Note on invariant regular ideals in BP*

Katsumi Shimomura*

(Received August 31, 1988)

§1. Introduction

Let BP be the Brown-Peterson spectrum at a prime p. Then its homotopy group $\pi_*(BP) = BP_*$ is the polynomial ring over $Z_{(p)}$ with the Hazewinkel's generators v_1, v_2, \cdots , It also gives the Hopf algebroid (BP_*, BP_*, BP) with the right and the left units η_R and η_L (cf. [1], [4]). Let J denote an ideal of length n generated by n homogeneous elements $a_0, a_1, \cdots, a_{n-1}$ of BP_* and put $J_k = (a_0, a_1, \cdots, a_{k-1})$ for $k \le n$. The ideal J is said to be regular if a_0 is a power of the prime p and a_k is not a zero divisor in BP_*/J_k for each k, and to be invariant if $\deg a_0 < \deg a_1 < \cdots < \deg a_{n-1}, \ \eta_R a_0 = \eta_L a_0$ and $\eta_R a_k \equiv \eta_L a_k \mod J_k$ for each k.

P. S. Landweber [2] studied some properties of invariant regular ideals and determined all the invariant regular ideals of length 1 and 2. We can read off all the invariant regular ideals of length 3 from the results of H. Miller, D. Ravenel, and S. Wilson [3] for an odd prime p, and from [5] for the prime 2 (see Proposition 2.7). E. Tsukada [7] found all the invariant regular ideals of length $n \ge 1$ in the case that each generator a_k of J is a some power of the Hazewinkel's v_k for $0 \le k \le n$ ($v_0 = p$). In this note we give a result similar to Tsukada's using the elements $x_{k,i}$ given in [3] instead of v_k (see Proposition 3.8). We note that invariant regular sequences give a periodic family in the E_2 -term of Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres ([1], [3]). We also note that there exists the BP-local spectrum Y_J such that $BP_*Y_J = v_n^{-1}BP_*/J$ for each invariant regular ideal J at a large prime p comparing with the length p of p by [6], though we do not know the existence of a spectrum v_J such that $v_J = v_J = v_J + v_J = v_J + v_J = v_J + v_J$

§2. Invariant regular sequences

The coefficient ring BP_* of the Brown-Peterson spectrum BP at a prime p is the polynomial ring $\mathbf{Z}_{(p)}[v_1, v_2, \cdots]$ and the BP_* -homology BP_*BP is the polynomial $BP_*[t_1, t_2, \cdots]$, where $\deg v_k = \deg t_k = 2p^k - 2$. Then (BP_*, BP_*BP) is the Hopf algebroid (cf. [1], [4]), whose right and left units η_R , η_L : $BP_* \rightarrow BP_*BP$ are given by the following equalities:

(2.1.1)
$$\eta_L v_k = v_k; \ \eta_R l_k = \sum_{i+j=k} l_i t_j^{(i)} \ (l_0 = 1)$$

for $\eta_R: BP_* \otimes Q \rightarrow BP_*BP \otimes Q$, where $BP_* \otimes Q = Q[l_1, l_2, \cdots]$ and

$$(2.1.2) v_k = pl_k - \sum_{i=1}^{n-1} v_{k-i}^{(i)} l_i$$

(in this paper (k) in the exponent denotes p^k). For example, we deduce the following congruences:

(2.1.3)
$$\eta_R v_{k+1} \equiv v_{k+1} + v_k t_1^{(k)} - v_k^p t_1 \mod I_k \quad \text{for} \quad k \ge 1, \text{ and}$$
$$\eta_R v_{k+2} \equiv v_{k+1} t_1^{(k+1)} - v_{k+1}^p t_1 + v_k t_2^{(k)} \mod (I_k, v_k^p) \quad \text{for} \quad k \ge 2,$$

in which I_k denotes the ideal (p, v_1, \dots, v_{k-1}) of BP_* (cf. [4; p. 145]).

