Computation of Obstructions for a Spectrum with BP_* -Homology $(BP_*/I_n)[t_1, t_2, \dots, t_k]$

Katsumi Shimomura* and Atsuko Yabe*

(Received April 10, 1990)

§1. Introduction

The Toda-Smith spectrum V(n) [5], [6] for n = 0, 1, 2, and 3 at a prime p greater than 2n + 1 plays such an important role as giving periodic families in stable homotopy groups of spheres. The BP_* -homology of V(n) is known as

$$BP_{\star}/I_{n+1}$$

for the invariant ideal $I_{n+1} = (p, v_1, v_2, \dots, v_n)$ for each n, where BP stands for the Brown-Peterson spectrum at a prime p whose coefficient ring is the polynomial ring $Z_{(p)}[v_1, v_2, \dots]$ with Hazewinkel's generators v_i (cf, [3]). Ravenel's spectrum T(k) [2] (cf. [3]) for each integer $k \ge 0$ satisfies:

$$BP_*T(k) = BP_*[t_1, \cdots, t_k] \subset BP_*BP$$

as a comodule algebra, where BP_* -homology of BP, BP_*BP , is the polynomial ring $BP_*[t_1, t_2, \cdots]$. Similarly to these spectra, we define a spectrum $W_k(n)$ to be

$$BP_*W_k(n) = (BP_*/I_{n+1})[t_1, \dots, t_k]$$

as a subcomodule of BP_*BP/I_{n+1} . Note then that $W_0(n) = V(n)$ and $W_k(n) = T(k) \wedge V(n)$ if these spectra exist. We further have a ring spectrum P(n) with BP_* -homology

$$BP_*P(n) = (BP_*/I_{n+1})[t_1, t_2, \cdots] = BP_*BP/I_{n+1}$$

(cf. [2, Cor. 2.14], whose P(n) is our P(n-1)). We call $W_k(n)$ good if it is a ring spectrum and if there exists a map $i: W_k(n) \to P(n)$ of ring spectra which induces the canonical inclusion $i_*: (BP_*/I_{n+1})[t_1, \cdots, t_k] \subseteq (BP_*/I_{n+1})[t_1, t_2, \cdots]$ on BP_* -homology.

If $n \le 3$, then it is known [5], [6] that the spectrum V(n) exists if and only if the prime $p \ge 2n+1$. Though we know nothing about the existence of V(n) for $n \ge 4$, the first named author shows the existence of the spectrum $W_1(4)$ [4]. Here we investigate obstructions of the existence of $W_k(n)$ in the E_2 -term of the Adams-Novikov spectral sequence and we have

THEOREM A. Let k and n be non-negative integers with $k \ge 2$ and $n \le k + 3$. If a

^{*} Department of Mathematics, Faculty of Education, Tottori University, Tottori, 680, JAPAN

good spectrum $W_k(n)$ exists, then there exists a spectrum $W_k(n+1)$.

In [6], Toda showed that V(3) is a ring spectrum if $p \ge 11$. Therefore the spectrum $W_k(3) = T(k) \wedge V(3)$ get a ring structure with the canonical inclusion $i: W_k(3) \to BP \wedge V(3)$, which is a map of ring spectra, in other word, $W_k(3)$ is good. Thus we have

COROLLARY B. $W_k(4)$ exists for $k \ge 2$ if $p \ge 11$.

In §2 we prepare some Hopf algebroids which are used as computational tools, and we show that there is no obstruction in our case in §3. We then prove Theorem A in §4 by showing that the induced map satisfies the desired property.

§2. Camputatinal tools

Let p be a prime number and K denote the prime field of characteristic p. A pair (A, Γ) of commutative K-algebras is said to be a *Hopf algebroid* if it provides structure maps: a left and a right unit η_L , $\eta_R: A \to \Gamma$, a coproduct $\Delta: \Gamma \to \Gamma \bigotimes_A \Gamma$, a counit $\varepsilon: \Gamma \to A$, and a conjugation $c: \Gamma \to \Gamma$ satisfying

