Some Results on Generalized Functions

Yukio Kuribayashi*

(Received August 31, 1989)

1. Introduction

Applying non-standard anylysis we introduced a concept of generalized functions in [5]. It is very useful to apply the ideas of the theory of hyperfunctions in the theory of generalezed functions. In this paper we would like to show a few examples of the application. In particular, we would like to justify the equality

(1.1)
$$\left(-\frac{1}{2}\right)\delta'(x) = \delta(x) \text{ pf. } \frac{1}{x}$$

2. Definitions and sseveral properties

The following definitions were given in [5].

DEFINITION 2.1. Let $R^+ = \{y \in R | y > 0\}$, and let $F = \{(0, y) | y \in R^+\}$. Then F has the finite intersection property. We denote by \mathscr{F} one of the ultrafilters on R^+ containing F.

Let K be the set R, or the set C, or the set Map $(R, C) = \{f | f : R \to C\}$, and let a(y), $b(y) \in \prod_{y \in R^+} K$.

We define a relation \sim as follows:

$$a(y) \sim b(y)$$
, if it satisfies the condition $\{ y \in R^+ | a(y) = b(y) \} \in \mathcal{F}$.

The relation \sim is an equivalence relation. We define *K to be the quotient set $\prod_{y \in R^+} K/\sim$.

An element of the set *R (resp. *C) is called a hyper resl (resp. hyper complex) number, an element of the set *Map(R, C) is called a generalezed function of one variable. The equivalence class determined by a function $a(y) \in \prod_{y \in R^+} K$ will be denoted by $\lceil a(y) \rceil$.

We can consider the set R is a subset of the set C. The set R and C are made into commutative fields by defining the addition, the subtraction, the product, and the quotient in the usual way.

^{*} Depertment of Mathematics, Faculty of Education. Tottori University, Tottori 680, Japan

DEFINITION 2.2. (i) Let [a(y)], $[b(y)] \in R$. We define $[a(y)] \le [b(y)]$, if it satisfies the condition

$$\{y \in R^+ | a(y) \le b(y)\} \in \mathscr{F}.$$

(ii) Let [a(y)], $[b(y)] \in {}^*C$. We define [a(y)] = [b(y)], if it satisfies the condition $\{y \in R^+ | |a(y) - b(y)| < \varepsilon\} \in \mathscr{F}$ for every $\varepsilon \in R^+$

^DEFINITION 2.3 (Interval). Let [a(y)], $[b(y)] \in {}^*R$ and $[a(y)] \le [b(y)]$. We define $[[a(y)], [b(y)]] = \{[c(y)] \in {}^*R | [a(y)] \le [c(y)] \le [b(y)]\}.$

DEFINITION 2.4. We say a generalized function [f(x, y)] has a property P, if it satisfies the condition

$$\{y \in R^+ | f(x, y) \text{ has a property } P \text{ as a function of } x\} \in \mathscr{F}.$$

DEFINITION 2.5. Let [a(y)] be a hyper complex number and let [f(x, y)] and [g(x, y)] be generalized functions. Then the scalar product [a(y)][f(x, y)], the addition [f(x, y)] + [g(x, y)], the subtraction [f(x, y)] - [g(x, y)], the product [f(x, y)][g(x, y)], and the quotient [f(x, y)]/[g(x, y)] are defined as follows:

$$[a(y)[f(x, y)] = [a(y)f(x, y)],$$

$$[f(x, y)] + [g(x, y)] = [f(x, y) + g(x, y)],$$

$$[f(x, y)] - [g(x, y)] = [f(x, y) - g(x, y)],$$

$$[f(x, y)][g(x, y)] = [f(x, y)g(x, y)],$$

$$[f(x, y)]/[g(x, y)] = [(f(x, y)/g(x, y))^*],$$

where $(f(x, y)/g(x, y))^*$ is defined as follows:

$$(f(x, y)/g(x, y))^* = f(x, y)/g(x, y)$$
 for $g(x, y) \neq 0$, and
= 0 elsewhere.

We have the following theorem immediately.

THEOREM 2.6. The set *Map(R, C) is a vector space over *C.

DEFINITION 2.7 (Derivative). Let [f(x, y)] be a defferentiable generalized function. We define

$$\frac{d}{dx}[f(x, y)] = \left[\left(\frac{\partial}{\partial x}f(x, y)\right)^*\right],$$

where $\left(\frac{\partial}{\partial x}f(x, y)\right)^*$ is defined as follows:

$$\left(\frac{\partial}{\partial x}f(x, y)\right)^* = \frac{\partial}{\partial x}f(x, y) \quad \text{if } f(x, y) \text{ is defferentiable as a function of } x, \text{ and}$$
$$= 0 \quad \text{otherwise.}$$

DEFINITION 2.8 (Integral). Let [f(x, y)] be an integrable generalized function over an interval [a(y)], b(y). We define

$$\int_{[a(y)]}^{[b(y)} [f(x, y)] dx = \left[\left(\int_{a(y)}^{b(y)} f(x, y) dx \right)^* \right],$$

where $\left(\int_{a(y)}^{b(y)} f(x, y) dx\right)^*$ is defined as follows:

$$\left(\int_{a(y)}^{b(y)} f(x, y) dx\right)^* = \int_{a(y)}^{b(y)} f(x, y) dx \text{ if } f(x, y) \text{ is integrable over } [[a(y)], [b(y)]], \text{ and}$$

$$= 0 \text{ otherwise.}$$

We define the integral $\int_{-\infty}^{\infty} [f(x, y)]dx$, similarly.

