integers as those of Corollary 2.13. Then
rank (H**(®) ® -+ @ H**(®,))*" > rank H>'(Z).
The structure of H**(®;) is well known to be:
@17) H**(®) = E(hy;) ® P(by,).

Here E denotes exterior and P polynomial alegebra and bidegrees of &, ; and b, ; are
(1, 2pi(pt — 1)) and (2, 2p?*1(p* — 1)), respectively. Consider the commutative graded
free algebra F, generated by h;; and b,; with n <i<m. Then,

COROLLARY 2.18. For integers m, s, t in Corollary 2.13,
rank F¥' > rank H*(Z)).

Let (K, L) be a Hopf algebroid and M and N a right and a left L-comodule,
respectivery. Then the cotensor M [J; N is defined to be the Kernel of the map

Yu® Iy — 1y @Yy MIN —M QLR N.
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The map Y ,=(1,® f)4: F'->TI" R X, makes I' a right ¥,,,-comodule and the
inclusion K ¢ 2, ; = Z,,; ® K makes K a left £,,,-comodule, where f; denotes the
canonical projection. Then we see the following

Lemma 219, 'Oy, K=,
Proor. Consider the composition
Y=y 0, —I—I®Z,,.
Then Y(x) =x®1 for xe®; by definition of coproduct, which implies
®,;, = I'Oy,, K.
Take any element
x=Ypiptfel’ (ApeK),

where F = (f,, f,,---) is sequence of non-negative integers which are all zero except
finite numbers, and

tF=eftef> ..

Since A(t,) =310t @B, Yrt)=1;®1 if j<i and Yy {t) =1+ 1t for some
element {,e " ® X, if j =i+ 1. Therefore

Yr) —x®1 =) prds(1®") + -,
which is zero if Ap is zero or F is of the form (f;, f5,-+-, f;, 0,---). Hence xe I Uy, K
implies
xed, ;,
and we have the lemma. g.ed.
TueoreM 2.20. Ext}*(K, @, ) = H**(Z,, (= Ext§* (K, K)).

Proor. For the cobar complex C* = Qg %,,, we see that the complex 0— K
— C* satisfies the condition of (2.5) and

H**(X;,1) = HHomg,, (K, C*)).
On the other hand, apply I"Uy, | on that complex, and we have
0_}®1,i_)FDE¢+1C*

by Lemma 2.19, and furthermore it is exact, since C* is split exact. Therefore this also
satisfies the condition of (2.5), and

Ext}* (K, ®, ) = H(Hom (K, I'Cly,,,C*)).

Here we get easily Hom (K, I'Oy,  C*) = Homg,, (K, C*) by definition and we have
the desired equality. g.ed.
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§3. Calculation of the E,-term

From this section on we assume the prime p is greater than 7. The Brown Peterson
spectrum BP at the prime p has the coefficient ring BP, = Z,[vy, v,,---] with ||
=2p' — 2. We define the spectrum W,(n) to be the one which satisfies

(3.1) BP, Wy (n) = (BPy/I,41)t1, ts, -+, ] = BP BP/I, .,

as comodule algebras, where BP,BP = BP,[t;,t,,---] and I, denotes the ideal
(p, vy,+++, v,-4) of BP, or BP,BP. Consider the Adams-Novikov spectral sequence
converging to the homotopy group n.(W,(n — 1)) with the E,-term

(3.2) E5'(k, n) = Extgp pp(BPy, BP,Wy(n — 1)).

In this section we shall compute the E,-term E$'(k, n) with ¢t —s = 2p" — 3 for
integers k and n with n < k + 4.
Considering the cobar complexes, we have an isomorphism

(3.3) E5'(k, n) = Extgp gpyy, (BP,/I,, BP,W,(n — 1))

and the vanishing line:

(3.4) ES'k, n)y =0 if < 2s(p — 1).

