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1. Introduction

J. G. van der Corput discussed the theory of neutrices and neutrix limitsin [1] and [2].
The definitions of neutrices and neutrix limits are as follows:

DermniTioN 1.1. A domain N’ is a non empty abstract set. A range N” is a non-
empty commutative additive group.

Consider a commutative additive group (N) formed by functions v(£), defined at each
element ¢ of a given domain N’ such that, for each £ in N’, v() denotes an element of
a given range N”. Where no misunderstanding is possible, we write simply N instead
of (N).

If v(¢) denotes a function belonging to N this group contains also the function w(¢)—
v(&) which is identically equal to zero. The group N is called a neutrix if the function
which is identically equal to zero is the only constant function occuring in N.

If N saitsfies the neutrix condition it is called the neutrix with domain N’ and range N”
and we call the functions belonging to N negligible in N.

DeriNITiON 1.2, Consider a point set N’ lying in a topological space with a limit
point 5 which does not belong to N’. Consider furthermore a commutative additive
group N of real or complex valued functions defined on N’ with the following property:
If N contains a function of & which tends to a finite limit y as & tends on N’ to b, then
y=0.

This group N is a neutrix.

If (&) is a function of ¢ defined on N’ and if it is possible to find a constant « such that
f(&)—uw is negligible in N’, then we call o the N-limit of f(¢) as {—b and we write

N—-lim f(&) =a.
&b

Using above definitions we could get several results on the product of distributions.

However, in the present paper, we would like to change the definitions of neutrices and
neutrix limits so as to introduce a notion of order in the theory of neutrix limits.

As an application of the notion of order we would like to discuss the product of
distributions.
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2. Definitions and Several Properties

Let K be the set R or the set C and let E be a metric space embedded in a topological
space S with a limit point b in S which does not belong to E.

Consider the set K* formed by functions f(x), defined at each point x of the set E such
that, for each x in E, f(x) denotes an element of the set K. The set KZ is a commutative
K-algebra.

DeriNiTION 2.1, Let f(x)#0 for all x in E.  We consider submodules of the K-module
KE with the following condition:
(2.1) If a submodule contains a function g(x) which satisfies hm g(x)[f(x)=y and

y is finite, then y=0.
We write these submodules as M(f), Mo(f), M*(f),.... Where no misunder-
standing is possible, we write M, M, M*,... instead of M(f), Mo(f), M*(f),...
Let M(f) be a submodule satlsfylng the condition (2.1). Then we call the sub-
module M(f) a neutrix and the functions belonging to M(f) negligible.
Let f(x)#0 for all x in E. We define a set My(f) by

Mo(f)=1{9(x): lim g(x)/f (x)=0}.

It is obvious that My(f) is a submodule satisfying the condition 2.0n.

THEOREM 2.2. Let f(x)#0, f,(x)#0 for all x in E and let My(f), Mo(f,) be sub-
modules defined as above. Then

Mo(f1)=M(f2)
if and only if
(2.2) O<kim inf £, Ge)l/] fa(,)]

<tim sup | £,(x,)l/1f3(x)] < o0

Jor every sequence {x,} in E with the limit point b.

PrOOF. (i) Assume that condition (2.2) is satisfied. Then for any g(x) in My(f,) we
have

0< lin’}*sgp lgCel/] f(x,)]

Iirrnl Sup gl f2(x,)
= lirgjgf ACAIIACA]

for every sequence {x,} in E with the limit point b. Since E is a metric space. we have

lim [g(o)l/1.f1(0)l =
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and so g(x) is in My(f,).
Similariy, if g(x) is in My(f;), then we have g(x) is in My(f,).
(ii) Assume that there exists a sequence {x,} in E satisfying the conditions

limxn::bs and ﬁmsupIfl(xn)l/le(xn)Izoo'

We put | f(x)/| f2(x)|=ko(x). Then there exists a subsequence {x,;)} such that
ko(xuy) > Jj for j=1,2,....
Let

[ko(Xa;)1712 for j=1,2,....
k(x)=
0 otherwise,

and let fy(x)=k(x)f,(x). Then

|fo[xn(j)]|/lf2[xn(j)]f = [ko(xn(j))]llz_)oo as j-»oo,

and so f,(x) is not in My(f,).
Since

0<foGenl/1Lf1 (%) = KCx,)

-0 as n—oo,

for every sequence {x,} in E with the limit point b, we have fy(x) is in My(f).
Thus Mo(f1)# Mo(f2).

