Invariant Regular Sequences in the Brown-Peterson Homology BP,

Katsumi Shimomura* and Chié Takamura*

(Received August 25, 1989)

§1. Introduction

The Brown-Peterson ring spectrum BP at a prime number p induces the Hopf algebroid (BP_*, BP_*BP) with the right unit $\eta: BP_* \to BP_*BP$ given by the unit $i: S \to BP$ of the ring spectrum (cf. [1]), and the coefficient ring BP_* is the polynomial ring $Z_{(p)}$ $[v_1, v_2, \cdots]$ over Hazewinkel's generators v_k . A sequence $S: \alpha_0, \alpha_1, \cdots, \alpha_n$ of elements α_k of BP_* is an invariant regular sequence of length n+1 if $\eta\alpha_0=\alpha_0$, $\eta\alpha_k\equiv\alpha_k$ mod J_k for k>0, and α_k is a non-zero divisor of BP_*/J_k for each $k\geq 0$, where J_k denotes the ideal $(\alpha_0, \alpha_1, \cdots, \alpha_{k-1})$ of BP_* . Let the sequence S be invariant regular, and P.S. Landweber [2] showed that $\alpha_k=v_s^{kk}+(lower)$ for some positive integer s_k for each k. Here (lower) denotes an element of the ideal $(p, v_1, v_2, \cdots, v_{k-1})$. A sequence $S:\alpha_0, \alpha_1, \cdots, \alpha_n$ is not always invariant regular even if $\alpha_k=v_s^{kk}+(lower)$. E. Tsukada [8] investigated the case that (lower) = 0, and gave the necessary and sufficient condition on the integer s_k that a sequence S is invariant regular. The case that $(lower) \neq 0$ for odd prime p is studied partially by the first named author [6].

Consider the sequence

$$(1.1) S: \alpha_0, \alpha_1, \cdots, \alpha_n$$

with $\alpha_0 = p^e$ and

$$\alpha_k = v_k^{s_k} + (lower),$$

where $e \ge 1$ and $s_k = p^{i_k} e_k > 0$ with $i_k \ge 0$ and $p \not\mid e_k$ for each k. For a prime number p, an integer $a_{n,u}(n \ge 2, u \ge 0)$ is defined by

(1.3)
$$a_{n,u} = p^{u} \quad \text{if} \quad 0 \le u \le n - 1,$$

$$a_{n,u} = p^{u} + p^{j}(p-1)(p^{u-1-j}-1)/(p^{n-1}-1) \quad \text{if } u \ge n,$$

$$u = q(n-1) + 1 + j \ (q \ge 1, \ 0 \le j \le n - 2) \quad (\text{cf.} [3; \ (5. \ 13)]).$$

In this paper, we have the following theorems.

THEOREM E. Let p=2 and $\delta=1$ or 2. There exists an invariant regular sequence S of (1.1) if

$$2 \le e \le i_1 + \delta$$
, $0 < e_k \le a_{k+1, u_{k+1}}$ and $e_k \le p^{u_{k+1}}$ if $e_{k+1} = 1$, for $k \ge 1$.

^{*} Depertment of Mathematics, Faculty of Education, Tottori University, Tottori, 680, Japan

Here $u_k = i_k - i_{k-1} - e + 1 (k \ge 2)$, and moreover we assume $3 \le e = i_1 + 2$ and $e_1 \ge 3$ if $\delta = 2$.

Theorem 0. Let p > 2. There exists an invariant regular sequence S of (1.1) if

$$2 \le e \le i_1 + 1, 0 < e_k \le a_{k+1, u_{k+1}},$$
 and $e_k < p^{u_{k+1}}$ if $k \ge 2$ and $e_{k+1} = 1,$ for $k \ge 1.$

Here $u_k = i_k - i_{k-1} - e + 1$ $(k \ge 2)$.

In the above theorems we assume that $e \ge 2$. For e = 1, we have the following

Theorem 0. There exists an invariant regular sequence $S: p, \alpha_1, \dots, \alpha_n$ with $\alpha_k = v_k^{s_k} + (lower)$ if

$$e_k \le a_{k+1,u_{k+1}} - 2$$
, and $e_k < p^{u_{k+1}}$ if $e_{k+1} = 1$ and if $k \ge 2$ or $p = 2$, for $k \ge 1$.

