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1. Introduction

In the present paper we would like to introduce a measure on the space of all sequences
with real terms using non-standard analysis. Non-standard measure theories and their
applications have been developed by Cutland, Keisler, Loeb, Saito and others in [1~[7].
However, in this paper, we would like to adopt another idea on measure theory.

Now we would like to explain the basic idea of the measure. Let A be a cube of
the ordinary real n-dimensional Euclidean space with side length a. Then the Lebesgue
measure of the cube is a”.  We get the number a” by calculating a, a2,..., a” successively.
This fact suggest us that we will be able to express a measure of a cube of an infinite-
dimensional space with side length a, using a sequence a, d2,..., a,.... Fortunately,
we have ultra real numbers *R and we would like to express the measure by a *R-valued
function.

2. Preliminaries

In this section, we would like to give definitions and notations which will be used in
this paper.

Let N be the set of all positive integers and & be an ultra filter on N which does not
contain any finite subset of N. Let R be the set of all real numbers and RN be the set
of all sequences with real terms. If a is an element of RV, then we use notations a =
(ag,es @y )=(a)sen-

If a=(ay,..., a,,...), b=(by,..., b,,...) are elements of RN and 1 is an element of R,
we define addition a+ b and scalar multiplication la by

a+b=(a,+b,,...,a,+b,...)
and
Aa = (lay,..., Aa,,...).

We can consider RY is a linear space over the field R by the above definitions.

Let a and b be elements of R¥.  The relations and operations a~b, a<b, a+ b, a—b,
and a-b are defined to be {neN; a,=b,}eF, {neN; a,<b,}eF, (a,+b,)en, (a,—
b)wen and (a,b,),.y, respectively. The relation ~ is an equivalence relation. *R is
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defined to be R¥/~ which is also written as R¥/&# and is called ultra real numbers and
its element is written as [a] or [a,] or [(ay,..., a,,...)]. An imbedding isomorphism i
from R into *R is defined by

i{a;) = [(ay,..., a.,...)].

Let [a,], [b,] be two ultra real numbers and [b,]#0. The quatient [a,]/[b,] is
defined to be [(a,/b,)*], where (a,/b)*=a,/b, for b,#0 and (a,/b,)*=0 for b,=0.
The absolute value |[a,]] of an ultra real number [a,] and the non-negative square-root
([a,])!’? of a non-negative ultra real number [a,] are defined to be [|a,|] and [(Ja,])'/?]
respectively.

DerFNITION 2.1, Let x=(X{,...; Xpe-.)s Y=(Vs---» Vpr---) be two points in RY, Then
an inner product (x|y) of x and y is defined by

CIDESCHNS A}
We have the following proposition:

ProrosiTION 2.2.  Let x, y, ze RV and a € R.  Then we have the following properties:

(2.1) (x+ylz) = (xly) + Wlz), (xly+2z) = (x]y) + (x]z2),
(2.2) (ax]y) = a(x|y) = (xlay),
(2.3) (x[x) >0, (x|[x)=0 ifandonlyif x=(0,...,0,...).

ReMARK. If no misunderstanding isposible, we will simply write 0 instead of [(0,...,

0,...)].

The norm |x] of a vector x € RY is defined to be the non-negative ultra real number
n
((xbnt/? = [((xDYV2,.., ( 2 x0T

ProrosiTion 2.3.  For all x, y € R¥, we have the following properties:

(2.4) Ix£yI? = |xI* £ 2(x]y) + |yl
(2.5) X+ y1% + [x—pI? = 2(x1>+1y]%),
(2.6) [(x[»)] < x|yl (Schwarz’s inequality).

Proor. We shall only prove (2.6). For all ne N we have
DIESAETS W H LI OIS E
i=1 i=1 i=1

Therefore we have
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I = [xpilheean | z Xyl )]
<L)V 2., ( zl X212 ( z YD ]
<[((x3)'72,..., (ﬁl X212, )] x

[ e (X 912,01

=Ix|lyl.