17

Assume that there exists a sequence {x,} in E satisfying the conditions lim x,=b,

n—oo

and Hminf | f1(x,)|/| f2(x,)}=0. then similarly we have My(f;)# My(f,).
We have immediately the following lemma.

LeMMA 2.3.  Let M(f) be a submodule satisfying the condition (2.1) and let fo(x)#0

for all x in E. Then the set

JoM(f)={fo(x)g(x): g(x) € M(f)}

is a submodule satisfying the condition (2.1) using fo(x)f(x) instead of f(x).
Therefore we can define a submodule M(f,f) satisfying the condition (2.1) by

JoM(f)=M(fof).

We use the notations M(1), M(1),... instead of M(f), My(f),... when f(x)=1 for

all xin E.

DerinNiTION 2.4.  Let M(1) be a submodule satisfying the condition (2.1) and let f(x)#0

forall xin E. If
gX)f(x)—aeM(l) (xeK)
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then we call « the neutrix limit of order f(x) of g(x) for x-»b, and we write

NL(f, M, b)g(x)=.
THEOREM 2.5.  The limit «, if it exists, is uniquely defined.

Proor. Let g(x)/f(x)—a,, g(x)[f(x)—oa, be in M(1). Then
L9 () — ey 1= [g(R)f (%) — 2] = —at; + o, € M(1)

and so oy =0,.
We have immediately the following theorem.

THEOREM 2.6, Let M(f) and M(1) be submodules satisfying the condition (2.1)
and fM(1)=M(f). Then

NL(f, M, b)g(x)=ua
if and only if
g(x)—af(x) e M(f).

Let {0}={g(x): g(x)=0 for all xe E}. Then {0} is a submodule, the trivial module
and satisfies the condition (2.1) for every function f(x) which does not vanish on E.
We have the following theorem and corollary immediately.

THEOREM 2.7. NL(f, {0}, b)g(x)=« if ans only if
g(x)y=0f(x)  forall xeE.
COROLLARY 2.8. NL(1, {0}, b)g(x)=0o if and only if
g(x)=a  forall xeE,

where 1 means the function f(x)=1 for all x in E.

THEOREM 2.9. Let
NL(f, M, b)g(x)=ay,  NL(f, M, b)gz(x)=0,,
then for any a,, a, in K we have
NL(f, M, b)[a1g1(x)+ a292(x)]= a0 +a,0,.
PrOOF. Since

g1 () —ay, g2(R)f () —a, € M(1)

we have
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a;[g () (%) —a1+ as[g2(x)/f (x) - ,]
=[a191(x)+a29,()]/f (x) —(a,0 +a02) € M(1)
and so
NL(f, M, b)la,9,(x)+a,g,(x)]=a 0, + aa,.

Let My(1) be the submodule defined as above. The following two theorems are
obvious.

THEOREM 2.10. NL(f, My, b)g(x)=«a, if and only if
lim g(x)/f (x)=0.

THEOREM 2.11. Let NL(f, My, b)g(x)=uq, then there exists a neighbourhood U of
b in S and a nonnegative real number B such that |g(x)|/| f(x)|<B for all xe Un E.

THEOREM 2.12. Let
NL(fw MO; b)gi(x)=(xi (l=15 2):
then

NL(f1f2, Mo, b)g:1(x)g2(x) =0 5.