Here $s_k = p^{i_k}e_k$ with $i_k \ge 0$ and $p
mid e_k$, and $u_k = i_k - i_{k-1}$ $(k \ge 2)$.

We notice that Theorem 0 is not our new result, which was studied in [6] already. In §2 we define a sequence in BP_* , which is in the above theorems, by using the element $x_{n,k} \in v_n^{-1}BP_*$ in [3]. In order to prove the theorems we study about the ideals given by the sequence in BP_* in §3.

We prove the theorems in §4 and we note the necessary and sufficient condition on invariant sequences (Theorem 5.1) in §5.

§2. Definition of sequences in BP,

We have the Hopf algebroid (BP_*, BP_*BP) induced by the Brown-Peterson ring spectrum BP at a prime number p. We also have

(2.1)
$$BP_*BP = \mathbf{Z}_{(p)}[v_1, v_2, \dots, v_n, \dots], \text{ deg } v_n = 2(p^n - 1),$$

where the v_n 's are Hazewinkel's generators, and

(2.2)
$$BP_{*}BP = BP_{*}[t_{1}, t_{2}, \dots, t_{n}, \dots], \deg t_{n} = 2(p^{n} - 1).$$

The right unit $\eta: BP_* \to BP_*BP$ of the Hopf algebroid is given by the following equalities:

(2.3)
$$\eta l_k = \sum_{i+j=k} l_i t_j^{(i)},$$

$$(2.4) v_k = pl_k - \sum_{i=1}^{k-1} v_{k-i}^{(i)} l_i,$$

where $\eta:BP_*\otimes Q\to BP_*BP\otimes Q$, and $BP_*\otimes Q=Q[l_1,\ l_2,\cdots]$ (cf. [4]). Note here that

(2.5) (k) in the exponent denotes p^k throughout this paper.

We use the notation

$$(2.6) dx = \eta x - x for x \in BP_{*}.$$

In [3], Miller, Ravenel, and Wilson defined elements $x_{n,k} \in v_n^{-1}BP_*$ and integers $a_{n,k} \ge 1$ for all primes p and $n \ge 1$, $k \ge 0$, in such a way that the next lemma holds.

LEMMA 2.7 For n = 1 and $k \ge 0$,

$$dx_{1,k} \equiv 0 \mod(p^{a_{1,k}})$$

for $n \ge 2$ and $k \ge 0$,

$$dx_{n,k} \equiv 0 \mod(I_{n-1}, v_{n-1}^{a_{n,k}}).$$

Here I_n denotes the invariant prime ideal

(2.8)
$$I_n = (p, v_1, \dots, v_{n-1}), \quad 0 \le n \le \infty,$$

the elements $x_{n,k} \in v_n^{-1} BP_*$ are:

$$(2.9) \qquad x_{1,0} = v_1, \\ x_{1,1} = v_1^2 - 4v_1^{-1}v_2 \qquad \text{for } p = 2, \\ x_{1,k} = x_{1,k-1}^p \qquad \text{otherwise,} \\ x_{2,0} = v_2, \\ x_{2,1} = x_{2,0}^p - v_1^p v_2^{-1}v_3, \\ x_{2,2} = x_{2,1}^p - v_1^{(2)-1} v_2^{(2)-p+1} - v_1^{(2)+p-1} v_2^{(2)-2p} v_3, \\ x_{2,k} = x_{2,k-1}^p - 2v_1^k v_2^{(k)-(k-1)+1} \ (b = b_{2,k}) \quad \text{for } p \ge 3, \ k \ge 3, \\ x_{2,k} = x_{2,k-1}^2 \qquad \qquad \text{for } p = 2, \ k \ge 3, \\ x_{n,0} = v_n \qquad \qquad \text{for } n > 2, \\ x_{n,1} = x_{n,0}^p - v_{n-1}^p v_n^{-1} v_{n+1}, \\ x_{n,k} = x_{n,k-1}^p \qquad \qquad \text{for } 1 < k \not\equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (b = b_{n,k}) \quad \text{for } 1 < k \equiv 1 \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (n-1), \\ x_{n,k} = x_{n,k-1}^p - v_{n-1}^b v_n^{(k)-(k-1)+1} \ (n-1), \\ x_{n,k} = x_{n,k-1}^p$$

where $b_{n,k}$ is an integer given by

(2.10)
$$b_{n,k} = (p^{k-1} - 1)(p^n - 1)/(p^{n-1} - 1)$$
 for $1 < k \equiv 1 \ (n-1), \ n \ge 2$, and the integers $a_{n,k} \ge 1$ are:

(2.11)
$$a_{1,0} = 1,$$

$$a_{1,k} = k + 2 \qquad \text{for } p = 2, \ k \ge 1,$$

$$a_{1,k} = k + 1 \qquad \text{for } p > 2, \ k \ge 1,$$

$$a_{2,0} = 1,$$
 $a_{2,1} = p$
 $a_{2,k} = p^k + p^{k-1} - 1$ for $p > 2$, $k \ge 1$,
 $a_{2,k} = 3 \cdot 2^{k-1}$ for $p = 2$, $k \ge 2$,
 $a_{n,0} = 1$,
 $a_{n,1} = p$,
 $a_{n,k} = pa_{n,k-1}$ for $1 < k \ne 1 (n-1)$,
 $a_{n,k} = pa_{n,k-1} + p - 1$ for $1 < k \equiv 1 (n-1)$.

Let n be a fixed integer greater than 1. Put $\langle k \rangle = 1 + k(n-1)$ for an integer $k \ge 0$. Then we see easily that

$$(2.12) a_{n,k} < p^k + p^{k-n+1},$$

expect for n = 2 and p = 2, and that

(2.13)
$$a_{n,\langle k\rangle} = p^{\langle k\rangle} + (p-1)(p^{\langle k\rangle - 1} - 1)/(p^{n-1} - 1) \quad \text{for } n \ge 2, \ k \ge 0,$$
$$a_{n,\langle k\rangle} = b_{n,\langle k\rangle} + p \quad \text{for } n \ge 2, \ k \ge 1.$$

Note that $a_{n,k} = p^k$ if n > k (cf.(2. 12)).

The definition (2.9) gives

$$(2.14) x_{n,\langle k\rangle} \equiv v_n^{(\langle k\rangle)} - v_{n-1}^{(\langle k\rangle)-(\langle k\rangle-n)} v_n^{-(\langle k\rangle-1)} y_k \bmod (p) \quad \text{for} \quad n \geq 2, \ k \geq 1$$
 for a certain element $y_k \in BP_*$.

Consider a sequence of positive integers

$$E: e, s_1, \dots, s_k, \dots$$

which satisfies

$$(2.15) s_k = e_k p^{i_k}, \ p \not k e_k \quad \text{for} \quad k \ge 1,$$

 $0 < e \le i_1 + \delta, 0 < e_k \le a_{k+1}$ and $e_k \le p^{u_{k+1}}$ if $e_{k+1} = 1$ and if $k \ge 2$ or p = 2, and moreover

$$e = i_1 + 2 \ge 3$$
 and $e_1 \ge 3$ if $\delta = 2$,

where

(2.16)
$$u_k = i_k - i_{k-1} - e + 1 \ge 0 \quad \text{for} \quad k \ge 2,$$
$$a_k = a_{k,u_k},$$

and δ is an integer such that

(2.17)
$$\delta = 1$$
 if p is odd, and $\delta = 1$, 2 if $p = 2$.

For the sequence E, define the sequence

$$(2.18) V^E: \alpha_0, \ \alpha_1, \cdots, \ \alpha_k, \cdots$$

with $\alpha_k \in BP_*$ by

$$\alpha_0 = p^e$$

$$\alpha_1 = v_1^{s_1} \text{ if } p > 2 \text{ or } i_1 = 0, \text{ and}$$

$$\alpha_1 = x_{1,1}^g \text{ otherwise,}$$

$$\alpha_k = v_k^{s_k} \text{ for } k > 1 \text{ if } e_k = 1, \text{ and}$$

$$\alpha_k = x_{k,u_k}^f \text{ otherwise,}$$

where $g = s_1/2$, $f = e_k p^u$ and $u = i_{k-1} + e - 1$. We denote V_k^E for the subsequence

$$(2.20) V_k^E: \alpha_0, \alpha_1, \cdots, \alpha_{k-1}$$

of V^E .