(2.1)
$$\varepsilon \eta_L = \varepsilon \eta_R = 1_A, \quad (\Gamma \otimes \varepsilon) \Delta = (\varepsilon \otimes \Gamma) \Delta = 1_\Gamma,$$

$$(\Gamma \otimes \Delta) \Delta = (\Delta \otimes \Gamma) \Delta, \quad c \eta_R = \eta_L, \quad c \eta_L = \eta_R \quad and \quad cc = 1_\Gamma.$$

Here, $\Gamma \otimes_A \Gamma$ is the tensor product of A-bimodules given by η_R and η_L , and Δ and ε are A-bimodules maps. A right A-module M is said to be a right Γ -comodule if it provides a structure map $\psi_M : M \to M \otimes_A \Gamma$ which is a right A-linear map satisfying

(2.2)
$$(1_M \otimes \varepsilon)\psi_M = 1_M \quad and \quad (1_M \otimes \Delta)\psi_M = (\psi_M \otimes 1_{\Gamma})\psi_M.$$

From here on, we assume that Γ is flat over A.

For a (right) Γ -comodule M, $\operatorname{Ext}_{\Gamma}^*(A,M)$ denotes the homology of the cobar complex $(\Omega_{\Gamma}^*M,\,d_*)$ with

(2.3)
$$\Omega^r M = M \otimes_A \Gamma \otimes_A \cdots \otimes_A \Gamma \quad (r \ copies \ of \ \Gamma)$$

and differential $d_r : \Omega^r_{\Gamma}M \to \Omega^{r+1}_{\Gamma}M$ given by

(2.4)
$$d_{r}(m \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{r}) = \psi_{M}(m) \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{r} + \sum_{i=1}^{r} m \otimes \gamma_{1} \otimes \cdots \otimes \Delta(\gamma_{i}) \otimes \cdots \otimes \gamma_{r} + (-1)^{r+1} m \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{r} \otimes 1.$$

This Ext is computed by another complex.

(2.5)[1, Lemma 1.1] Let

$$0 \longrightarrow M \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$$

be an exact sequence in which each entry is Γ -comodule and $\operatorname{Ext}^r(A, I^i) = 0$ for all r

> 0. Then $\operatorname{Ext}_{\Gamma}^*(A, M)$ is the homology of the complex $\operatorname{Hom}_{\Gamma}(A, I^*)$.

Put

(2.6)
$$\Gamma = K[t_1, t_2, \cdots]$$

with $|t_i| = 2p^i - 2$, and define

$$(2.7) \eta_R = \eta_L \colon K \subseteq \Gamma$$

to be the canonical inclusion, and K-algebra maps given by

(2.8)
$$\Delta(t_n) = \sum_{i=0}^n t_i \otimes t_{n-i}^{p^i}, \quad \varepsilon(t_n) = \delta_{n,0}, \quad and \quad \sum_{i=0}^n t_i c t_{n-i}^{p^i} = \delta_{n,0}$$

 $(t_0 = 1)$ for $n \ge 0$, where $\delta_{n,j}$ is Kronecker's delta. Then the pair (K, Γ) is a Hopf algebroid. In a similar way, we see that

(2.9)
$$(K, \Sigma_i) = (K, K[t_i, t_{i+1}, \cdots])$$
 and $(K, \Phi_{i,j}) = (K, K[t_i, \cdots, t_j])$

 $(i \ge j)$ are Hopf algebroids. Furthermore, the cocentral extension

$$(K, \Phi_{i,j}) \xrightarrow{\iota_i} (K, \Sigma_i) \xrightarrow{f_i} (K, \Sigma_{j+1})$$

gives rise to the Cartan-Eilenberg spectral sequence

(2.10)
$$E_2 = H^{*,*}(\Phi_{i,j}) \otimes H^{*,*}(\Sigma_{i+1}) \Longrightarrow H^{*,*}(\Sigma_i).$$

Hereafter, we denote

$$(2.11) H^{*,*}(L) = \operatorname{Ext}_L^{*,*}(K, K),$$

for a Hopf algebroid (K, L), in which the first affix denotes the homology degree and the second is the inner degree.

LEMMA 2.12. Let s and t be non-negative integers. Then

$$H^{s,t}(\Gamma) = 0$$
 if $t < 2s(p-1)$, and $H^{s,t}(\Sigma_i) = 0 = H^{s,t}(\Phi_{i,i})$ if $t < 2s(p^i - 1)$.

