A Measure on an Infinite-Dimensional Space

Yukio Kuribayashi*

(Received August 31, 1987)

1. Introduction

In the present paper we would like to introduce a measure on the space of all sequences with real terms using non-standard analysis. Non-standard measure theories and their applications have been developed by Cutland, Keisler, Loeb, Saito and others in $[1] \sim [7]$. However, in this paper, we would like to adopt another idea on measure theory.

Now we would like to explain the basic idea of the measure. Let A be a cube of the ordinary real n-dimensional Euclidean space with side length a. Then the Lebesgue measure of the cube is a^n . We get the number a^n by calculating $a, a^2, ..., a^n$ successively. This fact suggest us that we will be able to express a measure of a cube of an infinite-dimensional space with side length a, using a sequence $a, a^2, ..., a^n, ...$ Fortunately, we have ultra real numbers *R and we would like to express the measure by a *R-valued function.

2. Preliminaries

In this section, we would like to give definitions and notations which will be used in this paper.

Let N be the set of all positive integers and \mathscr{F} be an ultra filter on N which does not contain any finite subset of N. Let R be the set of all real numbers and R^N be the set of all sequences with real terms. If a is an element of R^N , then we use notations $a = (a_1, ..., a_n, ...) = (a_n)_{n \in \mathbb{N}}$.

If $a = (a_1, ..., a_n, ...)$, $b = (b_1, ..., b_n, ...)$ are elements of R^N and λ is an element of R, we define addition a + b and scalar multiplication λa by

$$a + b = (a_1 + b_1, ..., a_n + b_n, ...)$$

and

$$\lambda a = (\lambda a_1, \dots, \lambda a_n, \dots).$$

We can consider R^N is a linear space over the field R by the above definitions.

Let a and b be elements of R^N . The relations and operations $a \sim b$, a < b, a + b, a - b, and $a \cdot b$ are defined to be $\{n \in N; a_n = b_n\} \in \mathscr{F}, \{n \in N; a_n < b_n\} \in \mathscr{F}, (a_n + b_n)_{n \in \mathbb{N}}, (a_n - b_n)_{n \in \mathbb{N}} \}$ and $(a_n b_n)_{n \in \mathbb{N}}$, respectively. The relation \sim is an equivalence relation. *R is

^{*} Department of Mathematics, Faculty of Education, Tottori University, Tottori 680, Japan.

defined to be R^N/\sim which is also written as R^N/\mathscr{F} and is called ultra real numbers and its element is written as [a] or $[a_n]$ or $[(a_1,...,a_n,...)]$. An imbedding isomorphism i from R into R is defined by

$$i(a_1) = [(a_1, ..., a_1, ...)].$$

Let $[a_n]$, $[b_n]$ be two ultra real numbers and $[b_n] \neq 0$. The quatient $[a_n]/[b_n]$ is defined to be $[(a_n/b_n)^*]$, where $(a_n/b_n)^* = a_n/b_n$ for $b_n \neq 0$ and $(a_n/b_n)^* = 0$ for $b_n = 0$. The absolute value $|[a_n]|$ of an ultra real number $[a_n]$ and the non-negative square-root $([a_n])^{1/2}$ of a non-negative ultra real number $[a_n]$ are defined to be $[|a_n|]$ and $[(|a_n|)^{1/2}]$ respectively.

DEFINITION 2.1. Let $x = (x_1, ..., x_n, ...)$, $y = (y_1, ..., y_n, ...)$ be two points in \mathbb{R}^N . Then an inner product (x|y) of x and y is defined by

$$(x|y) = [(x_1y_1,...,\sum_{i=1}^n x_iy_i,...)].$$

We have the following proposition:

PROPOSITION 2.2. Let $x, y, z \in \mathbb{R}^N$ and $a \in \mathbb{R}$. Then we have the following properties:

$$(2.1) (x+y|z) = (x|y) + (y|z), (x|y+z) = (x|y) + (x|z),$$

$$(2.2) (ax|y) = a(x|y) = (x|ay),$$

(2.3)
$$(x|x) \ge 0$$
, $(x|x) = 0$ if and only if $x = (0,...,0,...)$.

REMARK. If no misunderstanding isposible, we will simply write 0 instead of [(0,...,0,...)].

The norm |x| of a vector $x \in \mathbb{R}^N$ is defined to be the non-negative ultra real number

$$((x|x))^{1/2} = [((x_1^2)^{1/2}, \dots, (\sum_{i=1}^n x_i^2)^{1/2}, \dots)].$$

PROPOSITION 2.3. For all $x, y \in \mathbb{R}^N$, we have the following properties:

$$(2.4) |x \pm y|^2 = |x|^2 \pm 2(x|y) + |y|^2,$$

$$(2.5) |x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2),$$

(2.6)
$$|(x|y)| \le |x||y|$$
 (Schwarz's inequality).

