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1. Introduction

In the previous papers [2] and [3], we have introduced a concept of generalized
functions. In the present paper we intend to discuss relations between summation
kernels, delta functions and the delta distribution, using generalized functions. For
the sake of the purpose, we would like to introduce a new definition of summation
kernels. The definition differs slightly from the traditional one. According to our
definition the Gauss-Weierstrass kernel W(x, y) and Poisson kernel P(x, y) are sum-

mation kernels.
As an application of our method, we intend to prove the following equalities:

S W{x, y)dx=g P(x, y)dx=1.
R)'l R"

The author expresses his hearty thanks to Professor S. Igari of Tohoku University
for his many valuable suggestions. ‘

2. Preliminaries
We shall first give the definition of generalized functions.
DErFINITION 2.1. Let R*={yeR; y>0}, and F={(0, y); yeR*}. Then F has the
finite intersection property. We shall denote with & the ultrafilter generated by F.

Let {X(p); y€ R*} be a family of non empty sets and let a(y), b(y)e ] X(y). De-
eR*
fine a(y)~ b(y) if the following condition is satisfied : ’

{yeR*; a(y)=b(y)}eZ.

1t is easy to see this relation is an equivalence relation. Define
ITs X(»)= IT X(»)/~.
yeR*
The equivalence class determined by a(y)e [ X(y) will be denoted with [a(y)].
yeR™*

If X(y)=X for yeR*, then we denote [T, X=*X. Let aeX and let a(y)=a for
yeR*. If we identify [«(y)] with @, then we have X <*X. Throughout this paper,
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we identify [a(y)] with a. An element of the space *Map (R, C) is called a generalized
function (G-function).

LemMA 2.2. Let a(y), a'(y), b(y), b'(y) e H C and let a(y)~a'(y), b(y)~b'(y).
If {yeR*; |la(y)— b(y)]<a}eﬁ"'forseR+ Then
{yeR";la'(y)—-b'(y)|<e}eF  for seR*.

Proor. LeteeR*. Since
{yeR*; la'(y)—b'(y)l<e}
={yeR*; a()=a'} n{yeR*; b(y)=b'(»)}
n{yeR*;la(y)—b(y)l<e}, and
{yeR*; a()=a' )}, {yeR*; b(y)=b'(y)},
{yeR*; la(n-by)l<e}e 7,
we have
yeR*; la(n)-b'WI<eies
DeriniTION 2.3, Let [a(y)], [b(y)]€*C. Define [a(y)]=[b(y)] if the following
condition is satisfied :
{yeR"; la(y)—b(y)|<e}e F for e¢eR*.

According to Lemma 2.2, Definition 2.3 is well-defined.

ProrosiTioN 2.4. Let ay(y) e [a(y)] € *C and let
limay(y)=a. Then [a(y)]=a.
y=>0

Proor. For every positive number ¢, we can select a suitable positive number & such
that y €(0, ) implies |aq(y)—al<e. Thus we have

{yeR*; lag(y)—al<e}=(0, 9).
Since (0, 6)e # we have {y e R*; |ao(y)—a| <&} € &, and therefore [a(]=[ac(y)]=a.

DeriniTION 2.5, Let [f(x, p)1=[f(xy,..., X, ¥)]€*Map (R", C). We say Lf(x, ]
has a property P, if it satisfies the condition:

A(P)={yeR*; f(x, y) has a property P as a function of x alone} e #
REMARK. Definitions 2.5, 2.6 and 3.2 are clearly well-defined and proofs are omitted.

DeriniTION 2.6, Let [f(x, y)] be an integrable G-function on R*. Define
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[ rCe mlax=] § s, x|,

where S £(x, y)dx* is defined as follows:
Rn

S f(x, y)dx*=g f(x, y)dx where f(x, y) is integrable on R", and
R" Rn

=0 elsewhere.

3. Summation Kernels and Delta Functions

We shall define the delta distribution 6 as follows:

DermNiTION 3.1. Let § be the set of all G-functions [f(x, y)] having the following
properties:

(3.1) [f(x, y)]is locally integrable i.e.

A(D={y e R*; f(x, y) is locally integrable as a function of x alone} ¢ #, and
() | [/ Ieeldx=g©)  for 9e(@).
An element of the set § is called a delta function.

ProrosITION 3.2.  Let [ f(x, y)] be a delta function having the following property:

(3.3) Let I be a bounded interval in R" such that 0. Then |f|(x, y) is bounded on
the interval, i.e.

AM, D={yeR*; |fl(x, )SM, xel}eF
for some MeRY, where |fl(x, y)=|f(x, »)|.
We have the following properties: '

(3.4) Let I be a bounded interval in R* such that I50. Then
[ [ p1ax=1.