Consider the following BP_*BP -comodules derived from the comodule BP_* defined by:

(2.2) $N_n^0 = BP_*/I_n$, and the exact sequence

$$0 \longrightarrow N_n^k \longrightarrow v_{n+k}^{-1} N_n^k \longrightarrow N_n^{k+1} \longrightarrow 0$$
 for $k \ge 0$.

The coactions of these comodules are the ones induced from the right unit η_R of BP_* and also denoted by η_R . We shall abbreviate N_0^k to N^k . Each homogeneous element x of N_n^k is written by a linear combination of fractions:

(2.3)
$$x = w/v$$
 for $w \in BP_*$ and $v = \prod_{i=n}^{n+k-1} a_i$, and $x = 0$ if $w \in I_n$ or $a_i \mid w$ for some i ,

where a_i ($i \ge n$) are elements of BP_* such that deg $a_i < \deg a_{i+1}$ and the radical of the ideal $(I_n, a_n, \dots, a_{n+k-1})$ is I_{n+k} .

Let M denote a comodule difined above. We define

$$H^0M = \text{Ker } d$$

for $d = \eta_R - \eta_L$. The module $H^0 N^k$ is closely related to the E_2 -term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres (cf. [3]).

Let $J=|a_k|_{k\geq 0}$ be a sequence of infinite elements of BP_* with deg $a_k<$ deg a_{k+1} for $k\geq 0$, and $J_n=|a_k|_{0\leq k< n}$ denote the subsequence of J. J_n will also be written as a_0, \dots, a_{n-1} . Then the sequence J_n is called *regular* if (J_n) is a proper ideal, $a_0 \neq 0$ and a_k is a non-zero divisor in $BP_*/(J_k)$ for each k< n, and called *invariant* if $\eta_R a_0 = \eta_L a_0$ and $\eta_R a_k \equiv \eta_L a_k$ mod (J_k) for each k< n. For an invariant regular sequence J_{n+1} , consider the element

$$x(J, n) = a_n/a_0 \cdots a_{n-1} \in \mathbb{N}^n$$
.

The following is an easy consequence of (2.3):

LEMMA 2.4. Let J_{n+1} be an invariant regular sequence, and a an element of BP_* . Then, ax(J, n) = 0 if and only if $a \in (J_n)$. PROOF. If $a \in (J_n)$, then (2.3) implies ax(J, n) = 0. On the other hand, ax(J, n) = 0 implies the equality $aa_n = \sum_{j < n} u_j a_j$ by (2.3), and so $aa_n \equiv 0 \mod (J_n)$. Hence $a \equiv 0 \mod (J_n)$ by the regularity of J_{n+1} .

Lemma 2.5. Suppose that J_n is an invariant regular sequence for $n \ge 1$. Then a regular sequence J_{n+1} is invariant if and only if $x(J, n) \in H^0N^n$.

PROOF. First we prove the following by the induction on k:

(2.5.1)
$$d(1/a_0 \cdots a_k) = 0$$
 on N^{k+1} if a_0, \dots, a_k is invariant.

Since $a_0 = p^e$ for some e by [2; Prop. 2.5], we have $\eta_R a_0 = \eta_L a_0$, and so $d(1/a_0) = 0$ on N^1 . Both η_R and η_L are algebra maps, which implies

$$(2.5.2) d(a_{k+1}/a_0\cdots a_k) = \eta_R a_{k+1} d(1/a_0\cdots a_k) + d(a_{k+1})/a_0\cdots a_k.$$

It turns into $d(a_{k+1}/a_0\cdots a_k)=d(a_{k+1})/a_0\cdots a_k$ by the inductive hypothesis. Besides, $d(a_{k+1})\equiv 0 \mod J_{k+1}$ implies $d(a_{k+1})=a_0u_0+\cdots+a_ku_k$ for some $u_i\in BP_*$. Therefore $d(a_{k+1})/a_0\cdots a_k=0$ by (2.3) and hence $d(a_{k+1}/a_0\cdots a_k)=0$ in $v_{k+1}^{-1}N^k$, which with the exact sequence in (2.2) shows (2.5.1) for k+1.

