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§1. Introduction

In their paper [3], Miller, Ravenel, Wilson defined elements x, , to determine the E,-
term E%'(n) (n= — 1) of the chromatic spectral sequence which converges to the E,-
term of the Adams-Novikov spectral sequence converging to the stable homotopy of
the Smith-Toda spectrum W{(n) at a prime p. Here ¥ — 1) denotes the sphere spectrum
localized at p. They gave E5(— 1) for s + ¢t £ 2 and p > 2, and E%'(n) for (s, t) = (0, 1)
and all primes p. We need to investigate the elements x,, to proceed the computation
according to the way they gave. In this paper we redefine the clements and gave
similar but deeper results than theirs (see Propositions 3.1 and 4.1). The results of §3
will be used to compute the E,-term E}*(1) of the chromatic spectral sequence for V(1)
in a forthcoming paper. In this way we shall also use the results of §4 to determine
the other E,-terms of the chromatic spectral sequences.

Let BP denote the Brown-Peterson ring spectrum at a prime number p. The unit
map of the ring spectrum induces the right and the left units of BP,BP. We regard the
left unit as the inclusion BP, = BP,BP. Quillen [5] gave the formula for the right
unit in BP,BP ® Q, and Ravenel simplified it modulo some ideal in BP,BP in [6] and
translated it explicitly in BP,BP in [8;§4]. In §2, we rewrite the Ravenel’s formula
(Proposition 2.1) and use it to compute the image of the right unit map for the
Moreira’s elements u, , which is defined only for k < n in [2] and for k > n in (2.8) here
(Proposition 2.2). We define the elements X, in §3, which is congruent to x;, of [1]
modulo some ideal, by using the Moreira’s elements, and compute their differentials in
a cobar complex. The manner to define X, gives the similar elements for x, , with n
> 3 and we compute their differential similarly to the case n =3 in §4.

§2. On the right unit of BP, BP

Let BP denote the Brown-Peterson spectrum at a fixed prime p. Then it gives us
the Hopf algebroid (BP,, BP,BP)(cf.[8]) and

BP* = Z(p)[vlavZ:»"']sBP* ® Q = Q[lb 12>"'] and BP*BP = BP*[th tz»"'],

where |v;] = |l = |t;] = 2p' — 2, [, = [CP"'/p'] and v, are Hazewinkel’s generators
given by the equality:

_ n—1_pi
U, = pln - Zi:l Un—ili'
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A summation ' of the formal group law F associated with BP is given by
YFa; =exp(}, log a)
where
logx =Y., 1x" (I = 1) and exp(log x) = x.
The right unit 4: BP, — BP,BP satisfies the following congruence:
(2.1)[6; Th. 1] Y e LV} = Ym0 0:t? mod (p) (vo = p)-

In order to study this, we recall [8;§4.3] the following: For a set S, we inductively
define a polynomial w(S) in the polynomial ring Z[S] by the equality

Yies S = P WSy
Note here that wo(S) = Y5 s and wi(S) = (¥,.55” — wo(S))p.
Let J=(1 Jjz Jw M=0, including J=¢) be a sequence of positive
integers. Then we use the following notation:
I =m, |T] =3, e wiS) = wyS)""" ™" and v, = v(v,)” € BP, for J = (j, J').
For a subset 4 = {a,;} of BP,BP, we set the subset
(2.2) Ay = {a;li +j=n}U > olowilAu_ sy} for nz0
of BP,BP and obtain
(2.3)[8; Lemma 4.3.11] La =Y owo(d,) mod (p) in BP,BP.