The condition ¢ —s =2p" — 3 together with (3.4) implies that E5'(k, n) does not
1intersect v,(E$Y(k, n)) with b —a = — 1. Therefore

(3.5) E3'(k, n) = Ext#(K, @)

at t —s = 2p" — 3, and the right hand side is the one of Theorem 2.20.
LEMMA 3.6. Let t —s=2p"—3. If E5'(k, n) #0, then
2p" —3

k+1___3'

2p

Proor. Lemma 2.12 and Theorem 220 induces that E$'(k, n) #0 implies
t>s2p**t! —2). Apply now t = 2p" — 3 + s to this inequality, and we get the desired
one. g.ed.

s <

Lemma 3.7. ES'k,n)=0 for t —s=2p"—3 and k, s > 2 with n <k + 4.
Proor. We have
(3.8) rank(H**(®, 4,) @ -+ @ H**(®,))*" = rank E3'(k, n)

by Theorem 2.20, and Corollary 2.16 and (3.5). If n < k, then the left hand side is O in
the above inequality. Therefore E3'(k, n) =0 for n < k.

For the case n =k + 1, we have s <1 by Lemma 3.6, which is against to the
hypothesis s > 2. Therefore
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ES'(k, n) = 0.

We next turn to the case n=k+ 2. It follows from Lemma 3.6 that s <p +

(3p — 3)/(3p**t — 3), and so
s<p.
We assume that k > 2.

On the other hand E5* =0 if t £ 0 (2p — 2) by degree reason. Then in this case t
=2p"*2 3 4+ 5=0(2p—2), and hence s =1 (2p — 2). These arguments lead s = 1,
which again contradicts to s > 2. So

ES'(k, n) = 0.

Now we turn to the case n =k + 3. Similarly we see that s < p? by Lemma 3.6,
and that E§' =0 if t =0 (2p — 2), which imply
(3.9) s=2ulp—1+1 for 1<u<(p+ 1)/2

To proceed further, we prepare the following

NotaTION 3.10. Here we prepare the following notation: let E and F be sequences of
non-negative integers &;; and a;; all of which but finite are 0. Then we denote

WP = ni,j hze'f |E| = Zi,jgi,ja |F| = Zi,jai,j: and b* = I_Ii,jb(il,ifj'
Here &, ;=0 or 1.

We study for the element h®b" whose bidegree is (s, t). Here bideg h;; = (1, 2p°
(p' — 1)) and bideg b, ; = (2, 2p’*'(p' — 1)). Let |h®b"| =¢ and |E| + 2|F| =s. Since
s is odd, we put |E|=2e + 1 for ¢ > 0 and then

s—2e—1
—

First we study the element of the form x(l, q) = bJf} 7' bi74 1 bi, 0 for the equality b.
[hEx(l, q)| = t implies |hE| =t — |x(], q)|, and we compute

|F] =

( [hE| = 2p**3(1 — 1 —w) + 2p** 2(e +u + 1) + 2p2( + u)
3.11)
—2plu+e+1+q) —3+2q,

by (3.9) and the equality ¢ = 2p**3 —3 +s. We see 1 —/—u>0. In fact if the

coefficient 1 — [ — u of 2p**3 is negative, then so is |h*]. This is a contradiction. We
get u=1,]l=0and 1 — ] —u=0 by the condition u > 1. Then (3.11) turns into

|hE| = 2p**2(1 + e) + 2p? — 2p(1 + &) — 3 + 2q,

and we do not have such k%, Thus there is no h¥ x(l, ) whose bidegree is (s, £). If b*
is not of the form x(, q), then [b¥|>|x(l, q)|. Since |hEbF|=t, |hE|=1t—|bF| <t
— |x(l, q)l, which is negative if [ > 1. Therefore we have no element with bidegree
(s, t), and
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ESH(k, n) = 0.
Lastly turn to the case n =k + 4. We obtain
s=2ulp—1)+1

for 1 <u<(p?+p+1)/2 from Lemma 3.6 and degree reason as we have seen
above. Consider b similarly to the case n =k + 3, and we have

|RE| = (2p*** —2) = (2p* "2 = 2)(u + 1)
(3.12) + 2Pt —2e+u+ 1)+ Q2p2—2)u+1)
—2p—2)e—1+9q)

which corresponds to (3.11). With a routine calculation it is easy to see that there is
no h¥ which satisfies (3.12). 1In this case with an assumption that [ < p, if b¥ is not of
the form x(l, q), then |bF| > |x(l, q)|, and |hEf| =1t —|bF| <t —|x(l, ¢)]. This is again
negative if I = p. Therefore we have no element with bidegree (s, 1), and
E$*'(k, n) = 0.
g.e.d.