On the above equalities, $\alpha_k = x$ means

(2.21)
$$\alpha_k = x^* \text{ if } x = x^* + \Delta x \text{ and } \Delta x \in (V_k^E),$$

where (V_k^E) denotes the ideal of BP_* generated by V_k^E .

The next proposition shows that this definition is well-defined.

Proposition 2.22. The element α_k in (2.18) belongs to BP_* for each k.

PROOF. We proceed by induction on k. The case k = 0 is clear since $\alpha_0 = p^e$. For k = 1, we compute

$$\alpha_1 \equiv x_{1,1}^g \equiv v_1^{s_1} - 2s_1 v_1^{s_1 - 3} v_2 \mod(2^e)$$

if p = 2 and $i_1 \ge 1$, and

$$\alpha_1 = v_1^{s_1}$$

if p > 2, or $i_1 = 0$. Therefore, we see that $\alpha_1 \in BP_*$. Besides, we have

(2.23)
$$v_1^{s_1} \equiv 2s_1 v_1^{s_1-3} v_2 \mod(V_2^E) \quad \text{if} \quad p=2 \quad \text{and} \quad i_1 \geq 1, \text{ and}$$

$$v_1^{s_1} \equiv 0 \mod(V_2^E) \quad \text{otherwise,}$$

and so,

(2.24)
$$v_1^s \equiv 0 \mod(V_2^E)$$
 if $s \ge s_1 \ (+3)$ if $p = 2, \ \delta = 2$ and $i_1 \ge 1$.

For $k \ge 2$ we note the following consequence of the binomial theorem.

Observation 2.25. In BP_* , if $x \equiv y \mod(p, \alpha)$, then

$$x^{(n)} \equiv y^{(n)} \mod(p^{n+1}, p\alpha, \alpha^p)$$
 for $n \ge 1$.

Suppose that $\alpha_i \in BP_*$ for $0 \le j \le k-1$, and that

(2.26)
$$pv_n^s \equiv 0 \mod(V_{n+1}^E)$$
 if $s \geq s_n$, and $v_n^s \equiv 0 \mod(V_{n+1}^E)$ if $s \geq s_n (+p^{i_n-e+1}+p^{i_n-e})$ if $e_n > 1$, for $n \leq k-1$.

If $u_k = 0$, then $\alpha_k = v_k^f$ by (2.19), and so $\alpha_k \in BP_*$ and further (2.26) holds. For $1 \le u_k < k$, we obtain the congruence

$$x_{k,u_k}^{f'} \equiv v_k^{s'_k} - e_k v_{k-1}^{(l)} v_k^{s'_k - (l) - (l-1)} v_{k+1}^{(l-1)} \mod(p, \alpha)$$

by (2.9) where $s'_k = p^l e_k$, $l = i_k - e + 1$, $f' = e_k p^{i_{k-1}}$, and $\alpha = v_{k-1}^{s_{k-1}}$. Note that $f = p^{e-1} f'$ and apply Observation 2.25 to this, and we get

$$x_{k,u_k}^f \equiv v_k^{s_k} - e_k p^{e-1} v_{k-1}^{(l)} v_k^{s_k-(l)-(l-1)} v_{k+1}^{(l-1)} \mod (p^e, p\alpha, \alpha^p).$$

In case $u_k \ge k$, similar calculations with (2.14) give

$$\alpha_k \equiv v_k^{s_k} - p^{e-1} v_{k-1}^{(l)-(l-k)} v_k^{s_k-(l)-(l-1)} y \mod (p^e, p\alpha, \alpha^p)$$

for some $y \in BP_*$. Since $(p^e, p\alpha, \alpha^p) \subset (V_k^E)$ by (2.26), the above congruences imply

$$\alpha_{k} \in BP_{*}$$

(see (2.21)), and (2.26) for n = k, which shows the proposition and (2.26) inductively. q. e. d.