Proor. Since

19 1(X)g2()[f1(3) () — 100, |

<191 1g2(x) = a2 200/ 1 (N L f2(0)
+105] 191 () — s [1 S ()]
-0 asx—b
we have
NL(f1f2> Mo, b)g1(x)g2(%) =015

We would now like to consider K= R, E=(0, cv) and b=oo. We define sets M¥(1)
and M,(1) as follows:
M#(Q1) is the set of all linear sums of the functions

x*In" 1 x, In" x for A>0 and r=1,2,...,

and the functions belonging to the set My(1), where the set My(1) is defined as above.
M,(1) is the set of all functions g(x) for which lim p(x)g(x)=0 for every polynomial

p(x) in R©*),
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The set M¥(1) and M,(1) are submodules of the R-module R©* and satisfy the
condition (2.1), provided f(x)=1 for all x in (0, o).
The following lemma is immediate.
Lemma 2.13.  Let M§(1) x M (1) be the set defined by
M) x M (D) ={g(x)h(x): g(x) e M¥1), h(x) e M,(1)} .
Then
M) x M, (1)=M\1).

THEOREM 2.14. Let
NL(fy, M§, w0)g1(x)=0a;, NL(f5, My, 00)g(x)=0,.
Then
NL(f1f2, M,, 00)[9:1(x)g2(x)— 291 (x) f2(x) — 011 g 2(x) f1(x)] = — 2.
Thus if fi(x)=f(x)=1 for all x in (0, c0) then
NL(1, M,, 00)[g1(x)g,(x) — 0291 (x) — ;g (x)] = —t;.t,.
Proor. Since
910 1(x) ey e ML), go(%)/fo(x)—ap € M (1)
we have
[9:1()/f1(x) — o T [g2(x)/f2(x) — a5 ]
= [91(x)g2(x) =29 1(x).f2(x) — et 9 2() 1 (¥)][f1 () o () + ot
is in M¥(1) x M (1) and so
NL(f1f2> M,, 00) [91()92(%) =029 1(x).f2(x) — 019 5(x) [1(x)] = — 5.
Now suppose that A(x) is in M&(1). Then we can express A(x) uniquely in the form
A(x)=s(x)+m(x),
where s(x) is a linear sum of the functions
x*In"tx,In"x  for A>0 and r=1,2,...
and m(x) is in My(1). Letting
NL(1, M3, 0)g (x)=0y, NL(1, M§, c0)g,(x) =00,
we have

gx)=0o;+s5{x)+my(x),
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where s/(x) is a linear sum of the functions x*In"!x, In"x for 1>0 and r=1, 2,...
and my(x) is in My(1) for i=1, 2.
Since

91(x)g2(x) =0ty0ry + 0y 55(%) + 0ty M5 (x) +atp51(x) + 5, (x)5,(x) +
+ 5, ()M (%) + oty 11 (%) + 52(x)m (%) + my (X)m(x)
and o;5,(x), a;my(x), ays;(x), o,m(X), s;(x)s,(x), m;(x)m,(x) are in M§(1), we have
the following theorem.
THEOREM 2.15. Let NL(1, M§¥, c0)gf{x)=e; for i=1, 2. Then we have
23) NL(1, M§, 00)g:(x)g2(x) =011z
if and only if s;(x)m,(x)+s,(x)m,(x) is in ME(1), and
2.4 if m(x), my(x) are in M (1), then
NL(1, M, 00)g1(x)g2(x)=0t1%;.
Let M}¥(1) be the set of all linear sums of the functions
x* o1 x, In" x for A>0 and r=1,2,...
and functions belonging to the set M.(1).
The set M(1) is a submodule of the R-module R * and atisfies the condition (2.1),
provided f(x)=1 for all x in (0, o).
The following theorem is immediate.
THEOREM 2.16. Let NL(1, M¥, ©o)g(x)=q; for i=1,2. Then
NL(1, My, 00)g1(x)g2(x)=00;.

THEOREM 2.17.  Let NL(1, M§, 0)g{x)=a; for i=1,2. Then for any A in R, there

exist functions
hy(x) e o;+MEQ)
for i=1, 2 such that
NL(1, M¥, oo)h(x)hy(x)=A.