Considering the homogeneous part of a formal sum, we find the following:

24) If Zf>0a,, = Zf>ob,, mod (p) and |a,| =|b,| =2p" —2 for each n, then
a, = b, mod (p).
We now define the element
WEH = .,

To=1and T, =1+ 08{W 541 Sio ) — Wi+t Rz ) 37 izl

for the subsets § = {p;£2'} and R = {t;nt?"} of BP,BP (cf. (2.2)). Note that it satisfies
the following congruence:

2.5 T;=tf mod (p, vy,---, v;-y) for iz L
ProrosiTION 2.1.  For n = 1, we have the congruence
S o tmutl =30 o, TE mod (p) (vo=p, to=1).
Proor. It follows immediately from (2.1-3) that

S oWolR,) = X0 tvl = 3 vt =Y wo(S,) mod (p).

Since |R,| =1S,| = 2p" — 2, we apply (2.4) to obtain
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(2.6) wo(R,) = wo(S,) mod (p).

On the other hand consider a sequence J with |J| > 0, and we have J = (j, I) for
some integer j > 0 and sequence I, and

[ =11+ 1, 1T = 1]l +Jj, and v, = v;(0)""
These equalities imply
Wo(U 00 Wi ) = Xps o 1 0{0f Wi (P71 mod (p)
for a set A, since wu(AUB) = wo(A) + wo(B). Applying this congruence to (2.6), we
have the lemma by (2.2). g.e.d.
By way of example, we have the well known formulae (cf. [6]):
(2.7 N, =0, + 0, 22" —vP_, t; mod (p, vy,-+-, v,_,), and
Hog = v4 + 0380 + 0215 — 0] — v5’t, mod (p, vy).
We now study the elements u,; of v, 'BP, for each n =2 and i = 0 defined by:

(2.8)(cf. [2;p. 1263-4]) wu,o=1v, ", and
the congruence

14 =y Dnritih; = O for r 2 1, which also satisfy

Yt jorthy 004 ;=0 mod (p) for r= 1.
Consider the algebra
C(n) = Z/p[vw vy ' Vui1s Unrzowoity, oo
Then we have the algebra
B=Bn r)=Cn)®,Z/p[FI/(F*') for n=2 and r = 1.
used in [2] whose multiplication is given by
€L @F) e, ®f)=c1cf QFf
for ¢y, c,eC(n) and fe Z/p[F]/(F'*'). We make use of the following notation:

(2.9) For an element xecv, 'BP,, e,(x) denotes an element of C(n) such that
*

nx = e,(x) mod I,.

Define elements
(2.10) Wao =0, and w,, =3"_ el )T " (n22, r=1) in v, ' BP,,

J

and we obtain the following

PROPOSITION 2.2. Let n and r be non-negative integers with n = 2. Then we have

= P -1
nu,,’r - Zi+j=r”n,itj Wn,r vn—lwn,r+1’70n mOd In~1 + (U:I;-— 1)
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in v, 'BP,BP, where I, = (p, vy, 03, Ug_1).

Proor. Let J denote the ideal I,_, + (v2-;). In case r = 0, it follows immediately
from (2.7), since we have
(2.11) vopvy b =1 — v, 2 e, mod J.

The congruence #u,; = e (u,;) mod I, implies nu,_; = e, (uf,_) mod J for i=1.
Besides we have the congruences
Hops; = €(Uprd) + 0, TP mod J for i=0
by Proposition 2.1, and the equality
My = — 70, D0 Oy U,

given by (2.8). Then we obtain nu,, = e,(,,) — Uy— 1 Wn,+110, ' mod J by using (2.11).
Now we study e,(u,,) in a same way as that of [2:(7)]. Consider the elements

L= t;F, M=% v, F, N=) _nv,,;F, and L = S TP F!
of B*(t, = 1). By (2.8), we have
Mt =" u, FL N =3 nu, FL
Proposition 2.1 shows that LN = ML' in B, and so
M 'L=LN"1,

u, ;7" = nu,, + wt, mod I, by comparing the coefficient of F”.

which gives Y, ._, ;1]
g.e.d.

The following is a corollary of Proposition 2.2.