PROOF. We have the normalized cobar complex $(\tilde{\Omega}_L^*M, d_*) \subset (\Omega_L^*M, d_*)$ for a Hopf algebroid (K, L) with $\tilde{\Omega}_L^sM = M \otimes_A \operatorname{Ker} \varepsilon \otimes_A \cdots \otimes_A \operatorname{Ker} \varepsilon$ (s copies of $\operatorname{Ker} \varepsilon$), whose homology is known to be same as that of the cobar complex. Since $(\operatorname{Ker} \varepsilon)^t = 0$ if t < 2(p-1) for $L = \Gamma$, and if $t < 2(p^i-1)$ for $L = \Sigma_i$ or $\Phi_{i,j}$, we see that $\tilde{\Omega}_L^{s,t}K = 0$ if t < 2s(p-1) for $L = \Gamma$, and if $t < 2s(p^i-1)$ for $L = \Sigma_i$ or $\Phi_{i,j}$. This implies the lemma.

COROLLARY 2.13. Let m be a positive integer and s and t non-negative integers with $t - s = 2p^m - 3$. Then

$$H^{s,t}(\Sigma_i) = H^{s,t}(\Phi_{i,m})$$

for $i \leq m$.

Proof. (2.10) says

$$H^{a,b}(\Phi_{i,m}) \otimes H^{c,d}(\Sigma_{m+1}) \Longrightarrow H^{s,t}(\Sigma_i) \quad (s=a+c, t=b+d).$$

By definition, the innerdegree is greater than the homological degree and so b - a > 0, which implies

$$d - c < t - s = 2p^m - 3$$
.

Then $H^{c,d}(\Sigma_{m+1}) = 0$ for $c \ge 1$ since $d < 2p^m - 3 + c < 2c(p^{m+1} - 1)$. Thus the spectral sequence collapses and we have the corollary.

We here introduce another Hopf algebroid

$$(2.14) (K, \Phi_i) = (K, K \lceil t_i \rceil)$$

with t_i primitive. Then we have the cocentral extension

$$\Phi_{i,m-1} \longrightarrow \Phi_{i,m} \longrightarrow \Phi_m$$

which give the Cartan-Eilenberg spectral sequence

(2.15)
$$E_2 = H^{*,*}(\Phi_{i,m-1}) \otimes H^{*,*}(\Phi_m) \Longrightarrow H^{*,*}(\Phi_{i,m}).$$

This implies

rank
$$(H^{*,*}(\Phi_{i,m-1}) \otimes H^{*,*}(\Phi_m))^{s,t} \ge \text{rank } H^{s,t}(\Phi_{i,m}).$$

Now Corollary 2.13 together with this reduces to

COROLLARY 2.16. Let m, s and t be such integers as those of Corollary 2.13. Then

rank
$$(H^{*,*}(\Phi_i) \otimes \cdots \otimes H^{*,*}(\Phi_m))^{s,t} \geq \operatorname{rank} H^{s,t}(\Sigma_i)$$
.

The structure of $H^{*,*}(\Phi_i)$ is well known to be:

(2.17)
$$H^{*,*}(\Phi_i) = E(h_{i,i}) \otimes P(b_{i,i}).$$

Here E denotes exterior and P polynomial alegebra and bidegrees of $h_{i,j}$ and $b_{i,j}$ are $(1, 2p^j(p^i-1))$ and $(2, 2p^{j+1}(p^i-1))$, respectively. Consider the commutative graded free algebra F_n generated by $h_{i,j}$ and $b_{i,j}$ with $n \le i \le m$. Then,

COROLLARY 2.18. For integers m, s, t in Corollary 2.13,

rank
$$F_n^{s,t} \ge \text{rank } H^{s,t}(\Sigma_n)$$
.