Now turn to the proof of the lemma. If J_{n+1} is invariant, then $d(a_n) \equiv 0 \mod J_n$ and (2.5.1-2) imply d(x(J, n)) = 0. Conversely if d(x(J, n)) = 0, (2.5.1-2) again imply $d(a_n)/a_0 \cdots a_{n-1} = 0$, which shows $d(a_n) \equiv 0 \mod J_n$ and J_{n+1} is invariant. q. e. d.

LEMMA 2.6. Let $J_{n+1} = |a_k|_{0 \le k \le n}$ and $K_{n+1} = |b_k|_{0 \le k \le n}$ be invariant regular sequences. If $(J_{n+1}) = (K_{n+1})$, then $(J_m) = (K_m)$ $(1 \le m \le n+1)$ and $\deg a_i = \deg b_i$ $(0 \le i \le n)$.

PROOF. Suppose first that $(J_{m+1}) = (K_{m+1})$. Then,

(2.6.1) If
$$a_i$$
 of J_m ($i < m$) satisfies $a_i \in (K_m)$, then $\deg a_i \ge \deg b_m$.

In fact, $a_i \equiv ub_m \mod (K_m)$ by the assumption $(J_{m+1}) = (K_{m+1})$ for a non-trivial element u of BP_* . Furthermore suppose $(J_m) \neq (K_m)$. If $(J_m) \supset (K_m)$, there exists a_i of J_m so that $a_i \notin (K_m)$ (i < m). Therefore we see that $\deg a_m > \deg a_i \ge \deg b_m$ by (2.6.1). On the other hand, $b_m \equiv wa_m \mod (J_m)$ for some $w \in BP_*$ by the assumption. These imply w = 0 and $b_m \in (J_m)$. Then $(J_m) \supset (K_{m+1}) = (J_{m+1})$ which contradicts to the regularity of J_{m+1} . Thus $(J_m) \not\supset (K_m)$. Similarly $(K_m) \not\supset (J_m)$. In this case there exist a_i of J_m and b_j of K_m so that $a_i \notin (K_m)$ and $b_j \notin (J_m)$. Then (2.6.1) is also applied to show

$$\deg a_m > \deg a_i \ge \deg b_m > \deg b_i \ge \deg a_m$$

which is again a contradiction. Therefore we have proved that $(J_{m+1})=(K_{m+1})$ implies $(J_m)=(K_m)$. Thus we obtain the first statement.

If deg $a_i < \deg b_i$, then we have $a_i \in (K_i)$, since $a_i \in (K_{i+1})(=(J_{i+1}))$ and $a_i \not\equiv ub_i \mod (K_i)$ for any $u \in BP_*$. Therefore $(J_{i+1}) \subset (K_i) = (J_i)$. This also contradicts to the regularity of J_{m+1} . Thus deg $a_i \geq \deg b_i$. Similarly deg $a_i \leq \deg b_i$. q. e. d.

An ideal (K) generated by elements in a sequence $K=|a_k|_{0 \le k \le n}$ is said to be *invariant* regular if K is invariant regular (cf. [2; Cor. 2.4]). Let IR_n denote the set of all invariant regular ideals of length n. For a $Z_{(p)}$ -module M, $\{M\}$ denotes the set of the subsets $\{x\}$ for all additive generators $x \in M$, where $|x| = |\lambda x|$ $|\lambda \in Z_{(p)} - pZ_{(p)}|$. Then we have

PROPOSITION 2.7. There exists an injective map f_n : $IR_{n+1} \rightarrow \{H^0N^n\}$ (n>0) assigning (J_{n+1}) to $\{x(J, n)\}$.

