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1. Introduction

Applying non-standard anylysis we introduced a concept of generalized functions in
[5]. TItis very useful to apply the ideas of the theory of hyperfunctions in the theory of
generalezed functions. In this paper we would like to show a few examples of the
application. In particular, we would like to justify the equality

(1.1 < o %)5’(x) = o(x) pf. %

2. Definitions and sseveral properties

The following definitions were given in [5].

DerINITION 2.1. Let R = {yeR|y > 0}, and let F = {(0, y)lyeR*}. Then F has
the finite intersection property. We denote by % one of the ultrafilters on R™

containing F.
Let K be the set R, or the set C, or the set Map(R, C) = {f|f: R —» C}, and let a(y),

b(y)e [] K.

yeR*
We define a relation ~ as follows:

a(y) ~ b(y), if it satisfies the condition

{yeR"|a(y) = b(y)} e Z.

The relation ~ is an equivalence relation. We define *K to be the quotient set
I] K/~.
yeR*

An element of the set *R (resp. *C) is called a hyper resl (resp. hyper complex)
number, an element of the set *Map(R, C) is called a generalezed function of one

variable. The equivalence class determined by a function a(y)e || K will be denoted
yeR ™+
by [a(y)].
We can consider the set *R is a subset of the set *C. The set *R and *C are made

into commutative fields by defining the addition, the subtraction, the product, and the
quotient in the usual way.
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DeriNtTion 2.2, (i) Let [a(y)], [b(y)]e*R. We define [a(y)] < [b(y)], if it satisfies
the condition

{yeR"a(y) = W(y)}eZ.
() Let [a(y)], [b(y)]e*C. We define [a(y)] = [b(y)], if it satisfies the condition
{yeR*||aly) — b(y)] < ¢} eF for every eeR*

PprINTION 2.3 (Interval). Let [a(y)], [P(y)]1€*R and [a(y)] < [b(y)]. We define

[la()], (6311 = {[c)]e*R|[a(y)] < [c()] < [b()]}-

DeriNiTION 2.4, We say a generalized function [f(x, y)] has a property P, if it
satisfies the condition

{yeR™|f(x, y) has a property P as a function of x}eZ.

DerNiTION 2.5, Let [a(y)] be a hyper complex number and let [ f(x, y)] and [g(x, y)]
be generalized functions. Then the scalar product [a(y)] [f(x, ¥)], the addition [ f(x,

1+ [9(x, y)], the subtraction [ f(x, y)] — [g(x, y)1, the product [ f(x, y)]1[g(x, y)], and
the quotient [ f(x, y)1/[g(x, y)] are defined as follows:

Lay1Lf (x, )] = [a)f(x, )],

LAGs »1+ D9, 1 =L[f(x, )+ g(x, »]1.
LA »1 = [glx, 1 =L[fCx y)— g(x y)1,
LA »1lax, 91 =[1f(x, »glx, »)1,
L/ »I/Lg0e, 1 = [(FCx, »)/atx, »)*1,

where (f(x, y)/g(x, y))* is defined as follows:
(f(x, p)alx, yN* = f(x, y)/g(x, y) for g(x, y) # 0, and

=0 elsewhere.

We have the following theorem immediately.

THEOREM 2.6. The set *Map(R, C) is a vector space over *C.

DerFINITION 2.7 (Derivative). Let  [f(x, )] be a defferentiable generalized

function. We define
d 0 *
s = (o) |

%
where (; fix, y)) is defined as follows:
X
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%
(ai f(x, y)) = 56); f(x, y) if f(x, y) is defferentiable as a function of x, and
X

= 0 otherwise.

DeriNiTioN 2.8 (Integral). Let [f(x, y)] be an integrable generalized function over
an interval [[a(y)], [P(3)]]- We define

[o(») b(y) *
J [/, 3)1dx = [( £, y)dx) ]
{a(y)] a(y)

%
flx, y)dx> is defined as follows:

b(y)
where

a(y)

< " flx, y)dx>* = e f(x, y)dx if f(x, y) is integrable over [[a(y)], [b(y)]1], and

a(y) a(y}
= 0 otherwise.

0

We define the integral f [f(x, y)1dx, similarly.