Let (K, L) be a Hopf algebroid and M and N a right and a left L-comodule, respectivery. Then the cotensor $M \square_L N$ is defined to be the Kernel of the map

$$\psi_M \otimes 1_N - 1_M \otimes \psi_N : M \otimes N \longrightarrow M \otimes L \otimes N.$$

The map $\psi_{\Gamma} = (1_{\Gamma} \otimes f_i) \Delta : \Gamma \to \Gamma \otimes \Sigma_{i+1}$ makes Γ a right Σ_{i+1} -comodule and the inclusion $K \subseteq \Sigma_{i+1} = \Sigma_{i+1} \otimes K$ makes K a left Σ_{i+1} -comodule, where f_i denotes the canonical projection. Then we see the following

LEMMA 2.19.
$$\Gamma \square_{\Sigma_{i+1}} K = \Phi_{1,i}$$

PROOF. Consider the composition

$$\psi = \psi_{\Gamma} \circ i_i \colon \Phi_{1,i} \longrightarrow \Gamma \longrightarrow \Gamma \bigotimes \Sigma_{i+1}.$$

Then $\psi(x) = x \otimes 1$ for $x \in \Phi_i$ by definition of coproduct, which implies

$$\Phi_{1,i} \subset \Gamma \square_{\Sigma_{i+1}} K$$
.

Take any element

$$x = \sum_{F} \lambda_F t^F \in \Gamma \quad (\lambda_F \in K),$$

where $F = (f_1, f_2, \dots)$ is sequence of non-negative integers which are all zero except finite numbers, and

$$t^F = t_1^{f_1} t_2^{f_2} \cdots$$

Since $\Delta(t_n) = \sum_{i=0}^n t_i \otimes t_{n-i}^{p^i}$, $\psi_{\Gamma}(t_j) = t_j \otimes 1$ if $j \leq i$ and $\psi_{\Gamma}(t_j) = \tilde{t}_j + 1 \otimes t_j$ for some element $\tilde{t}_j \in \Gamma \otimes \Sigma_{i+1}$ if $j \geq i+1$. Therefore

$$\psi_{\Gamma}(x) - x \otimes 1 = \sum_{E \in F} \lambda_{E}(1 \otimes t^{F}) + \cdots,$$

which is zero if λ_F is zero or F is of the form $(f_1, f_2, \dots, f_i, 0, \dots)$. Hence $x \in \Gamma \square_{\Sigma_{i+1}} K$ implies

$$x \in \Phi_{1,i}$$

and we have the lemma.

q.e.d.

Theorem **2.20.** Ext^{*,*}_{$$\Gamma$$} $(K, \Phi_{1,i}) = H^{*,*}(\Sigma_{i+1}) (= \text{Ext}^{*,*}_{\Sigma_{i+1}}(K, K)).$

PROOF. For the cobar complex $C^* = \Omega^*_{\Sigma_{i+1}} \Sigma_{i+1}$, we see that the complex $0 \to K \to C^*$ satisfies the condition of (2.5) and

$$H^{*,*}(\Sigma_{i+1}) = H(\operatorname{Hom}_{\Sigma_{i+1}}(K, C^*)).$$

On the other hand, apply $\Gamma \square_{\Sigma_{t+1}}$ on that complex, and we have

$$0 \longrightarrow \Phi_{1,i} \longrightarrow \Gamma \square_{\Sigma_{i+1}} C^*$$

by Lemma 2.19, and furthermore it is exact, since C^* is split exact. Therefore this also satisfies the condition of (2.5), and

$$\operatorname{Ext}_{\varGamma}^{*,*}(K,\,\Phi_{1,i})=H(\operatorname{Hom}_{\varGamma}(K,\,\varGamma\,\Box_{\Sigma_{i+1}}C^*)).$$

Here we get easily $\operatorname{Hom}_{\Gamma}(K, \Gamma \square_{\Sigma_{i+1}} C^*) = \operatorname{Hom}_{\Sigma_{i+1}}(K, C^*)$ by definition and we have the desired equality.

§ 3. Calculation of the E_2 -term

From this section on we assume the prime p is greater than 7. The Brown Peterson spectrum BP at the prime p has the coefficient ring $BP_* = Z_{(p)}[v_1, v_2, \cdots]$ with $|v_i| = 2p^i - 2$. We define the spectrum $W_k(n)$ to be the one which satisfies

(3.1)
$$BP_*W_k(n) = (BP_*/I_{n+1})[t_1, t_2, \dots, t_k] \subset BP_*BP/I_{n+1}$$

as comodule algebras, where $BP_*BP = BP_*[t_1, t_2, \cdots]$ and I_n denotes the ideal $(p, v_1, \cdots, v_{n-1})$ of BP_* or BP_*BP . Consider the Adams-Novikov spectral sequence converging to the homotopy group $\pi_*(W_k(n-1))$ with the E_2 -term

(3.2)
$$E_2^{s,t}(k,n) = \operatorname{Ext}_{BP,BP}^{s,t}(BP_*, BP_*W_k(n-1)).$$

In this section we shall compute the E_2 -term $E_2^{s,t}(k, n)$ with $t - s = 2p^n - 3$ for integers k and n with $n \le k + 4$.