PROOF. First we shall show that |x(J, n)| = |x(K, n)| if $(J_{n+1}) = (K_{n+1})$ for invariant regular sequences $J_{n+1} = |a_k|_{0 \le k \le n}$ and $K_{n+1} = |b_k|_{0 \le k \le n}$. Lemma 2.6 and the regularity imply the following:

$$(2.7.1) b_k = \lambda_k a_k + \sum_{j < k} u_j a_j \text{for some } \lambda_k \in \mathbf{Z}_{(p)} - p \mathbf{Z}_{(p)} \text{and } u_j \in BP_*.$$

Then by the definition of N^n , we have $x(J, n) = \lambda x(K, n)$ for some $\lambda \in \mathbf{Z}_{(p)} - p\mathbf{Z}_{(p)}$. Therefore the map f_n is well defined.

Now suppose that [x(J, n)] = [x(K, n)]. Then we see that $(J_n) = (K_n)$ by Lemma 2.4, and we can apply (2.7.1) to show $1/a_0 \cdots a_{n-1} = \lambda/b_0 \cdots b_{n-1}$ for $\lambda \in \mathbf{Z}_{(p)} - p\mathbf{Z}_{(p)}$. Thus $\lambda a_n \equiv b_n \mod (J_n)$ and we have the equality $(J_{n+1}) = (K_{n+1})$.

If n>1, the map f_n is not surjective. In fact, we can find an element $|a_n/a_0\cdots a_{n-1}|$ of $|H^0N^n|$ with a_n a zero divisor of $BP_*/(a_0, \dots, a_{n-1})$. For example, take

$$\{pv_2^{(5)} + v_1^{(3)+(2)}v_2^{(5)-(2)}/p^2v_1^{(3)+(2)+(1)}\}$$
 if $n=2$.

§3. The elements $x_{n,i}$ for an odd prime

From here on we assume that the prime p is odd. Then the elements $x(n, i) \in v_n^{-1}BP_*$ $(n \ge 1, i \ge 0)$ $(=x_{n,i} \text{ in } [3])$ are defined as follows (cf. [3; p. 494]):

(3.1)
$$x(n, 0) = v_n, x(n, i) = x(n, i-1)^p - (v_{n-1})^{b(n,i)} y(n, i) \text{ for } i \ge 1.$$

Here $v_0 = p$, the elements y(n, i) are given by

(3.1.1)
$$y(n, 1) = v_n^{-1} v_{n+1} \quad \text{if} \quad n \ge 2;$$

$$y(2, 2) = v_2^{e(1,2)} (v_2 + v_1^p v_2^{-p} v_3); \ y(2, i) = 2v_2^{e(1,i-1)+1} \quad \text{if} \quad i \ge 3;$$

$$y(n, i) = v_n^{e(1,i-1)+1} \quad \text{if} \quad n \ge 3, \quad i = 1 \ (n-1) \ \text{and} \ i > 1; \ \text{and}$$

$$y(n, i) = 0 \quad \text{otherwise, for the integers}$$

(3.1.2)
$$e(k, j) = kp^{i} - p^{i-1}$$

and the integers b(n, i) denote p^i for n=1 or i < n, and

(3.1.3)
$$b(n, i) = p^{i}(p^{k(n-1)} - 1)(p^{n} - 1)/(p^{n-1} - 1)$$

for n > 1 and $i = k(n-1) + j + 1 \ge n$ with $0 \le j < n-1$.