We define two vectors x, y to be perpendicular or orthogonal if and only if (x|y)=0.

ExampPLE 2.4. If x is perpendicular to y, then
Ix+p? = |x> + |y|%
Let x, y be two points in RY. The distance between x and y is defined to be the ultra
real number [x— y| and is written as d(x, y). Clearly d(x, y) is a distance function on R¥.
The straight line passing through x and y is defined to be the set {x+1(y—x); te R},

and the line segment with endpoints x and y is defined to be the set {x+#(y—x); 0<1<1,
te R}.

EXAMPLE 2.5, Let x=(xy,..., X,5...), ¥=(V15..., Yp...) be two distinct points in RN
and let k, [ be two real numbers and k+175£0. Then there exists a unique point ¢ e RV
such that

2.7 d(a, ¢)/d(c, b) = k/I.

ProOF. For every ne N, theie exists a real number ¢, satisfying ¢, =(Ix, + ky,)/(k +1).
The point ¢=(cy,..., ¢,,...) satisfies the condition (2.7), and the uniqueness is clear.

Now, we would like to define a topology for the space RN. Let ¢ be a positive real

number for ie N and e=(e,..., ,) and let a=(ay,..., a,,...) be a point in RY. We
define sets U (a, &,) for ne N and Ul(a, ¢) as follows:

U"((I, Sn) = {XERN; (X”: (xi_a)2)1/2<8n5 Xi=d; fOI' 12n+1} »
i=1
o
Ua, &) = U Uya, ¢,).
n=1

Let S be a subset of R¥ and let O be a family of subsets of RY with the following property:

(2.8) For every a €S, there exists a set U(a, &) such that U(a, g < S

PROPOSITION 2.6.  The set O satisfies the following properties:
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2.9) ¢peDand R¥Ve D,

(2.10) ifS,€0,i=1,.,k then " S;eD,
i=1

.11 if S;e, iel, then\U S;eD.

iel
where the index set I' is not necessarily finite.
PrROOF. We shall only prove (2.10). Let S;, S, and aeS;nS,. Then there
exist two set U(a, &) and U(a, 1) such that U(a, ¢)=S, and U(a, #)<S,, where ¢=
(Erreees Epsees)y B=(1seee> Nse-o) and ,>0, 1,>0 for every neN. Let y,=min (g, 7,)

for ne N, and let y=(y,..., ¥...). Then Uy(a, y,)=Uya, e)nULa, n,) for neN, and
S0

U(aa V) = \U Un(ar ’))n)cSI N S27
n=1
thus S, nS,e 9.
ExampLE 2.7. Let a=(ay,..., dy,...), b=(b,..., b,,...) be two points in R¥ and a,<b,
for every ne N. We define an open interval I(a, b) by
I(a, by = {x=(x{,..., Xp..)ERN; a,<x,<b, for neN}.
The interval I(a, b) is an open set.
ExaMPLE 2.8. Let a be a point in R and let r be a positive real number. We define
a ball B(a, r) of radius » and centered at a by
B(a, r) = {xeRV; |[x—a|<r}.
Then the ball B(a, r) is an open set.
PROPOSITION 2.9. Let a, b be two distinct points in RN. Then there exist two open
sets O, O, which satisfy the following conditions:
0,32a, 0,5b and O, n 0, = ¢.

PrOOF. Since a# b, we have a positive integer k such that a,#b,. We can consider
a,<b,, and so we can choose a positive real number ¢ satisfying a condition a,+&<
b,~e. We define two open intervals I(a —¢, a+s), I(b—¢, b+&) by

I(a—¢, a+e) = {xeRV;q,—e<x,<a,+eforneN},
I(b—¢, b+e) = {xeR"; b,—e<x,<b,+efor neN}.

Then I(a—e, a+¢) and I(b—e¢, b-+¢) are open sets and satisfy the above three conditions.
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3. A measure on the space RV

DeriNiTION 3.1, Let EC RN, We define a set E(x,, ,...) by
E(pg1s) = {(X 50 X) ER™; (Xq5erny Xp» Xpi1--) EE}.
The set E is said to be measurable, if it satisfies the following condition:
(3.1) E(x,+y...) is Lebesgue measurable in R” for every ne N and (x4 ,...).