Considering the cobar complexes, we have an isomorphism

(3.3)
$$E_{2}^{s,t}(k, n) = \operatorname{Ext}_{BP,BP/I_{n}}^{s,t}(BP_{*}/I_{n}, BP_{*}W_{k}(n-1))$$

and the vanishing line:

(3.4)
$$E_2^{s,t}(k, n) = 0$$
 if $t < 2s(p-1)$.

The condition $t-s=2p^n-3$ together with (3.4) implies that $E_2^{s,t}(k,n)$ does not intersect $v_n(E_2^{a,b}(k,n))$ with b-a=-1. Therefore

(3.5)
$$E_2^{s,t}(k, n) = \operatorname{Ext}_{\Gamma}^{s,t}(K, \Phi_{1,k})$$

at $t - s = 2p^n - 3$, and the right hand side is the one of Theorem 2.20.

Lemma 3.6. Let $t - s = 2p^n - 3$. If $E_2^{s,t}(k, n) \neq 0$, then

$$s \le \frac{2p^n - 3}{2p^{k+1} - 3}.$$

PROOF. Lemma 2.12 and Theorem 2.20 induces that $E_2^{s,t}(k, n) \neq 0$ implies $t \geq s(2p^{k+1} - 2)$. Apply now $t = 2p^n - 3 + s$ to this inequality, and we get the desired one.

LEMMA 3.7.
$$E_2^{s,t}(k, n) = 0$$
 for $t - s = 2p^n - 3$ and $k, s \ge 2$ with $n \le k + 4$.

PROOF. We have

$$(3.8) \qquad \operatorname{rank}(H^{*,*}(\Phi_{k+1}) \otimes \cdots \otimes H^{*,*}(\Phi_n))^{s,t} \geq \operatorname{rank} E_2^{s,t}(k, n)$$

by Theorem 2.20, and Corollary 2.16 and (3.5). If $n \le k$, then the left hand side is 0 in the above inequality. Therefore $E_2^{s,t}(k,n) = 0$ for $n \le k$.

For the case n = k + 1, we have $s \le 1$ by Lemma 3.6, which is against to the hypothesis $s \ge 2$. Therefore

$$E_2^{s,t}(k, n) = 0.$$

We next turn to the case n = k + 2. It follows from Lemma 3.6 that $s \le p + (3p - 3)/(3p^{k+1} - 3)$, and so

$$s \leq p$$
.

We assume that $k \ge 2$.

On the other hand $E_2^{s,t} = 0$ if $t \not\equiv 0$ (2p-2) by degree reason. Then in this case $t = 2p^{k+2} - 3 + s \equiv 0$ (2p-2), and hence $s \equiv 1$ (2p-2). These arguments lead s = 1, which again contradicts to $s \ge 2$. So

$$E_2^{s,t}(k, n) = 0.$$

Now we turn to the case n = k + 3. Similarly we see that $s \le p^2$ by Lemma 3.6, and that $E_2^{s,t} = 0$ if $t \equiv 0$ (2p - 2), which imply

$$(3.9) s = 2u(p-1) + 1 for 1 \le u < (p+1)/2.$$

To proceed further, we prepare the following

NOTATION 3.10. Here we prepare the following notation: let E and F be sequences of non-negative integers $\varepsilon_{i,j}$ and $a_{i,j}$ all of which but finite are 0. Then we denote

$$h^E = \prod_{i,j} h^{e_i,j}_{i,j} \quad |E| = \sum_{i,j} \varepsilon_{i,j}, \quad |F| = \sum_{i,j} a_{i,j}, \quad and \quad b^F = \prod_{i,j} b^{a_i,j}_{i,j}.$$

Here $\varepsilon_{i,j} = 0$ or 1.