Calculations with the equalities (2.1.3) and $\eta_R v_1 = v_1 + pt_1$ given by (2.1.1-2) show us that these elements satisfy the following

PROPOSITION 3.2([3; pp. 492–495]). Let n and i be positive integres. For the differential $d = \eta_R - \eta_L$: $v_n^{-1}BP_* \rightarrow v_n^{-1}BP_*BP$, dx(n, i) is computed to be:

$$dx(n, 0) \equiv v_{n-1}t_1^{(n-1)} \mod (I_{n-1}, v_{n-1}^2) \ (v_0 = p);$$

$$dx(1, i) \equiv p^{i+1}v_1^e t_1 \mod (p^{i+2}) \quad for \quad e = p^i - 1;$$

$$dx(2, 1) \equiv v_1^p v_2^{p-1} t_1 \mod (p, v_1^{p+1});$$

$$dx(2, i) \equiv 2v_1^{a(2,i)}v_2^{e(1,i-1)} t_1 \mod (p, v_1^{1+a(2,i)}); \text{ and }$$

$$dx(n, i) \equiv v_{n-1}^{a(n,i)}v_n^{e(1,i-1)}t_1^{(j)} \mod (I_{n-1}, v_{n-1}^{1+a(n,i)})$$

for $n \ge 3$, i = k(n-1)+j+1 with $0 \le j < n-1$, and the integres

(3.2.1)
$$a(2, i) = b(2, i) + p (n=2, i>1) a(n, i) = b(n, i) (n>2, i< n) a(n, i) = b(n, i) + p^{j+1} (n>2, i \ge n)$$

Convention 3.3. Since $v_i^{-1}BP_* = \mathbf{Z}_{(p)}[v_i^{-1}, v_1, \cdots]$ contains $BP_* = \mathbf{Z}_{(p)}[v_1, \cdots]$ canonically, each element x of $v_i^{-1}BP_*$ is uniquely written as:

$$x=x^-+x!$$
 for $x^- \in BP_*$ and $x! \in v_i^{-1}BP_*$

such that x=x! in $v_i^{-1}BP_*/BP_*$. Then a sequence $J: a_0, a_1, \cdots$ with $a_0 \in BP_*$ and $a_i \in v_i^{-1}BP_*$ ($i \ge 1$) is considered to be the sequence of BP_* by replacing a_i with a_i^- , and so we have the ideal (J_n) of BP_* .

Consider the sequence of positive integers

$$S: e, s_1, \dots, s_k, \dots$$

with $s_k = e_k p^{i_k}$ and $p \nmid e_k$ for k > 0. We call the sequence S pre-MRW if it satisfies

(3.4)
$$0 < e \le i_1 + 1$$
, $u_k = i_k - i_{k-1} - e + 1 \ge 0$, $0 < e_{k-1} \le a(k, u_k)$, and $e_{k-1} \le p^{u_k}$ if $e_k = 1$.

A subsequence S_n : e, s_1, \dots, s_{n-1} of a pre-MRW sequence S is also called pre-MRW. For a pre-MRW sequence S, we have the sequence $J(S) = |a_k|_{k \ge 0}$ of BP_* given by

$$a_0 = p^e$$
, $a_k = x(k, u_k)^f$ for $k > 0$, $f = e_k p^u > p^u$ $(u = i_{k-1} + e - 1)$, and $a_k = v_k^{s_k}$ for $k > 0$ if $e_k = 1$.

A subsequence of J(S) is said to be a *BT-sequence* if the every entry a_k is a power of v_k . Notice that $J(S)_n$ is regular for any n. The following is a result of [7].

PROPOSITION 3.5. Let n>0 and S be a pre-MRW sequence. If $e_k=1$ for all k with 0 < k < n, then $J(S)_n$ is an invariant regular BT-sequence.

LEMMA 3.6. Let S be a pre-MRW sequence and n>0. Then we have

$$pv_n^s \equiv 0 \mod (J(S)_{n+1})$$
 if $s \geq s_n$, and $v_n^s \equiv 0 \mod (J(S)_{n+1})$ if $s \geq s'_n$,

for the integers $s_n = e_n p^{i_n}$ and $s'_n = s_n (+p^{i_n-e+1} + p^{i_n-e})$ if $e_n > 1$.