— 0

According to G. Takeuti [12], we would like to use a notation = as follows:

DeriNtTION 2.9, Let [f(x, )] and [g(x, y)] be locally integrable generalized
functions and let S be a distribution.
We define

[f(x, »)]=[g(x, y)], if it satisfies the condition

o0

Jw L/ Cx, y)1Le(x)]dx =J Lg(x, »)1Le(x)]dx for every ¢ e(D),

-

where (2) is the set of all test functions, and

[f(x, y)] =S, if it satisfies the condition

f i [/, y)1le(x)]dx = [S(e)] for every ¢e(2).

— 0

We innediately have the following theorem.

TaeoreM 2.10. (1) Let [f(x, y)] and [g(x, y)]1 be locally integrable generalized
functions.

I [f(x y)1=1Tg(x, 1)1, then [f(x, y)1=[g(x, ).

(i) Let [f(x, y)1 be a locally integrable generalized function, and let S be a destribution.
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If [f(x, W1=S, then [f(x, y)y]=0.

(i) Let [f(x, y)] be a continuously defferentiable generalized function, and let S be a
distribution.

w d w
YU »)1=8, then ——[f(x, y)] =S5

In the theory of hyper functions, the Heaviside function ¥(x), the Dirac delta function

1
&(x), and the finite part Pf. < of the function 1/x are defined as in the following:
1 . 1 .
Y(x) = — s—Arg( — x —i0) + ——Arg(x + i0),
2n 2n
1 1 1
00) = _%<x+i0 _x—i0>’

1 1 1 1
Pl—=_{——F0F——),
fx 2<x+i0 x—i0>

We would like to modify the above functions as follows:

1
[Y(x, y)]= [ —s—Arg(—x —iy) + %Arg(x + iy)}

27
ot
[5(x,y)]—_ 2mi\x+iy x—iy) |

[

a2+ 3 |

1 1 1 1
[Pf';]z §<x+iy x—zy)]

R

T x4 )?

THEOREM 2.11. We have the follows.

en L ves, 91 =100, )
X
1\ d 1
22 (3 0 1 = o et |
2.3) [x] I:Pf. %:I =1 —n[dx, y)y]

21,
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24 (= DIxIL8(x, »)1 = 2[6(x, y)] — 27[6*(x, y)y].
ProOF. We shall only prove (2.2).

Since

i y = 2px
dxn(x* + %) wx? + y?)?

we have

Ny vy X
2 oxn(x?® + y?)  w(x?+ y?) x>+ y?¥

Therefore we have
d 1
(= 1/2) - [ox, y)] = [d(x, y)][Pf‘ ;} QED.

We can consider that the equality (2.2) justifies the equality (1.1).
We would like to comment that we can transform the equality (2.2) into the
following:

(= 12) 0005, 1| P | = L6

(= 121000 T 91 = | 1L

It is well known, in the theory of hyperfunctions, that the equation xd&(x) =0
holds. We can express the equation in the form

[x1[6(x, y)1=0.
By Theorem 2.10 we have

(2.5) (= DIXI[Cx, 11 =[x, )]

On the other hand, we have [x][d(x, y)] #0. And further, we can calculate as
follows:

1
([x100(x, »DLPL. %] = [x] ( Lo(x, y)1] [Pf. ;])

xy
=09 |
= D= 1/2)9'(x, y)]
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= (1/2)[ — x][o'(x, »1]
= (1/2)[8(x, y)].
Using (2.4) and (2.5) we have

[8(x, y)1 = 2z[6%(x, y)y].

ReMarRk. We can get the follows directly.
© 2
y
et —dx = 1.
J B

s X
1 Sln;

| — x2>
ExampLrE 2.12. Let §,(x, y) = ex and let d,(x, y) = ———.
1( y) 2\/7?)7 p( 4y 2 T X

have

1 w
(= DIXI00 (x, »)] = [x*] [551(& y)] = [6:(x, »)1,

and

1 |
(— DIXILS4(x, )] = [ - H“’sﬂ + [8,0x, )]

= [6,(x, M1

Hence we have
Using Theorem 2.10 we have

The last equality implies that

b X
(2.6) I:J (p(x)sin; dx} =0

Then we

for all test functions ¢ with compact support contained in the interval (a, b).

The equation (2.6) is a restricted case of Riemann-Lebesgue theorem.
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