We study for the element h^Eb^F whose bidegree is (s, t). Here bideg $h_{i,j}=(1, 2p^i(p^i-1))$ and bideg $b_{i,j}=(2, 2p^{j+1}(p^i-1))$. Let $|h^Eb^F|=t$ and |E|+2|F|=s. Since s is odd, we put |E|=2e+1 for $e\geq 0$ and then

$$|F| = \frac{s - 2e - 1}{2}.$$

First we study the element of the form $x(l, q) = b_{k+1,0}^{|F|-l} b_{k+1,1}^{l-q} b_{k+2,0}^q$ for the equality b^F . $|h^E x(l, q)| = t$ implies $|h^E| = t - |x(l, q)|$, and we compute

(3.11)
$$|h^{E}| = 2p^{k+3}(1-l-u) + 2p^{k+2}(e+u+l) + 2p^{2}(l+u) - 2p(u+e+l+q) - 3 + 2q,$$

by (3.9) and the equality $t=2p^{k+3}-3+s$. We see $1-l-u\geq 0$. In fact if the coefficient 1-l-u of $2p^{k+3}$ is negative, then so is $|h^E|$. This is a contradiction. We get u=1, l=0 and 1-l-u=0 by the condition $u\geq 1$. Then (3.11) turns into

$$|h^{E}| = 2p^{k+2}(1+e) + 2p^{2} - 2p(1+e) - 3 + 2q,$$

and we do not have such h^E . Thus there is no $h^E x(l, q)$ whose bidegree is (s, t). If b^F is not of the form x(l, q), then $|b^F| \ge |x(l, q)|$. Since $|h^E b^F| = t$, $|h^E| = t - |b^F| \le t - |x(l, q)|$, which is negative if $l \ge 1$. Therefore we have no element with bidegree (s, t), and

$$E_2^{s,t}(k, n) = 0.$$

Lastly turn to the case n = k + 4. We obtain

$$s = 2u(p-1) + 1$$

for $1 \le u < (p^2 + p + 1)/2$ from Lemma 3.6 and degree reason as we have seen above. Consider b^F similarly to the case n = k + 3, and we have

$$|h^{E}| = (2p^{k+4} - 2) - (2p^{k+3} - 2)(u+l) + (2p^{k+2} - 2)(e+u+l) + (2p^{2} - 2)(u+l) - (2p-2)(e-l+q)$$

which corresponds to (3.11). With a routine calculation it is easy to see that there is no h^E which satisfies (3.12). In this case with an assumption that $l \le p$, if b^F is not of the form x(l, q), then $|b^F| \ge |x(l, q)|$, and $|h^E| = t - |b^F| \le t - |x(l, q)|$. This is again negative if l = p. Therefore we have no element with bidegree (s, t), and

$$E_2^{s,t}(k, n) = 0.$$

q.e.d.

THEOREM 3.13. Let the prime p > 7, $k \ge 2$ and $n \ge 0$ with $n \le k + 3$. Suppose that $W_k(n)$ exists. Then there exists a non-trivial element $\zeta_{(n+1)} \in \pi_* W_k(n)$ such that

$$BP_*\xi_{(n+1)} = v_{n+1} \in BP_*W_k(n).$$

PROOF. Consider the Adams-Novikov spectral sequence $E_r^{s,t}(k, n + 1)$ converging to $\pi_*W_k(n)$ (see (3.2)). Since it is known that

$$\eta_R v_{n+1} \equiv v_{n+1} \mod I_{n+1}$$

we see that

$$v_{n+1} \in E_2^{0,u}(k, n+1)$$

with $u = 2p^{n+1} - 2$, which is non-trivial. Apply now Lemma 3.7 to show that

$$d_s v_{n+1} = 0 \in E_2^{s,t}(k, n+1)$$

with $t-s=2p^n-3$ and $s\geq 2$. Since v_{n+1} is in the 0th line, nothing kills it. Therefore $v_{n+1}\in E_2^{0,u}(k,\,n+1)$ survives non-trivially to give $\xi_{(n+1)}\in \pi_*W_k(n)$. The equality $BP_*\xi_{(n+1)}=v_{n+1}$ follows from the edge homomorphism. q.e.d.