Proor. Let hy(x)=oy+(A—a0)x, hy(x)=u,+1/x. Then h(x) is in o;-+M%(1)
fori=1, 2 and

hi(X)h,(x)=A+ ay(A—oy0)x+oy /x.
Thus
NL(1, Mg, o0)hy(x)hy(x)=A.
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ExaMPLE 2.18. We define two functions g,(x) and g,(x) by

0= ¥ ot g(0= § bt

where g, b, arein R for k= —m, —m+1,..., m.
It follows immediately that

NL(-xk, M?;: Oo)gl(x)=ak (—mgkgm)

and since
2m m—k — 2m m X
g1(x)g,(x)= > X ab_p_x7k+ Y 2 aibgyx
k=1i=-m k=0 i=k—m
we have

NL(x™, M§, 0)g;(Dg:()= & ab_;  (1<k<2m),

NL(, M§, 0)gi()g,(x)= 3 abe;  (0<k<2m).
i=k—m
Now let K=R, E=(0, ) and let b=0. Suppose that M#*(1) is the set of all linear
sums of the functions
x *In1lx, In" x for A>0 and r=1,2,...

and all functions g(x) for which h'ng g(x)=0.

The set M§*(1) is a submodule of the R-module R and satisfies the condition (2.1),
provided that f(x)=1 for all x in (0, c0).
The following results follow similarly

NL(x*, Mg*, 0)g(x)=a,  (-m<k<m),

m—k
NL(x7*, M§*, 0)9:(x)g9.()= ¥ ab_,; (1<k<2m),

NL(S ME*, 0g1()ga()= 3 by (0<k<2m).

3. A Neutrix Product of Distributions

Now let K=R, E={1, 2,...}, let b= 00 and let M%(1) be the set of all linear sums of the
functions

nAlarin, In'n for A>0 and r=1,2,...

and all functions g(n) for which lim g(n)=0. The set M¥(1) is a submodule of the
R-module R" and satisfies the condition (2.1), provided that f(n)=1 for n=1, 2,... .
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Let p be a fixed infinitely differentiable function having the properties:

G.1) p(x)=0 for |x|>1,
(3.2) p(x)=0

(3.3) p(x)=p(—x),

(3.4) Sil p()dx=1.

The function 6, is defined by
0,(x)=np(nx)

for n=1, 2,.... Itis obvious that {5,} is a sequence of infinitely differentiable functions
converging to the Dirac delta function 6. For an arbitrary distribution f the function
[, is defined by

i/n
He=fes,= "7 fex=0a,(0dt.
It follows that {f,} is a sequence of infinitely differentiable functions converging to f.

DerNiTION 3.1, Let f and g be arbitrary distributions and let g,=g*d,. We say
that the neutrix product of order n* of f and g exists and is equal to h on the open interval
(a, b) if

NL(n*, Mg, ©)(fg,, ®)=(h, $)
for all test function ¢ with compact support contained in the interval (a, b). We then
write f lég=h. If no misundrestanding is possible, we will simply say the neutrix
product instead of neutrix product of order n*. Further if k=0, then we will omit 0
and write fog. )
DerINITION 3.2, We define the ordinary summable function x4 for 1> —1 by
x* for x>0,

x4 =
0 for x<O0

and we define the distribution x# for A< —1 and A# —2, —3,... inductively by
xb=A+D7HE)
We define the distribution x% by
xt=(—x)}

for A#—1, —=2,....
The following two theorems were proved in [3].
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THEBOREM 3.3.  The neutrix products x$oxZ2" and xZA7roxk exist and

7 cosec (nl) S—1)

XfoxTA e xTA o xh = — 2 =D1

SJor 2#0, +1, +2,... and r=1, 2,....

THEOREM 3.4. The neutrix product x5+ qnd OUtPoxr . exist and
p + +

XG00HP) = 5oy, = Q__D;_(C'LPL' 5@
pl

forr, p=0,1,2,....
We now prove the following theorems.

THEOREM 3.5. Let f and g be distributions and suppose that the neutrix product
fog andf og’ exist on the open interval (a, b). Then the neutrix productf’og exists and

(fogy =1"g+f59'
on the interval (a, b).

PrOOF. Let ¢ be an arbitrary test function with compact support contained in the
interval (a, b) and let g,=g+5,. Then

(fSq's §)=NL(n*, M%, 00)(f, g'h)

and
~((f59), ®)=(fg, ¢)
=NL(n*, M, ©)(f, g.4)
= NL(n*, M%, 0)(f, (9,0)' —g,0)
and so
(f, gupn ™~ (fq, $)
and

[(fs (.0)) =, 9,/ $)In~* +((foq), )
are in M§(1). Thus

(f, (9:0) ) —(fog", &) +((fo9), &)
is in M¥(1) and so

NL(n*, M§, 0)(f, (9.0))=(f°d’, &)= (fg), ).
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The result of theorem follows.