PrROPOSITION 2.3. Let n and r be positive integers with n = 2. Then we have
i-1
dlwn,r = — ZO<i<r Wn,i ® ttl"—i + Cn,r mOd Im

where v, ,C,, = Aut,_; — At,_ymod I,_, (4,t,€ C(n) @ gp, BP,BP: 4,1, = At mod I,),
especially C,, = 0ifr <n,and C, ., = b,_, (by [8 Corollary 4.3.15]). (See (3.1.2) for
the definition of d,).

Proor. First we notice that

(212) If dyx=y+v,_,z mod J and dyy=w + v,_, u mod J with we C(n), then
w=0and diz= —u mod I,, where J =1,  + (v_,).

In fact, we have w + v,_,u + v,_;d,z = 0 mod J by applying d,, which implies w = 0
mod I,, and hence w = 0 since we C(n). Let d, xeC(n)( &Q pp BP,BP if i =1) be an
element satisfying d,;x =dxx modI, for i=0 or 1. Then, dou,;=dyol:
— Uy 10 W,y and dit,_y =d, t,_y +,.,C,,,, by definition. Therefore, the
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hypothesis of (4.4) holds by Proposition 2.2 for

— e o -1
X = un,r—l, y = dn,Oun,r—l, Z = — Uy W”,,.,

— pt pi
W= cia (nothy; ® 2 i+ Uy i@y 8y )+ oy oy —dywE,
i—-1
and vnu = - 20<i<r Wn,i ® trlf—i + Cn,r;

and we have the proposition. g.e.d.

§3. Some elements of v; 'BP, and their differentials

In this section we assume that the prime p is odd.
For a BP,BP-comodule M with coaction i, the cobar complex (2*M, d,) is

3.1.1) QM =M & pp, BP,BP Qp, - & pp,BP,BP (¢ copies of BP,BP)
and differential d;: Q'M — Q'"'M given by

(3.1.2) dom=ym—mRL, dmQ@x=dm@@x+m&d,x,
dix=1Rx—Adx+xQ 1 and
dmQ@xQy=dm@x)Qy-—mRxQd,_y

for meM, xeQ'BP, and yeQ'"'BP,. The homology of the complex (2*M, d,) is
denoted by

(3.1.3) H*M = Ext}p pp(BP,, M).
From here on we use the following notation:
(3.2) M =v;'BP,, the BP,BP-comodule with coaction n, and
MTI = v;'BP,BP = Q' M,
J(k) = (p, vy, V8), the invariant ideal of M or MI generated by the every entry; and
=1y, U=z, wi=w,,;, and W; = wy .
Now define elements X; of M by
(3.3) Xo=v3 X, =05+ z(1), X, = X% — z(2),
X:=X5+y3)+23), X, = X§ — u(d) + z(4),
X;= X7 + y@) — u(@) + z(i) for odd i = 5, and
X; = XV — 2u(i) + z(i) for even i = 6.
Here,
(3.3.1) 2(1) = v5vi Uy, 2(2) = o8’ P08 P U, and z(i) = S0P U, (i = 3);
y(i) = v X a1 2 3); and u(i) = 50X Phu, (i = 4),

for the integers
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(3.3.2) aiy=p' +(p— D —D/(p*—1) (odd i = 1), and
a(i) = pa(i — 1) (even i = 2);
bi)=p 2 p +p+1) ((22); and () =p""Hp* —p— (i 2 2).

Note that a(i) = a,; and X; = x3,; mod J(a(i) + 1) for a3; and x;,; of [1], and that b(i)
=a(i)+a(i—1)+1 for i=2
Consider the Hopf conjugation c¢: BP,BP — BP,BP, and we have

Cty= —ty, cty = —t, + 871, and cty = — t5 — t,¢tf — tycth mod (p, vy)
(cf.[1:(1.4)]). In [2;Def.6.2.1] the cycle {5( = T, in [2]) of MTI is defined by
(3.4.1) {,=A— B+ C?,
where
(342) A= U,8 + U8 + Ugts, B= U cth + Ubets, and C = Uglt,cth + t3).
It satisfies
(34.3)[2; Th.6.2.1.1] doUy = {5 — (§ mod J(1).