(3.5) Let I be a bounded interval in R* such that I50. Then

S; [£(x, y)]dx=0.

Proor. (3.4) LeteeR". We choose a bounded interval I; in R* having the follow-
ing properties:

@ I,=1, and (ii) m(I, —I)<e, where m denotes the Lebesgue measure. We choose a
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function ¢ € (2) having the following properties:
(i) 0=e(x)=1, (v) e(x)=1 for xel, and (v) Car(p)<I,.

Let ye AWM, I)) n A(l). Then

[ 705 200Gt = £, oo+ § s, pocoyds,
R© I In-r1

and
[f,._ 76 oedx| <176 pldvsMum(T, ~D<Mys.
On the other hand we have
1=pO= s 9ITocaNdx.
Therefore we have
f,Lres pans1.

(3.5) LeteeR*. We choose I; and ¢ in the same way as (3.4). For sufficiently small
&, we have I, 0. Let ye A(M, I,)n A(]). Then

[ 70 D0Cdx ={ e ax+{ 75 pptodx, and
R" I -1

'S“__If(x, .V)(P(x)dxl ég . [f(x, MdxSMe.

Iy

On the other hand we have
0=pO)={_ [/ »ILo(1dx.

Therefore we have S [f(x, y)]dx=0.
I

ProrosITION 3.3.  Let f(x, y) be a function having the following properties:
(3.6) f(x, y) is integrable for all ye R* and [ f(x, y)1€6,

(3.7) We can choose a bounded interval I in R" and a non negative function g(x)
having the following properties:

(i) S gx)dx<oo, and
Rn—]
(i) IfI(x, »=g(x)  for yeR*, xeR"—I, and
(3.8) Iinéf(x, y)=0 for a.e. xeR"—I,
y—’

Then we have
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[, L7Ce maxs=t.

Proor. Since

[ 0o ax={ £ree s+ 07 91,
using Propositién 3.1, we have
SI [FCx, y)ldx=1.

By the dominated convergence theorem, we have

XR"_I[f(X, ¥)1dx=0.

Therefore we have

{07 axsL.

CoROLLARY 3.4. Let f(x, y) be a function having the properties (3.6), (3.7) and
(3.8).

Ing" [f(x, y)]dx eR, then XR" [f(x, y)]dx=1.

DerINITION 3.5. A G-function [k(x, ¥)] is said a summation kernel if it satisfies the
following conditions:

(3.9) [ [kx, ydx=1,

(3.10) [[k]l.0N1=M for some M eR*, where ||k||1(J’)=g 1k(x, y)|dx*, and
Rn
(3.11) LeteeR* and I,={x; |x|<¢}. Then

[, [kl Ge 3010,
Rn—TIg

By Definition 3.5, Gauss-Weierstrass kernel W(x, y)=(4ry)~(*/2e~1*1?/4y and Poisson
kernel P(x, y)=C,(y/(y?+|x]|2)n+1/2) where C,=1I((n+1)/2)/(n(*+*1)/2), are summation
kernels.

The traditional definition of summation kernels are as follows (see Igari [17]).

DEeFINITION 3.6. A family of functions {k,(x)},. defined on R* is said a summation
kernel if it satisfies the following conditions:

(3.12) \/Z—IF“ Smkl(x)dx=1 :
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(3.13) Ikl =M for some M=0, and
(3.14) limg L fa()dx=0 forall s>0.
A—=o0 J|x|>¢

ProrosiTiOoN 3.7. Let [ f(x, y)] be a summation kernel. Then [ f(x, y)] €.

ProrositioN 3.8. Let f(x, y) be an integrable function on R* for all y € R having
the following properties:

(3.15) f(x, y) is bounded on R*x R*, and
(3.16) linéf(x, =1 for a.e. xeR"
y'—)
Then
(3.17) [F() 6 1= | [FE e sl es.

Proor. Let oe(2). Then

[ A1 s emmsaroan={_ s& nf]  pwessaxtae,

and
tim & )1, oeriae)ax
= oemistdndz= (0.
Rn R)l
Therefore [F(H(x, y)]eo.

ExAmpLE 3.9. (i) Let f(x, y)=e4"*1*I*y and g(x, y)=e 27xl»,
Then [F(f)(x, y)]=[W(x, y)] and [F(g)(x, ¥)]=[P(x, y)] have the properties (3.6),
(3.7, (3.8) and

[ o yai={ e e, and
R® R®

g 10 y)]dt=§ [P(t, 1)]dt.
JR» R®

Therefore
g [W(z, y)]dt=g [P(t, y)]dt=1.
R® Rn

(i) Let fg(x, y)=f(x, y)g(x, y), where f(x, y) and g(x, y) are functions defined in (i).
Then
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[#(f9)(x, »)]ed.
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