§3. Invariant sequences

We recall [2] the definitions of invariant and regular sequences. Let $\alpha_0, \dots, \alpha_n$ be a sequence of elements of BP_* . We call the sequence *invariant* if $d\alpha_0 = 0$ and $d\alpha_k \in (\alpha_0, \dots, \alpha_{k-1})$ for k > 0, and regular if $(\alpha_0, \dots, \alpha_n)$ is a proper ideal, $a_0 \neq 0$ and α_k is not a zero-divisor on $BP_*/(\alpha_0, \dots, \alpha_{k-1})$ for k > 0 (see (2.6) for d).

We prepare some lemmas to prove Theorems E, O, and 0. To state lemmas, we use the following notations.

For a given ideal $J = (p, \alpha_1, \dots, \alpha_k, \alpha)$, we denote an ideal $J^{i,n}$ by

$$J^{i,n} = (p^{i+1}, \alpha_1^{(n)}, \dots, \alpha_k^{(n)}, p\alpha^{(n)}, \alpha^{(n+\nu)}),$$

where $v = \min\{i, 1\}$.

For u_n in (2.16), we provide the integer a_n by

$$(3.2) a_n = a_{n,u_n}.$$

LEMMA 3.3. Let $K = (p, v_1, \dots, v_{n-2}, v_{n-1}^{a_n})$. Then

$$K^{e-1,i_{n-1}} \subset (V_n^E),$$

if $n \ge 3$, $e \ge 2$.

PROOF. We shall show that every generator of $K^{e-1,i_{n-1}}$ belongs to (V_k^E) . It is clear that $p^e \in (V_n^E)$. By using (2.12), (2.16) and (2.15), we get the inequality

$$p^{j} > p^{i_k}a_{k+1} + p^{i_k-e+1} + p^{i_k-e} \ (j=i_{n-1}) \text{ if } e-1 \ge 2 \text{ or } n \ge 4$$

 $p^{i_2} > s_1 \ (+3 \text{ if } \delta = 2 \text{ or } u_2 \ge 2) \text{ if } e-1 = 1 \text{ and } n = 3,$

for $1 \le k \le n-2$, which implies that

$$v_k^{(j)} \in (V_n^E)$$

by (2.26) and (2.24).

We also have inequalities

$$p^{j}a_{n} \ge p^{j}a_{n}$$
 and $p^{j+1}a_{n} > p^{j}a_{n} + p^{j-e+1} + p^{j-e}$

by (2.12) and (2.15). Use (2.26) again, and both generators $p\alpha$ and $\alpha^p(\alpha = v_{n-1}^{p^j a_n})$ belong to (V_n^E) .

q. e. d.

To prove that the sequences are invariant, we use the following lemma related on d in (2.6).

LEMMA 3.4. Let $p \ge 2$ and $J = (p, \alpha_1, \dots, \alpha_k, \alpha)$. In BP_*BP , if $dx \equiv 0 \mod J$ for $x \in BP_*$, then $dx^{(n+i)} \equiv 0 \mod J^{i,n}$.

PROOF. Since $dx \equiv 0 \mod J$, $dx = a\alpha + pb + \sum c_j \alpha_j$ for some $a, b, c_j \in BP_*BP$. Then

$$dx^{(n)} \equiv (x + a\alpha + \sum c_j \alpha_j)^{(n)} - x^{(n)}$$

$$\equiv 0 \mod J^{0,n},$$

which shows

$$dx^{(n)} = a'\alpha^{(n)} + pb' + \sum c_j{'}\alpha_j^{(n)} \qquad (a', \ b', \ c_j{'} \in BP_*BP).$$

Hence

$$dx^{(n+i)} \equiv (x^{(n)} + a'\alpha^{(n)} + pb')^{(i)} - x^{(n+i)}$$

$$\equiv (x^{(n)} + a'\alpha^{(n)})^{(i)} - x^{(n+i)}$$

$$\equiv 0 \mod J^{i,n}$$
 q. e. d.

§4. Proofs of Theorems

In this section we shall prove Theorems stated in §1.