According to G. Takeuti [12], we would like to use a notation $\stackrel{w}{=}$ as follows:

DEFINITION 2.9. Let [f(x, y)] and [g(x, y)] be locally integrable generalized functions and let S be a distribution. We define

$$[f(x, y)] \stackrel{\text{w}}{=} [g(x, y)]$$
, if it satisfies the condition

$$\int_{-\infty}^{\infty} [f(x, y)][\varphi(x)]dx = \int_{-\infty}^{\infty} [g(x, y)][\varphi(x)]dx \text{ for every } \varphi \in (\mathcal{D}),$$

where (\mathcal{D}) is the set of all test functions, and

 $[f(x, y)] \stackrel{w}{=} S$, if it satisfies the condition

$$\int_{-\infty}^{\infty} [f(x, y)][\varphi(x)] dx = [S(\varphi)] \text{ for every } \varphi \in (\mathcal{D}).$$

We innediately have the following theorem.

THEOREM 2.10. (i) Let [f(x, y)] and [g(x, y)] be locally integrable generalized functions.

If
$$[f(x, y)] = [g(x, y)]$$
, then $[f(x, y)] \stackrel{w}{=} [g(x, y)]$.

(ii) Let [f(x, y)] be a locally integrable generalized function, and let S be a destribution.

If
$$[f(x, y)] \stackrel{w}{=} S$$
, then $[f(x, y)y] \stackrel{w}{=} 0$.

(iii) Let [f(x, y)] be a continuously defferentiable generalized function, and let S be a distribution.

If
$$[f(x, y)] \stackrel{w}{=} S$$
, then $\frac{d}{dx}[f(x, y)] \stackrel{w}{=} S'$.

In the theory of hyper functions, the Heaviside function Y(x), the Dirac delta function $\delta(x)$, and the finite part Pf. $\frac{1}{x}$ of the function 1/x are defined as in the following:

$$Y(x) = -\frac{1}{2\pi} \text{Arg}(-x - i0) + \frac{1}{2\pi} \text{Arg}(x + i0),$$

$$\delta(x) = -\frac{1}{2\pi i} \left(\frac{1}{x + i0} - \frac{1}{x - i0} \right),$$

$$\text{Pf.} \frac{1}{x} = \frac{1}{2} \left(\frac{1}{x + i0} - \frac{1}{x - i0} \right),$$

We would like to modify the above functions as follows:

$$[Y(x, y)] = \left[-\frac{1}{2\pi} \operatorname{Arg}(-x - iy) + \frac{1}{2\pi} \operatorname{Arg}(x + iy) \right],$$

$$[\delta(x, y)] = \left[-\frac{1}{2\pi i} \left(\frac{1}{x + iy} - \frac{1}{x - iy} \right) \right],$$

$$= \left[\frac{y}{\pi(x^2 + y^2)} \right],$$

$$[Pf. \frac{1}{x}] = \left[\frac{1}{2} \left(\frac{1}{x + iy} + \frac{1}{x - iy} \right) \right]$$

$$= \left[\frac{x}{x^2 + y^2} \right].$$

THEOREM 2.11. We have the follows.

(2.1)
$$\frac{d}{dx}[Y(x, y)] = [\delta(x, y)],$$

(2.2)
$$\left(-\frac{1}{2}\right)\frac{d}{dx}[\delta(x, y)] = [\delta(x, y)] \left[Pf, \frac{1}{x}\right],$$

(2.3)
$$[x] \left[\text{Pf.} \frac{1}{x} \right] = 1 - \pi [\delta(x, y)y]$$

$$(2.4) \qquad (-1)[x][\delta'(x, y)] = 2[\delta(x, y)] - 2\pi[\delta^2(x, y)y].$$

PROOF. We shall only prove (2.2).

Since

$$\frac{\partial}{\partial x} \frac{y}{\pi(x^2 + y^2)} = \frac{-2yx}{\pi(x^2 + y^2)^2},$$

we have

$$\left(-\frac{1}{2}\right)\frac{\partial}{\partial x}\frac{y}{\pi(x^2+y^2)} = \frac{y}{\pi(x^2+y^2)} \cdot \frac{x}{x^2+y^2}.$$

Therefore we have

$$(-1/2)\frac{d}{dx}[\delta(x, y)] = [\delta(x, y)] \left[\text{Pf.} \frac{1}{x} \right].$$
 Q.E.D.