PROOF. For n=1, $J(S)_2$ is a sequence of the form p^e , v_1^s for $s=kp^{e-1}$ (k>0), and so $v_1^s\equiv 0 \mod (J(S)_2)$. In case $e_n=1$, the lemma is clear. Now suppose that the lemma holds for $n, e_n>1$. Then the ideal $K_n=(p^e, pv_n^{s_n}, v_n^{s_n})$ is contained in $(J(S)_{n+1})$. We also consider the ideal $L_{n+1}=(K_n, a_{n+1})$. Put $i=i_{n+1}$ and $l=i_n$. By the definition (3.1), we obtain the congruence

$$(3.6.1) x(n+1, k) \equiv (v_{n+1})^{(k)} - v_n^{(k)-(k-n-1)} v_{n+1}^{-(k-1)} y \bmod (p)$$

in $v_{n+1}^{-1} BP_*$ for some $y \in BP_*$, where y is a multiple of $v_n^{(n+1-k)}$ if k < n+1. The congruence (3.6.1) implies

$$(v_{n+1})^{s_{n+1}} \equiv sp^{e-1}v_n^{(k)-(k-n-1)}v_{n+1}^{s_{n+1}-p^k-p^{k-1}}y \mod L_{n+1}$$

in BP_* with Convention 3.3. Since $L_{n+1} \subset (J(S)_{n+2})$ and $(v_n^{(k)-(k-n-1)})^2 \equiv 0 \mod L_{n+1}$, we have the lemma. q. e. d.

LEMMA 3.7. Let n>1 and S be a pre-MRW sequence. Put $i=i_{n-1}$ and consider the sequence K_{n-1} : p^e , $v_1^{(i)}$, \cdots , $v_{n-3}^{(i)}$, v_{n-2}^c , where $c=p^i$ if e>1, and $e=2p^i$ if e=1. Then $(K_{n-1})\subset (J(S)_n)$.

PROOF. Put $l=i_k$ for 0 < k < n-1. If $e_k=1$, then $a_k=v_k^{(l)}$ for $l=i_k$ (0 < k < n-1). Therefore we have $v_k^{(i)} \in (J(S)_n)$ since $i \ge l$ by the inequality $i-l-e+1 \ge 0$. Notice that a(m,0)=1 for m>1. Thus if $e_k>1$, then $i-l-e+1 \ge u_{k+1}>0$, and so i>l. Therefore, $p^i>a(k+1,\ u_{k+1})p^l+p^l+p^{l-1} \ge s_k'$ if e>1 or k< n-2 by the assumption, and hence $v_k^{(i)} \in (J(S)_n)$ by Lemma 3.6. Similarly we see that $v_{n-2}^{2(i)} \in (J(S)_n)$ in the case e=1.

q. e. d.

A pre-MRW sequence S is said to be an MRW-sequence if S satisfies the following conditions a) or b) for each k, and c) if e=1.

- a) $e_k > 1$ and $e_{k-1} < a(k, u_k)(-1 \text{ if } e = 1)$.
- b) $e_k=1$ and $e_{k-1} < p^u(-1 \text{ if } e=1) \ (u=u_k=i_k-i_{k-1}-e+1).$
- c) $k \le 2$ or $1 < u_k \ne 1 (k-1)$.

A subsequence S_n : e, s_1 , \cdots , s_{n-1} of an MRW-sequence S is said to be an MRW-sequence of length n.

PROPOSITION 3.8. Let p be an odd prime and S_n an MRW-sequence of length n>1. Then the sequence $J(S)_n$ is invariant regular.

PROOF. If $n \le 3$, then the results of [3] with Lemma 2.5 lead us to the proposition. Suppose that $n \ge 3$ and $J(S)_n$ is an invariant regular sequence. It is enough to show that $\eta_R a_n \equiv \eta_L a_n \mod (J(S)_n)$. We put $i = i_n$ and $l = i_{n-1}$. We first show it in the case $e_n > 1$. Now we notice the following:

(3.8.1) If
$$dx \equiv 0 \mod (p, a_1, \dots, a_n)$$
, then $dx^{(k)} \equiv 0 \mod (p, a_1^{(k)}, \dots, a_n^{(k)})$, and

(3.8.2) If
$$dx \equiv 0 \mod (p, I)$$
, then $dx^{(k)} \equiv 0 \mod (p^{k+1}, I)$.