On the other hand we have d,U,; = 4 — W5 mod J(1) by Proposition 2.2. Then these
imply

(3.4.4) {,=— B+ C?+ W5 mod J(1),

and so {3 = — B+ C + W; mod J(1), which gives

(34.5)  W,=D — BP + (U, 4+ Ugty)t?” mod J(1) for D= U &5+ — Ubiicty,
since D = U, (5 + ct}) + (U§ct} + C?). We also use the cycle

(3.4.6) 0y =gty — ubcty + u (= T, in [2]) of v; ' BP,BP,

which satisfies

3.4.7) dou, = ¢, — {8 and {, = — ugct, + wy mod I,

ProrosiTioN 3.1 (cf. [1;Prop.5.17]). Mod J(1 + b()),

2 .
doX; = 0,88 =003 W, i=0,
= 038 e, — o TR i=1,
= 5 X1 — 52D (ugt, — W) i=2,

= U%(:}’)XIZI——ItI - 02(3)XC1(2)(W2 + u0t2 - C - W3) l = 3)

= 80X P — oD ((, — (5 + uots) even i = 4,
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= BOXP 1y — O (L — L+ W) odd i 5.

Here b(0)=1 and b(1)=p + 1.

PrRoOOF. We prove this in a same manner as [1; Prop.5.4] using

(3.5)(cf.[1; Observation 5.87]) Let xeM, ye MTI, and I = M be an ideal. If dx =y
mod(p, DM, then dx* = y* mod(p, I")MT.

Computation of the differential is based on (3.1.2).
For the case i = 0, it follows from (2.7) for n = 3. Inductively we see the cases for
i=1, 2 by (3.5) and Proposition 2.2. For i = 3, we use the equalities:

(3.6) a()) —p+1=pa(i — 1) for odd i, X?’237 = X?-! mod J(a(i — 1) — p) and
ubth + ey(u)tf = wy,

given by (3.3) and (2.8-10).
We compute

doy(3) = v§I X571ty — vF P XETHY — SO X Pe(u)t]
— 5Pty + 50D Uytyet?” + o5 W, mod J(1 + b(3))
by Proposition 2.2 and the case for i =2. Proposition 2.2 also gives
doz(3) = 5P v (U, t8* 4 U, 5 + Uyts — W) mod J(1 + b(3)).
Now we have the case for i = 3, noticing the congruences
pBI(X PP — X B2t = — 5P U, 2 and
B vBU, — ud)tE = — 5P XPubts mod J(1 + b(3)).
Notice also
P XD W = p¥®(X P wE — v U, 12" mod J(1 + b(4)), v5Pu, = —u, X,
VB TIWE = — X 1P + 08oBD mod J(p?), ugth — uBer T + ugty = {y — uhi3,
W + 52U Lugt,wh = D — B? + Uyt mod J(1), and X% = v§" mod J(p?),
which follow from (2.8-10), (3.3) and (3.4.5-6). Then we obtain
dou(d) = v5V X G2PY(3)e; + o5V~ XTIwh + o5V, — ubth + uot, + B)

mod J(1 + b(4)) by the case for i = 2, Proposition 2.2 and (3.3). Now the case i = 4
follows from (3.4.4), (3.5) and the congruence

(3.7) doz(i) = V59055 — (§) mod J(1 + b(i)) (i = 4)

shown by (3.4.3).
For i = 5, we use the congruence
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(3:8) dou(i) = 5905, — (8) mod J(1 +b() (i=4)

shown by (3.4.7). If i is odd = 5, then we see the proposition by the conguences
(3.7-8) and

doy(i) = v3 " XPT Nty — uBty) — v5Pv$0e(u,)}
mod J(1 + b(i)) obtained by Proposition 2.2. For even i = 6, use
dou(i) = 5O X P 2y(i — D2 + BP0 (uot, — wh) mod J(1 + b(i)) (i = 6)

given by Proposition 2.2 and (3.3), in place of d,y(i) of odd case. Thus we complete
the induction. g.e.d.