PROOF. We shall only prove (2.6). For all $n \in N$ we have

$$\left|\sum_{i=1}^{n} x_i y_i\right| \le \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \left(\sum_{i=1}^{n} y_i^2\right)^{1/2}.$$

Therefore we have

$$\begin{split} |(x|y)| &= \left[(|x_1||y_1|, \dots, |\sum_{i=1}^n x_i y_i|, \dots) \right] \\ &\leq \left[((x_1^2)^{1/2} (y_1^2)^{1/2}, \dots, (\sum_{i=1}^n x_i^2)^{1/2} (\sum_{i=1}^n y_i^2)^{1/2}, \dots) \right] \\ &\leq \left[((x_1^2)^{1/2}, \dots, (\sum_{i=1}^n x_i^2)^{1/2}, \dots) \right] \times \\ &\left[((y_1^2)^{1/2}, \dots, (\sum_{i=1}^n y_i^2)^{1/2}, \dots) \right] \\ &= |x||y|. \end{split}$$

We define two vectors x, y to be perpendicular or orthogonal if and only if (x|y)=0.

EXAMPLE 2.4. If x is perpendicular to y, then

$$|x+y|^2 = |x|^2 + |y|^2$$
.

Let x, y be two points in \mathbb{R}^N . The distance between x and y is defined to be the ultra real number |x-y| and is written as d(x, y). Clearly d(x, y) is a distance function on \mathbb{R}^N . The straight line passing through x and y is defined to be the set $\{x+t(y-x); t \in \mathbb{R}\}$, and the line segment with endpoints x and y is defined to be the set $\{x+t(y-x); 0 \le t \le 1, t \in \mathbb{R}\}$.

EXAMPLE 2.5. Let $x = (x_1, ..., x_n, ...)$, $y = (y_1, ..., y_n, ...)$ be two distinct points in \mathbb{R}^N and let k, l be two real numbers and $k + l \neq 0$. Then there exists a unique point $c \in \mathbb{R}^N$ such that

(2.7)
$$d(a, c)/d(c, b) = k/l.$$

PROOF. For every $n \in N$, there exists a real number c_n satisfying $c_n = (lx_n + ky_n)/(k+l)$. The point $c = (c_1, ..., c_n, ...)$ satisfies the condition (2.7), and the uniqueness is clear.

Now, we would like to define a topology for the space R^N . Let ε_i be a positive real number for $i \in N$ and $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$ and let $a = (a_1, ..., a_n, ...)$ be a point in R^N . We define sets $U_n(a, \varepsilon_n)$ for $n \in N$ and $U(a, \varepsilon)$ as follows:

$$\begin{split} U_n(a,\,\varepsilon_n) &= \{x \in R^N;\, (\, \sum_{i=1}^n \, (x_i-a)^2)^{1/2} < \varepsilon_n, \, x_i = a_i \text{ for } i \geq n+1 \}\,, \\ U(a,\,\varepsilon) &= \, \mathop{\cup}_{n=1}^\infty \, U_n(a,\,\varepsilon_n)\,. \end{split}$$

Let S be a subset of \mathbb{R}^N and let \mathfrak{D} be a family of subsets of \mathbb{R}^N with the following property:

(2.8) For every $a \in S$, there exists a set $U(a, \varepsilon)$ such that $U(a, \varepsilon) \subset S$.

PROPOSITION 2.6. The set \mathfrak{D} satisfies the following properties:

$$(2.9) \phi \in \mathfrak{D} \text{ and } R^N \in \mathfrak{D},$$

(2.10) if
$$S_i \in \mathfrak{D}$$
, $i = 1, ..., k$, then $\bigcap_{i=1}^k S_i \in \mathfrak{D}$,

(2.11) if
$$S_i \in \mathfrak{D}$$
, $i \in \Gamma$, then $\bigcup_{i \in \Gamma} S_i \in \mathfrak{D}$.

where the index set Γ is not necessarily finite.