Here $d=\eta_R-\eta_L$. Consider the invariant regular sequence J_n' : $p, v_1, \dots, v_{n-3}, v_{n-2}^c$, v_{n-1}^a and the element x=x(n,i-l-e+1), where $c=3-\min[2,e]$ and a=a(n,i-l-e+1). The condition c) guarantees that J_n' is invariant even if e=1 since $p\mid a$. Then we have $dx^s\equiv 0 \mod(J_n')$ for s>1 by Proposition 3.2, and by the condition c) if e=1. Therefore $dx^t\equiv 0 \mod(J_n'')$ for $t=sp^{l+e-1}$ and the sequence J_n'' : $p^e, v_1^{(l)}, \dots, v_{n-3}^{(l)}, v_{n-2}^{c(l)}, v_{n-1}^{a'}$ with $a'=ap^l$ by (3.8.1-2). Since $J(S)_n$ satisfies a), $a'\geq e_{n-1}p^l+p^l(+p^l)$ if $e=1)>s_{n-1}'$. Thus we have $(J_n'')\subset (J(S)_n)$ by Lemmas 3.6-7, and $dx^t\equiv 0 \mod(J(S)_n)$. Take now $s=e_n$, and we see that $J(S)_{n+1}$ is invariant.

Next suppose $e_n=1$. In this case we have $dv_n^{(i)}\equiv 0 \mod (J_n^c)$ for the sequence J_n^c : p^e , $v_1^{(k)}$, \cdots , $v_{n-1}^{(k)}(k=i-e+1)$ by (3.8.1-2), since $dv_n\equiv 0 \mod I_n$. The assumption b) and Lemmas 3.6-7 show that $(J_n^c)\subset (J(S)_n)$. Thus we prove the case $e_n=1$.

PROPOSITION 3.9. Let p be an odd prime and S a sequence of integers. If the subsequence S_n is not pre-MRW, then $J(S)_n$ is not invariant regular.

PROOF. If S_n is not pre-MRW, then we have a positive integer $k \le n$ such that S_k is pre-MRW and S_{k+1} is not. If k=1 or 2, then the proposition is the corollary of Proposition 2.7 by virtue of the results on H^0N^k (k=1, 2) of [3]. Now suppose k>2. Consider the sequence of integers S': e, s'_1 , \cdots with $s'_i=p^{ie-i}$ for i>0. Then $J(S')_k$ is invariant regular by [7], and the ideal $(J(S')_{k-1}, v^s_{k-1})$ ($s=s_{k-1}$) contains the ideal $(J(S)_k)$ since $u_i=i_i-i_{i-1}-e+1\ge 0$ for i< k and $a_{k-1}\equiv v^s_{k-1} \mod (J(S')_{k-1})$. If S_k does not satisfy the condition (3.4), then Proposition 3.2 implies $da_k \equiv 0 \mod (J(S')_k)$ and so $J(S)_k$ is not invariant.

References

- [1] J. F. Adams, Stable homotopy and generalized homology, University of Chicago Press, Chicago, 1974.
- [2] P. S. Landweber, Invariant regular ideals in Brown-Peterson homology, Duke Math. J. 42 (1975), 499-505.
- [3] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
- [4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [5] K. Shimomura, Novikov's Ext² at the prime 2, Hiroshima Math. J. 11 (1981), 499-513.
- [6] K. Shimomura and Z. Yosimura, BP-Hopf module spectrum and BP_{*}-Adams spectral sequence, Publ. RIMS, Kyoto Univ. 21 (1986), 925-947.

[7] E. Tsukada, Invariant sequence in Brown-Peterson homology and some applications, Hiroshima Math. J. 10 (1980), 385-389.