§4. Some elements of v, 'BP, for n >4 and their differentials

In this section we give a similar result to Proposition 3.1 for n = 4, and so we fix an
integer n = 4. Then we use the following notation as §3:

(4.1) M = v, 'BP,, the BP,BP-comodule with coaction n, and
MI = U,,_lBP*BP = Q'M;

JK) = (, Visey O4my Ohoy) and LK) =J(p* + p*™% + 4 P 1) the invariant
ideals of M or MI'; and

u u []1 = Upis Wi = Wy 1,5 VV: = Wi and E(X) = en*l(x)~

i Yn,is

We begin with the definition of the elements X;:
42) Xy=uv,, X;=XP_,+z2(i) for 1=<is<n—1,
X=X+ () for i=n—1+jwithl<j<n—1, and
Xi=XP i+ D)+ (—Vu@) for i=kn—1)+jwith1<j<n-—1and kz 2.

Here the elements z(i), y(i) and u(i) are given by:

(4~2-1) Z(i) = (_ 1)1'“lvg(i',il)ug"—a(i—Liani,
Yy = (— 1)~ 1@ty X P 2ai=19 gnd

u(i) = (— l)ivﬁ(91 ui—n+1Xpi_nH_a(i_"’i_'ﬁ1)

n—1 ’

and the integers a(i, k) and b(i) are:

4.2.2) a(i, k) =0 ifi<k—1 or k=0,
ai, y=p' +p 4+ 4+ p Y for 0<i—k+1<n~—1,
a(i, k) = pa(i — 1, k) Jor O0<i—k+1%1n-—1),
a(i, k) = pa{i — 1, k) + p* — 1 for 1<i—k+1=1(@m—1), and
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4.2.3) b2n — 1) =p* 1 4 p¥ "2 4. 4 p"T 4+ 2p", and
b)) = pb(i — 1) + p"~ Yy for iz 2n
An easy calculation brings the equalities on these integers
424)  a, j=p+p T P TT (- DT = D" - 1), and
b(i, )=p +p 4 4 p T2 L 2p T 4 P 4 P

Here the integer j for given integer i satisfies the following:
4.3) i=kn—1)4+jwithl<j<n-—1,
for an integer k. We have some relations between the integers defined in (4.2.2-3):
(4.4) a(i, j)=ali, 1) +ai —r, j—r) for 0=r=j

pai—j, ry+p =ai—j+r r)+1, and

b(@) + a(n — 1, vy = p~"b(i + r).

Using the Hopf conjugation ¢, Moreira defined the cycle { by:

(4.5)[2; Def. 6.2.1] (= Zl§r§ssn vl (Zq L Let?l P
and showed
(4.6)[2; Th.6.2.1.1] doU, ={ — ¥ mod J(1).

On the other hand, Proposition 2.2 says
doU, =30 _ U, 7" — W2 mod J(1).

Therefore we obtain

(4.7) We=("—(+3) U&7, and
W,=0-10%

where,

(4.8) S0 WS U/ S S X7 AL

In fact we have the following by comparing with (4.4):

(4.9) (=0 =30 Ut

To state our results, we define the following elements for the integers i and j in (4.3):

(4.10) A(, ) = (= 1y Ty X et L gplTr
Az(i, 1) = (— 1) Lpe@hppi—ai=Li=Dyy ™" for 1 <i<n-—1,
Ay, 1) = (= 1Y oy, XPIAGT NI for iz n.