§4. Proof of Theorem A

In this section we begin with recalling that for each $n \ge 0$ there is associative commutative ring spectrum P(n) with product $\bar{\mu}_n$ such that $\pi_*P(n) = BP_*/(p, v_1, \cdots, v_{n-1})$, and the canonical map $c : BP \to P(n)$ is a map of ring spectra. Let E be a ring spectrum with a map

$$u: E \longrightarrow P(n)$$

of ring spectra. We call E good if the map u induces the monomorphism

$$u_{\sharp} = (c \wedge u)_{\star} : BP_{\star}E = \pi_{\star}(BP \wedge E) \longrightarrow \pi_{\star}(P(n) \wedge P(n)) = P(n)_{\star}P(n).$$

THEOREM **4.1.** Let k and n be integers with $n \le k+3$ and suppose that $W_k(n)$ is a good ring spectrum with structure maps $\mu_n \colon W_k(n) \wedge W_k(n) \to W_k(n)$ and $i_n \colon S \to W_k(n)$. Then there exists a map

$$\xi_{n+1}: W_k(n) \longrightarrow W_k(n)$$

with $BP_*\xi_{n+1} = v_{n+1}$

PROOF. Let $i_*: \pi_*W_k(n) \to BP_*W_k(n)$ be the Hurewicz map, that is, it is induced by the unit map $i: S \to BP$. Then we have a map $\xi_{(n+1)}: S \to W_k(n)$ such that $i_*\xi_{(n+1)} = v_{n+1}$ by Theorem 3.13 in §3. Define the map ξ_{n+1} by the composition

$$W_k(n) \longrightarrow W_k(n) \wedge W_k(n) \longrightarrow W_k(n),$$

in which the first map is $\xi_{(n+1)} \wedge id$ and the second map is the product μ_n . Then we have a commutative diagram

$$BP \wedge W_{k}(n) \xrightarrow{v_{n+1} \wedge 1} BP \wedge BP \wedge W_{k}(n) \xrightarrow{\mu \wedge 1} BP \wedge W_{k}(n)$$

$$\downarrow^{T \wedge 1} \qquad (2) \qquad \downarrow^{c \wedge u}$$

$$P(n) \wedge P(n) \wedge P(n) \xrightarrow{\overline{\mu}_{n} \wedge 1} P(n) \wedge P(n)$$

$$\cong \downarrow^{\widetilde{T}} \qquad (3) \qquad \downarrow^{T}$$

$$P(n) \wedge P(n) \wedge P(n) \xrightarrow{1 \wedge \overline{\mu}_{n}} P(n) \wedge P(n)$$

$$\uparrow \qquad (4) \qquad \uparrow^{c \wedge u}$$

$$BP \wedge W_{k}(n) \wedge W_{k}(n) \xrightarrow{1 \wedge \mu_{n}} BP \wedge W_{k}(n),$$

where 1 denotes the identity map, T interchanges the two factors and $\tilde{T} = (T \wedge 1)(1 \wedge T)(T \wedge 1)$.

Commutativity of the squares (2), (3), (4) is verified by the properties of products μ , μ_n and $\bar{\mu}_n$.

Commutativity of the squares (1) follows from the equality $i_*\xi_{(n)}=v_n=(1\wedge i_n)v_n$. Therefore

$$(c \wedge u)_* BP_*(\xi_{n+1})(x) = (c \wedge u)(1 \wedge \mu_n)(1 \wedge \xi_{(n+1)} \wedge 1)(x)$$
$$= (c \wedge u)(\mu \wedge 1)(v_{n+1} \wedge 1)(x)$$

$$=(c \wedge u)_* v_{n+1}(x).$$

Since $W_k(n)$ is good, $(c \wedge u)_*$ is a monomorphism and we have the desired equality $BP_*(\xi_{n+1})(x) = v_{n+1}(x)$.

PROOF OF THEOREM A. Let $W_k(n+1)$ be the cofiber of ξ_{n+1} in Theorem 4.1, and we can easily verified that it has the desired property. q.e.d.

References

- [1] H. R Miller, and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov's E₂-term, Duke Math. J. 44 (1977), 433-447.
- [2] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- [3] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [4] K. Shimomura, A spectrum whose BP_* -homology is $(BP_*/I_5)[t_1]$, to appear.
- [5] L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1971), 418-436.
- [6] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65.