PROOF. We shall only prove (2.10). Let S_1 , $S_2 \in \mathfrak{D}$ and $a \in S_1 \cap S_2$. Then there exist two set $U(a, \varepsilon)$ and $U(a, \eta)$ such that $U(a, \varepsilon) \subset S_1$ and $U(a, \eta) \subset S_2$, where $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n, \ldots)$, $\eta = (\eta_1, \ldots, \eta_n, \ldots)$ and $\varepsilon_n > 0$, $\eta_n > 0$ for every $n \in \mathbb{N}$. Let $\gamma_n = \min(\varepsilon_n, \eta_n)$ for $n \in \mathbb{N}$, and let $\gamma = (\gamma_1, \ldots, \gamma_n, \ldots)$. Then $U_n(a, \gamma_n) \subset U_n(a, \varepsilon_n) \cap U_n(a, \eta_n)$ for $n \in \mathbb{N}$, and so

$$U(a, \gamma) = \bigcup_{n=1}^{\infty} U_n(a, \gamma_n) \subset S_1 \cap S_2,$$

thus $S_1 \cap S_2 \in \mathfrak{D}$.

EXAMPLE 2.7. Let $a = (a_1, ..., a_n, ...)$, $b = (b_1, ..., b_n, ...)$ be two points in R^N and $a_n < b_n$ for every $n \in N$. We define an open interval I(a, b) by

$$I(a, b) = \{x = (x_1, ..., x_n, ...) \in \mathbb{R}^N; a_n < x_n < b_n \text{ for } n \in \mathbb{N}\}.$$

The interval I(a, b) is an open set.

EXAMPLE 2.8. Let a be a point in \mathbb{R}^N and let r be a positive real number. We define a ball B(a, r) of radius r and centered at a by

$$B(a, r) = \{x \in \mathbb{R}^N; |x - a| < r\}.$$

Then the ball B(a, r) is an open set.

PROPOSITION 2.9. Let a, b be two distinct points in \mathbb{R}^N . Then there exist two open sets O_1 , O_2 which satisfy the following conditions:

$$O_1 \ni a$$
, $O_2 \ni b$ and $O_1 \cap O_2 = \phi$.

PROOF. Since $a \neq b$, we have a positive integer k such that $a_k \neq b_k$. We can consider $a_k < b_k$, and so we can choose a positive real number ε satisfying a condition $a_k + \varepsilon < b_k - \varepsilon$. We define two open intervals $I(a - \varepsilon, a + \varepsilon)$, $I(b - \varepsilon, b + \varepsilon)$ by

$$I(a-\varepsilon, \ a+\varepsilon) = \left\{ x \in R^N; \ a_n - \varepsilon < x_n < a_n + \varepsilon \text{ for } n \in N \right\},$$

$$I(b-\varepsilon, b+\varepsilon) = \{x \in \mathbb{R}^N; \ b_n - \varepsilon < x_n < b_n + \varepsilon \text{ for } n \in \mathbb{N}\}.$$

Then $I(a-\varepsilon, a+\varepsilon)$ and $I(b-\varepsilon, b+\varepsilon)$ are open sets and satisfy the above three conditions.

3. A measure on the space \mathbb{R}^N

DEFINITION 3.1. Let $E \subset \mathbb{R}^N$. We define a set $E(x_{n+1},...)$ by

$$E(x_{n+1},...) = \{(x_1,...,x_n) \in \mathbb{R}^n; (x_1,...,x_n,x_{n+1},...) \in E\}.$$

The set E is said to be measurable, if it satisfies the following condition: (3.1) $E(x_{n+1},...)$ is Lebesgue measurable in R^n for every $n \in N$ and $(x_{n+1},...)$.

PROPOSITION 3.2. Let S be an open set of \mathbb{R}^N . Then S is measurable.

PROOF. Let $(x_1, ..., x_n) \in S(x_{n+1}, ...)$. Then

$$x = (x_1, ..., x_n, x_{n+1}, ...) \in S.$$

Since S is an open set, there is a positive real number ε_i for every $i \in N$, satisfying the the condition

$$\bigcup_{n=1}^{\infty} U_n(x, \, \varepsilon_n) = U(x, \, \varepsilon) \subset S,$$

where $\varepsilon = (\varepsilon_1, ..., \varepsilon_n, ...)$.

Therefore $U_n(x, \varepsilon_n) \subset S$, for every $n \in N$.

Hence we have

$$\{(y_1,\dots,\,y_n)\in R^n\,;\,(\,\sum_{i=1}^n\,(y_i-x_i)^2)^{1/2}<\varepsilon_n\}\,\subset\,S(x_{n+1},\dots)\,.$$

Thus the set $S(x_{n+1},...)$ is an open set of \mathbb{R}^n . This relation holds for every $n \in \mathbb{N}$ and $(x_{n+1},...)$. Therefore S is measurable in \mathbb{R}^N .

COROLLARY 3.3. An open interval I(a, b) is measurable.