; (Y tr—=s,a(,j+t1=s)+ps~tai—j,ry+ps-1 ps-1 Jrr—g(j+r—1,j+ 1 +r=s) pn27rEs
B(l r S)'—( 1) Up—1 e(uj s+1)Xf’ j=r J I t ’
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N e+l i—a(j—1,f
By(i) = v X PG I,
N b(E it legi—ni-n+1
Bu(l) - Dn(i)erIt,—l ¢ )wlp—n+1:

C(l r S) _(_ 1)1’—n+1+r—svps“1r“1b(i-i—1+r~s)e(ups‘1 )Xp"‘""‘1+V—~a(i~n+r,i—n+2+r—s)tp"‘r+s
50 - n- r

i~n+2-s i—j—r ’

D) =DZG) + Y.:_,>"_ DUG, r, s),
DZ(i) = (= 1)" "ok ofOr T - %),
DU, r, s) = (— 1)"~1pp® g @ yp 2?7,
E() = (= Dol Vol =W,y for 1Sisn—1,
E=E@m—1)=(— 1yt tmpp i man=2em 0@ — (%),
Here
(4.12) pd) =p'+ -+ p" and g(i) = p' - —pTT

Before stating our results we give some relations about these elements. The
definition give rise to the following relations:

@.13) AG, 1) = AG — 1, 7 + Az(, ¥) mod J(I +a(i, i + 1)) for 1<r<isn-—1,

A, )= A — 1, r)» + Ay(i, ¥) mod L() for iznifi—r #0 (n—1),

I1}

A(L, §) = Az(i, i) mod J(1 +ali, i+ 1)) for iSn—1, and

I

)
A(, j) = AyG, j) mod L(GE) for izn withi—j=0 (n—1).
@.14) AG P=(—1Y*"'Bi+1,r,2) mod LG+ 1) for r=21 and i=0 (n—1).

(4.15) B, r, s»=Bi+1,r,s+1)mod Li+1) if i#0 (n—1).
4.16) B(i, r, s =C(i+ 1, r, s+ 1) mod L{i+1) if i=0 (n—1).
4.17) Ci, r, s =Cli+1,r s+ 1) mod LG+ 1).

(4.18) DUG, r, s’ = DU+ 1, r, s+ 1) mod L(i + 1).

(4.19) VD Le(u) X P27 A — j, 1) = (— 1)B(, r, 1) mod L(j).

(4.20) 029D ey, )X PTG DL gy 1, F) = (— 1Y C(, 1, 1) mod L(i).

n—1

By (2.9-10), we sec that
By(l) = J va(i’{)‘F1X€i;a(jﬁ1’j)e(u5?r—r)t£)n_l mOd (p7 [T Dn~2)s

r=1"n—

and so we get

4.21) By(i)) = — le(— 1YBG, r, r + 1) mod L{i) for i=2n~— 1, and
By(i) = — le(—— (B, r, r + 1) + DU(, v, r + 1)) mod L() for n<i<2n-—2,

from the definition (4.2) and the relations (4.14-7). In a similar way, we have
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4.22) Bu() =Y"21CG, r, r+ 1) — " (= 1)'DUG, 7, ¥ + 1) mod L(j).

PrOPOSITION 4.1 (cf.[1]). &) doXo =v,_,t2" 'mod J(p).
b) doX;=Y'_ A, 1) + EG) mod J(I +a(i, i+ 1)) for 1<ign—1.
by doX, 1 =Y'_1Am—1, 1)+ E mod J(1 + a(n — 1, n)).
o) doX; =37 AG r)+ Y IISIIBG, v, 8) + DZ(E) + YIS DU, 1, 3)
mod L(i) for n <i<2n—2, and
d) doX, =7 AG N+ YN IBG, v s) + Y2 LCG, v, s) + D)
mod L{i) for i =z 2n— 1.
Proor. a) is Landweber’s formula (2.7).
b) We have §" = v! W¥ mod J(p + 2) by (2.8) and (2.10), and so a) turns into
do X} = vl_ vEWT = E0) mod J(p + 2).
By Proposition 2.2, we see that
doz(1) = v8_vE(Ugty — WE — v, _ v, ' Ws)
= Az(1) — E(0Y + E(1) mod J(p + 2).