PROPOSITION 3.2. Let S be an open set of RN. Then S is measurable.

Proor. Let (x,..., x,)€S(X,+1,...). Then
X = (Xqseeer Xy Xpy15--) ES.

Since S is an open set, there is a positive real number g; for every ie N, satisfying the
the condition

y Uylx, &) = U(x, &) = S,
1

n=

where e=(g4,..., &,...).
Therefore U, (x, &,) <=8, for every ne N.
Hence we have

{(yl""7 yn)ERn; (zz"l (yi—xi)2)1/2<8n} < S(xn+1"")'

Thus the set S(x,.1,...) is an open set of R*. This relation holds for every ne N and
(X4415---). Therefore S is measurable in R¥,

COROLLARY 3.3.  An open interval I(a, b) is measurable.
ProrositTioN 3.4, Let E be a measurable set, then the set E¢ is measurable.

Proor. We have
Ee(xyp150.) = {(X55000s X,) ERY; (X 5y Xy Xy 150--) € EC}
= {(Xq,000s X)) ER"; (X(yerny Xy Xy 15...) € E}C
= (E(xy4 1))

Since E(x,,...) is measurable in R", E¢(x, ,...) is measurable in R*. This property
holds for every ne N and (x,, (,...). Therefore E¢ is measurable in RV,
We have the following proposition:

PROPOSITION 3.5.  Every closed set of RY is measurable.
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@«
ProOPOSITION 3.6. Let E,,..., E,,... be measurable sets in RN. Then \U E; is a
i=1

measurable set in RN,
PrROOF. We have

©
% Ei(xll+19"') = {(XI,"', X,I)ER"; (xla > X xn+1"")e \J El}
i=1

{(xb L] n)ERn;(xlﬂ"'oxn’ n+1s )EE}

I
uCg

I
'Cs

I
[

Ei(xn+ 1’-'-)'

Since E(x,, {,...) is measurable in R” for each i e N, the set U E; (x,,H, .) is measurable
in R*. The property holds for every ne N and (x,,4.,...). Therefore \J E; is measurable

in R¥, Hence we have the following theorem:
THEOREM 3.7. The set of all measurable sets in RN is a g-algebra.

DErFINITION 3.8. Let E be a measurable set, contained in an interval I(a, b), in RV
and let m, be the Lebesgue measure on R" for each ne N. We define functions m(E)
and M(E) by

M(E)(X35e.0s Xppeer) = (M(E(55- ) ey M, (Xpi 1502 ))see) s
M(E)(X5,..., Xpseo) = [M(E)(Xg,...; Xuo-)].
The function M(E) is said to be a measure on the space RY. We have the following
proposition immediately:
PROPOSITION 3.9. Let E; be measurable in RN for i=1,..., k satisfying the conditions
E;nE;j=¢  for i#],
and
M(E)(x5,..., Xpp..) <1, for i=1,.,k,

where v; is a positive ultra real number for each i=1,..., k. Then we have

K k
M( i\:/I E)(Xg50es Xpye-r) = gl M(E) (X35 05 Xpyeer)-

DEerFINITION 3.10. Let E be a measurable set contained in an interval I(a, b). We
define pseudo measure PM by

PM(E)=[((ilzlg)ml(E)(xz,---),---, sup - my(E) Xy 150-)0- )]

Xyt 1yeer
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ExampiE 3.11.  Let I(a, b) be an open interval of R¥. Then we have

PM(I(a, b)) = [(b;—ay,..., 131 (bi—ay),..)].

ExAMPLE 3.12. Let B(a, r) be a ball of radius r, a real number, centered at a. Then
we have

PM(B(a, r)) = [Q2nr, nr2, (4/3)rr3,..., v,..)],

where v, is the volume of the n-dimensional unit ball.
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