, Ko
THEOREM 3.6. The neutrix product x}ox=*"" exists and
k
xk o xzAor

=(— 1)~ ta(r, k) F(ﬁal_gg(’}:'j;f’l)‘!"l) Str—k=1)

Jor —1<A<0,r=1,2,... and k<r-—1,
where

or, k)= S; sk=1p =D (5)ds,

PrOOF. Since —1<A<0, we have

r(A+1) d—t __,,

—A—r —
TS TOF dt ¥
and
(x:)'_r)nzx:l_r*én
_ TA+1) iy s-n
T TO+r *0y
= L0+1) Eﬁ i)) S Y (= x) 185Dt e
Thus
__‘@11:((//1113 S_oo x4 (x24) x™md x

/n n
=S‘ x“”'sl/ (t — x) - 16C-D(1)dt dx

(o]

1/n t

= (a0 [| wrme =yt
1/n 1

- g mr=D(7) g orm(1 —p)~A=1dpdt
0 0

=B(A+m+1, —1) Slln m8C-0(¢)dt
0

where the substitution x = tv has been made and B denotes the beta function.

Making the substitution nt=s we have
1/n 1
S tméﬁr-—l)(t)dtznr—‘m—l g Smp(r—l)(s)ds
0 4]

for m=0,1, 2,....

25



26 KuriBavasHl, Y. and FisHER, B,

Now let ¢ be an arbitrary test function. Then
Jzt xm " xJ .
()= T - dmO)+Fp ()
where 0<£<1 and so

(x4, (x2*7),¢(x))

J—=1

%Sw xi(XZA"')nX'”dx + %Sw xi(x:l—r)"qus(j)(fx) dx.

m=0

We have
|7 G, 90 (x|
<sup (¢} | [xh(r=2), 2l dx = 0(nr=1)
for r—1<j and

$™(0) (;nn) '(0) Sw xi(xzA ) xmdx

_ $™(©0) T'(A+1) _ g”” my(r=1)

T mb T@2+r) Bli+m+1, =2) o IO

_ ¢"(©0) T(+1) et | gnpen

T ml TOF Bd+m+1, =n o ()ds

_ 9UTDO) F(+1)
T =k=DI T@+r)

BA+r—k, —n*ta(r, k)

where the substitution k=r~m—1 has been made. Since
POHDO) = (— 1) (504D, )
we have
NL(n*, M§, c0)(x£(x=*"),, @)

The result of the theorem follows.

THEOREM 3.7. The neutrix product x', § 5 +2) exists and
.k - a(r, p, k) <p-
Xt o gt =( 1)k E\s & R s5(p—k)

where
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1
a(r, p, k)= go setrk o) (5)ds

forr, p=1,2,... and k<p.

Proor. We have

© 1/n
S x5 8T+ (x) xmdx = g xmr §Grp)(x)dx
o . o

=pbm Sl Sm+rp(r+p)(s) ds
0
where the substitution nx=s has been made and so
«© . . 1 'y
S_w e, 80+0 (x) x| d = i 30 |s7+2+3 p+0) (5) | ds

=0(n")

for j>1.
Now let ¢ be an arbitrary test function. Then

(x4, 8P (x)$(x))

—p+j ¢(m)(0) ® v S(rt+p) m
=% 420 S_w Xt 5040 (x) xmdx

1

T | OSTP0) xHHGEHD () dx.

Since

1

ri+DT Sw | X565+ (x)xPH 1 @HID(Ex) | dx

SS}clp {lo@H D (x|} (p+1 S: |xh 8P (x)xP+itl|dx

(CESE

=sup (|90} =

IE I

we have

(m) ©
SO ws amdx
_ ¢@~(0) kgl bk o (rtp)
=R n OsP prte)(s)ds

= 40 (= a0, ¢)

where the substitutions nx=s and m=p—k have been made. The resuit of the theorem
follows.
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