Add these to obtain b) for i = 1. To proceed by induction, we note that (3.5) is also
valid for n. Since p(1 +a(i — 1, i)) > 1 + a(i, i + 1), (3.5) and the case i — 1 yield

doXP =" A6 — 1, 1 + E(i — 1)? mod J(1 + a(i, i + 1)).
Proposition 2.2 also implies
doz(i) = Y _, Az(i, r) — E(i — 1 + E() mod J(I + a(i, i + 1)).

Now the definition of the element implies the case i, which shows b). Then by follows
from (4.6).
c) By b), (3.5) and (4.14), we obtain

doXP_  =3""1Am— 1, vy + EP = Y"_1B(n, r, 2) + E? mod L(i).
Here we note that the definition of the differential shows
(4.23) doxy = (dox)y + e(x)doy mod (p, vy,-+<, v,_,).
Apply this to dyy(n), and we have
doy(n) = i P * Hugty — w)) X221 — 8@ D¥ o)A — 1, 1) + E)X 272
=A(n, 1)—B(n, 1, 2)+ DU(n, 1, 2)+ Y"1 B(n, r, 1) + 2" 0"~ 2" 'E
mod L(n), by by, (4.10), (4.19) and (4.21). Since we see that
EP + ofL oF" 2" E=DZmn) + Y "_ DU, r, 2)
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mod L(n), by by, (4.10), (4.19) and (4.21). Since we see that
EP + pf" oF" " E =DZn) + Y _ DU, r, 2)
by (4.8), we have c) for n. Similarly we have
doX P =39 AG— 1, P+ 30 YUCIBG, v, s+ 1) + DZ3— 1P
+ 3 _ 3 DU, r, s+ 1)
by the inductive hypothesis, (4.15) and (4.18), and
doy (i) = (— 1Y 1oAYy b7 — wh X Peum LD
+ (= Do) ¥ )it An — 1, r) + E)X 2inpd- bt
=59_ (AyG, n— BG, r, r + 1) = DUG, r, v + 1))
+ LTI 1) (= 1O~ 1)

by b), Proposition 2.2, (4.23), (4.10), (4.21) and (4.19). These congruences with (4.8)
show c) for i, and c) is completed by induction.
d) For 2n — 1, we compute

doX8, ,=3""1Ben— 1,7, 20+ Y02 3" C2n— 1, r, s+ 1) + D(2n — 2)°
by (4.14) and (4.16),
doy2n — 1) = AQ2n — 1, ) = B2n — 1, 1, 2) + Y'1B2n — 1, 1, 1)
by (4.10), (4.21) and (4.19), and
dou2n — )= = Y'21Cen— 1, i, r+ 1) =3"_ (= 1D'DURn— 1, 1, r + 1)
+ 0210 — 1, 1y 1)+ (= 1T TR DD =¥

by (4.10), (4,22) and (4.20). Collect terms to get d) for 2n — 1. In a similar way we
can verify d) for i with i = 1 (n — 1) under the inductive hypothesis.
Suppose i # 1(n —1). By the case i — 1 with (4.15) and (4.17),

doX? = SI1AG P + Y S TIBG v s+ 1)+ YO ISP IICG, s + 1) 4+ DG — 1P
We also obtain
doy() = Y7 _ Ay, =Y. BG, r, r + 1)+ YIZ1BG, 7, 1)
by (4.10), (4.21) and (4.19), and
dou(i) = — Y2 1CG, v, v+ 1) = Y0 (—V)'DUG, r, r+ 1)
+ 3L CG )+ (= 1T RO, IO — %)
by (4.10), (4.22) and (4.20). Therefore d) is proved by induction. q.e.d.
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