We can consider that the equality (2.2) justifies the equality (1.1).

We would like to comment that we can transform the equality (2.2) into the following:

$$(-1/2)\frac{d}{dx}[\delta(x, y)]/\left[\text{Pf.}\frac{1}{x}\right] = [\delta(x, y)],$$
$$(-1/2)\frac{d}{dx}[\delta(x, y)]/[\delta(x, y)] = \left[\text{Pf.}\frac{1}{x}\right].$$

It is well known, in the theory of hyperfunctions, that the equation $x\delta(x) = 0$ holds. We can express the equation in the form

$$[x][\delta(x, y)] \stackrel{w}{=} 0.$$

By Theorem 2.10 we have

$$(2.5) \qquad (-1)[x][\delta'(x, y)] \stackrel{\text{w}}{=} [\delta(x, y)].$$

On the other hand, we have $[x][\delta(x, y)] \neq 0$. And further, we can calculate as follows:

$$([x][\delta(x, y)])[Pf.\frac{1}{x}] = [x]\left([\delta(x, y)]\left[Pf.\frac{1}{x}\right]\right)$$
$$= [x]\left[\frac{xy}{\pi(x^2 + y^2)^2}\right]$$
$$= [x][(-1/2)\delta'(x, y)]$$

$$= (1/2)[-x][\delta'(x, y)]$$

$$\stackrel{\text{\tiny w}}{=} (1/2)[\delta(x, y)].$$

Using (2.4) and (2.5) we have

$$\lceil \delta(x, y) \rceil \stackrel{w}{=} 2\pi \lceil \delta^2(x, y)y \rceil.$$

REMARK. We can get the follows directly.

$$\int_{-\infty}^{\infty} 2\pi y \frac{y^2}{\pi^2 (x^2 + y^2)^2} dx = 1.$$

Example 2.12. Let $\delta_1(x, y) = \frac{1}{2\sqrt{\pi y}} \exp\left(\frac{-x^2}{4y}\right)$ and let $\delta_2(x, y) = \frac{1}{\pi} \frac{\sin\frac{x}{y}}{x}$. Then we have

$$(-1)[x][\delta_1'(x, y)] = [x^2] \left[\frac{1}{2y}\delta_1(x, y)\right] \stackrel{\text{\tiny w}}{=} [\delta_1(x, y)],$$

and

$$(-1)[x][\delta_2'(x, y)] = \left[-\frac{1}{\pi y} \cos \frac{x}{y} \right] + [\delta_2(x, y)]$$

$$\stackrel{\text{w}}{=} [\delta_2(x, y)].$$

Hence we have

$$\left[-\frac{1}{\pi y}\cos\frac{x}{y}\right] \stackrel{w}{=} 0.$$

Using Theorem 2.10 we have

$$\left[\sin\frac{x}{y}\right] \stackrel{w}{=} 0.$$

The last equality implies that

(2.6)
$$\left[\int_{a}^{b} \varphi(x) \sin \frac{x}{y} dx\right] = 0$$

for all test functions φ with compact support contained in the interval (a, b). The equation (2.6) is a restricted case of Riemann-Lebesgue theorem.

References

- [1] M. Davis, Applied nonstandard analysis, Wiley, 1976.
- [2] A. E. Hurd and P. A. Loeb, An introduction to nonstandard real analysis, Academic Press, 1985.
- [3] A. Kaneko, An introduction to the theory of hyperfunctions, 1, 2(in Japanese), University of Tokyo Press, 1980-1982.
- [4] H. J. Keisler, An infinitesimal approach to stochastic analysis, Memoirs AMS 297, 1984.
- [5] Y. Kuribayashi, A generalization of the comcept of functions (I), J. Fac. Educ. Tottori Univ., Nat. Sci., 27-2 (1977), 27-31.
- [6] _____, A generalization of the concept of functions (II), J. Fac. Educ. Tottori Univ., Nat. Sci., 28-1 (1978), 1-8.
- [7] _____, On the product of distributions, J. Fac. Educ. Tottori Univ., Nat. Sci., 29-2 (1980), 43-48.
- [8] P. A. Loeb, An introduction to nonstandard analysis and hyperfinite probabilistic theory, Probabilistic analysis and related topics, vol.2, Academic Press, 1979.
- [9] M. Morimoto, An introduction to the theory of hyprfunctions (in Japanese), Kyoritsu, 1976.
- [10] M. Saito, Ultraproducts and non-standard analysis (in Japanese), enlarged ed., Tokyo Tosho, 1987.
- [11] L. Schwarts, Théorie des distributions, 3rd ed., Hermann, 1966.
- [12] G. Takeuti, Dirac space, Proc. Japan Acad. 38 (1962), 414-418.