PROOF OF THEOREM E. For n = 1, it is trivial. For n = 2, see [2; pp. 503-504]. We easily read off the case n = 3 from [6; Lemma 2.5] and [5; Th. 1.5].

Now proceed by induction. Let $n \ge 4$. The definition (2.19) indicates

$$\alpha_n = \beta_n^{(u)}$$

for $u = i_{n-1} + e - 1$ and $\beta_n = x_{n,u_n}^{e_n}$. Lemma 2.7 shows

$$d\beta_n \equiv 0 \mod K$$

where $K = (p, v_1, \dots, v_{n-2}, v_{n-1}^{a_n})$ (see (3.2) for a_n). Therefore it follows from Lemma 3.4 that

$$d\alpha_n \equiv 0 \mod K^{e-1,i_{n-1}}$$
.

On the other hand, we have

$$K^{e-1,i_{n-1}} \subset (V_n^E)$$

by Lemma 3.3. Hence

$$d\alpha_n \equiv 0 \mod (V_n^E)$$
,

and V_{n+1}^{E} is invariant regular. Thus we complete the induction.

q. e. d.

PROOF OF THEOREM O. For $n \le 3$, we can read off the result from [2], [6; Lemma 2.5], and [3; Th. 6.1] as the proof of Theorem E.

For $n \ge 4$, we also use (2.19), Lemmas 2.7, 3.4, and 3.3 as the proof of Theorem **E** to complete the induction.

q. e. d.

PROOF OF THEOREM 0. For odd prime p, it is proved in [6; Prop. 3.8]. We have the case p=2 by noticing that the proof for odd p ibid. is also valid for p=2.

q. e. d.

§5. Concluding remarks

We studied about a pre-MRW sequence in [6], and added some more conditions in order to prove that the sequence of BP_* arisen from the pre-MRW sequence is invariant regular. We here call a sequence of integers pre-MRW if it satisfies (2.5). In this paper we have proved this invariantness without any conditions to be added if $e \ge 2$. Therefore we can rewrite [6; Prop. 3.9] together with our theorems in §1 as follows:

THEOREM 5.1. Let E be a sequence of integers e, s_1 , s_2 ,..., and suppose $e \ge 2$. Then the sequence V_n^E is invariant regular if and only if the sequence E satisfies (2.15).

We note that the case p = 2 is also valid though [6; Prop. 3.9] treats only the case p > 2.

As an application of invariant regular sequence, we know that we can construct a spectrum YJ with $BP_*YJ = v_n^{-1}BP_*/(J)$ for an invariant regular sequence J of length n and an odd prime p such that $n^2 + n < 2p$ ([7; Th. 5.7]). Thus Theorem O shows us some examples of spectra YJ.

We also know that an invariant regular sequence gives rise to an element of the E_2 -term of the chromatic spectral sequence (cf. [6; Lemma 2.5]) which converges to the E_2 -term of the Adams-Novikov spectral sequence converging to the p-component of the stable homotopy groups of spheres (cf. [3]). This means that an invariant regular sequence in the theorems in §1 may survive to the stable homotopy and give a new element in it.

We lastly note that the detail computations of this text will appear in [9].

References

- [1] J. F. Adams, Stable homotopy and generalized homology, University of Chicago Press, Chicago, 1974.
- [2] P. S. Landweber, Invariant regular ideals in Brown-Peterson homology, Duke Math. J. 42 (1975), 499-505.
- [3] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
- [4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [5] K. Shimomura, Novikov's Ext² at the prime 2, Hiroshima Math. J. 11 (1981), 499-513.
- [6] K. Shimomura, Note on invariant regular ideals in BP*, J. Fac. Educ. Tottori Univ. Nat. Sci., 37 (1988).
- [7] K. Shimomura and Z. Yosimura, BP-Hopf module spectrum and BP*-Adams spectral sequence, Publ. RIMS, Kyoto Univ. 21 (1986), 925-947.
- [8] E. Tsukada, Invariant sequence in Brown-Peterson homology and some applications, Hiroshima Math. J. 10 (1980), 385-389.
- [9] C. Takamura, Invariant regular sequences in BP-homology, Graduation Thesis, Tottori Univ., 1990, forthcoming.