PROPOSITION 3.4. Let E be a measurable set, then the set E^c is measurable.

Proof. We have

$$\begin{split} E^c(x_{n+1},\dots) &= \{(x_1,\dots,x_n) \in R^n; \ (x_1,\dots,x_n,\ x_{n+1},\dots) \in E^c\} \\ &= \{(x_1,\dots,x_n) \in R^n; \ (x_1,\dots,x_n,\ x_{n+1},\dots) \in E\}^c \\ &= (E(x_{n+1},\dots))^c. \end{split}$$

Since $E(x_{n+1},...)$ is measurable in R^n , $E^c(x_{n+1},...)$ is measurable in R^n . This property holds for every $n \in N$ and $(x_{n+1},...)$. Therefore E^c is measurable in R^N .

We have the following proposition:

Proposition 3.5. Every closed set of \mathbb{R}^N is measurable.

PROPOSITION 3.6. Let $E_1, ..., E_i, ...$ be measurable sets in \mathbb{R}^N . Then $\bigcup_{i=1}^{\infty} E_i$ is a measurable set in \mathbb{R}^N .

PROOF. We have

Since $E(x_{n+1},...)$ is measurable in R^n for each $i \in N$, the set $\bigcup_{i=1}^{\infty} E_i(x_{n+1},...)$ is measurable in R^n . The property holds for every $n \in N$ and $(x_{n+1},...)$. Therefore $\bigcup_{i=1}^{\infty} E_i$ is measurable in R^N . Hence we have the following theorem:

THEOREM 3.7. The set of all measurable sets in \mathbb{R}^N is a σ -algebra.

DEFINITION 3.8. Let E be a measurable set, contained in an interval I(a, b), in \mathbb{R}^N and let m_n be the Lebesgue measure on \mathbb{R}^n for each $n \in \mathbb{N}$. We define functions m(E) and M(E) by

$$m(E)(x_2,...,x_n,...) = (m_1(E(x_2,...)),...,m_n(x_{n+1},...)),...),$$

$$M(E)(x_2,...,x_n,...) = [m(E)(x_2,...,x_n,...)].$$

The function M(E) is said to be a measure on the space \mathbb{R}^N . We have the following proposition immediately:

Proposition 3.9. Let E_i be measurable in R^N for i=1,...,k satisfying the conditions

$$E_i \cap E_j = \phi$$
 for $i \neq j$,

and

$$M(E_i)(x_2,...,x_n,...) < r_i$$
 for $i = 1,...,k$,

where r_i is a positive ultra real number for each i=1,...,k. Then we have

$$M(\bigcup_{i=1}^k E_i)(x_2,...,x_n,...) = \sum_{i=1}^k M(E_i)(x_2,...,x_n,...).$$

DEFINITION 3.10. Let E be a measurable set contained in an interval I(a, b). We define pseudo measure PM by

$$PM(E) = \left[\left(\sup_{(x_2, \dots)} m_1(E)(x_2, \dots), \dots, \sup_{(x_{n+1}, \dots)} m_n(E)(x_{n+1}, \dots), \dots \right) \right].$$

Example 3.11. Let I(a, b) be an open interval of \mathbb{R}^{N} . Then we have

$$PM(I(a, b)) = [(b_1 - a_1, ..., \prod_{i=1}^{n} (b_i - a_i), ...)].$$

EXAMPLE 3.12. Let B(a, r) be a ball of radius r, a real number, centered at a. Ther we have

$$PM(B(a, r)) = [(2\pi r, \pi r^2, (4/3)\pi r^3, ..., v_n r^n, ...)],$$

where v_n is the volume of the *n*-dimensional unit ball.

References

- [1] S. Albeverio, J. E. Fenstad, R. Høegh-Kron and T. Lindstrøm, Nonstandard methods in stochastic analysis and mathematical physics, Academic Press (1986).
- [2] R. M. Anderson, Star-finite probability theory, Dissertation, Yale University (1977).
- [3] N. J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc., 15 (1983), 529-589.
- [4] A. E. Hurd and P. A. Loeb, An introduction to nonstandard real analysis, Academic Press (1985).
- [5] H. J. Keisler, An infinitesimal approach to stochastic analysis, Memoirs AMS 297 (1984).
- [6] P. A. Loeb, An introduction to nonstndard analysis and hyperfinite probability theory, Probabilistic analysis and related topics, Vol. 2, Academic Press (1979).
- [7] M. Saito, Ultraproducts and non-standard analysis (in Japanese), An enlarged edition, Tokyo Tosho (1987).

	٨		
			address of changes of the
			and the state of t

			,
		•	
			91119999