THEOREM 3.13. Let the prime p > 7, k=2 and n > 0 with n <k + 3. Suppose that
Win) exists. Then there exists a non-trivial element &, en, Wi(n) such that

BP*i(n-{-l) - Un+IEBP*Wk(n)'

Proor. Consider the Adams-Novikov spectral sequence E>'(k, n + 1) converging to
n, Wi (n) (see (3.2)). Since it is known that
NRVps1 = Upeq mod [y,

we see that

vn+1 EEg’"(k, n + 1)

n+t1

with 4 = 2p"*!' — 2, which is non-trivial. Apply now Lemma 3.7 to show that

Ao, =0eES (k,n+ 1)

with ¢t —s=2p"—3 and s>2. Since v,,, is in the Oth line, nothing kills
it. Therefore v, ;€ E3*(k, n + 1) survives non-trivially to give &, ,en, Wi(n). The
equality BP, ¢,y = 0,4, follows from the edge homomorphism. g.e.d.

§4. Proof of Theorem A

In this section we begin with recalling that for each n >0 there is associative
commutative ring spectrum P(n) with product [, such that 7w, P(n)
= BP,/(p, vy,**, U,—1), and the canonical map c¢: BP — P(n) is a map of ring spectra.

Let E be a ring spectrum with a map
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u: E— P(n)
of ring spectra. We call E good if the map u induces the monomorphism
Uy = (¢ A\ u),: BP E =mn,(BP A E)—n,(Pn) A Pn)=Pn),PH).

THEOREM 4.1. Let k and n be integers with n < k + 3 and suppose that W, (n) is a
good ring spectrum with structure maps W,: Win) A W(n)-> W, (n) and i,:S
— Wi(n). Then there exists a map

Cnt 1t Wi(n) — Wiln)
With BP*£n+1 =Upsq

Proor. Let i,: 7, Wi (n) > BP,W(n) be the Hurewicz map, that is, it is induced by
the unit map i: S — BP. Then we have a map . : S — W(n) such that i,
= v,,.; by Theorem 3.13 in §3. Define the map £,,, by the composition

W) — Win) A Wi(n) — Wi(n),
in which the first map is £,y A id and the second map is the product pu,.

Then we have a commutative diagram

BP A Wy(n) 2221, BP A BP A Wy(n) -“2L BP A Wi(n)

lT/\l (2) lc/\u
0 P(m) A P(n) A P(n) E2L  P(m) A P(n)
1Aémenatl ;lf (3) lT

P(n) A P(n) A P(n) -2 P(n) A P(n)

T @ fens

BP A W,(n) A Wy(n) 242 BP A W, (n),

where 1 denotes the identity map, T interchanges the two factors and T
=(TA DA ANTIT A ).

Commutativity of the squares (2), (3), (4) is verified by the properties of products u, i,
and g,.

Commutativity of the squares (1) follows from the equality i, =uv,
= (1A i), Therefore

(€ A )y BP, (& 1)(x) = (¢ A )1 A (1A Gy A D(X)
= Aup A D@,er A D)
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= (¢ A W)y tp4 ().

Since W (n) is good, (c A u), is a monomorphism and we have the desired equality
BP*(in-(-i)(x) = Un+1(x)'

Proor oF THEOREM A. Let W, (n + 1) be the cofiber of &, in Theorem 4.1, and we
can easily verified that it has the desired property. q.ed.

L1l
[2]
[3]
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