A Generalization of the Concept of Functions (III)

Yukio Kuribayashi

(Received May. 15, 1981)

1. Introduction

In the previous papers [2] and [3], we have introduced a concept of generalized functions. Our definition is as follows:

DEFINITION 1.1. Let $R^+ = \{y \in R; y > 0\}$, and let $F = \{(0, y); y \in R^+\}$. Then F has the finite intersection property. We shall denote with \mathscr{F} the ultrafilter generated by F. Let a(y), $b(y) \in \prod_{y \in R^+} \operatorname{Map}(R^n, C)$. Define

 $a(y) \sim b(y)$ if the following condition is satisfied:

$$\{y \in R^+; a(y) = b(y)\} \in \mathcal{F}.$$

It is easy to see that this relation is an equivalence relation. Define

*Map
$$(R^n, C) = \prod_{y \in R^+} \operatorname{Map}(R^n, C) / \sim$$
.

The equivalence class determined by a function $a(y) \in \prod_{y \in R^+} \operatorname{Map}(R^n, C)$ will be denoted by [a(y)]. An element of the space *Map(R^n , C) is called a generalized function (G-function).

Similarly we can define spaces **Map $(R^n, C) = *(*Map(R^n, C)), ***Map(R^n, C) = *(**Map(R^n, C)),...$

In the present paper we intend to give an another definition of generalized functions. Using the definition we would like to show that the spaces **Map (R^n, C) , ***Map (R^n, C) ,..., are given by direct generalization of the space Map (R^n, C) .

2. Preliminaries and Several Properties

We shall first give the following definition (see Comfort and Negrepontis [1]):

DEFINITION 2.1. Let F be the ultrafilter defined in Definition 1.1. Define

$$(2.1) \quad \mathcal{F} \cdot \mathcal{F} = \left\{ A \in \mathcal{P}(R^+ \times R^+); \, \left\{ y_2 \in R^+; \, \left\{ y_1 \in R^+; \, \left(y_1, \, y_2 \right) \in A \right\} \in \mathcal{F} \right\} \in \mathcal{F} \right\},$$

$$\begin{aligned} (2.2) \quad & (\mathcal{F}\cdot\mathcal{F})\cdot\mathcal{F} = \{A\in\mathcal{P}(R^+\times R^+\times R^+); \ \{y_3\in R^+; \ \{(y_1,\ y_2)\in R^+\times R^+; \ (y_1,\ y_2,\ y_3) \\ & \in A\}\in\mathcal{F}\cdot\mathcal{F}\}\in\mathcal{F}\}\,, \end{aligned}$$

^{*} Laboratory of Mathematics, Faculty of Education, Tottori University, Tottori, Japan.

- (2.4) $\mathscr{F} \times \mathscr{F} = \{ A \in \mathscr{P}(R^+ \times R^+); \text{ there are } B, C \in \mathscr{F} \text{ such that } B \times C \subset A \},$
- (2.5) $(\mathscr{F} \times \mathscr{F}) \times \mathscr{F} = \{A \in \mathscr{P}(R^+ \times R^+ \times R^+); \text{ there are } B \in \mathscr{F} \times \mathscr{F}, C \in \mathscr{F} \text{ such that } B \times C \subset A, \text{ and}$
- (2.6) $\mathscr{F} \times \mathscr{F} \times \mathscr{F} = \{A \in \mathscr{P}(R^+ \times R^+ \times R^+); \text{ there are } B, C, D \in \mathscr{F} \text{ such that } B \times C \times D \subset A\}.$

We have the following lemma:

LEMMA 2.2. (i) $\mathcal{F} \cdot \mathcal{F}$ is an ultrafilter on $\mathcal{P}(R^+ \times R^+)$.

- (ii) $\mathscr{F} \times \mathscr{F}$ is a filter on $\mathscr{P}(R^+ \times R^+)$ and we have $\mathscr{F} \times \mathscr{F} \subset \mathscr{F} \cdot \mathscr{F}$.
- (iii) $(\mathcal{F} \cdot \mathcal{F}) \cdot \mathcal{F}$ is an ultrafilter on $\mathcal{P}(R^+ \times R^+ \times R^+)$,
- (iv) In the same way as (2.2) we can define $\mathcal{F} \cdot (\mathcal{F} \cdot \mathcal{F})$ and we have

$$(\mathcal{F} \cdot \mathcal{F}) \cdot \mathcal{F} = \mathcal{F} \cdot \mathcal{F} \cdot \mathcal{F} = \mathcal{F} \cdot (\mathcal{F} \cdot \mathcal{F}).$$

(v) $(\mathscr{F} \times \mathscr{F}) \times \mathscr{F}$ is a filter on $\mathscr{P}(R^+ \times R^+ \times R^+)$ and we have

$$(\mathcal{F} \times \mathcal{F}) \times \mathcal{F} \subset (\mathcal{F} \cdot \mathcal{F}) \cdot \mathcal{F}$$
, and

(vi) In the same way as (2.5) we can define $\mathcal{F} \times (\mathcal{F} \times \mathcal{F})$ and we have

$$(\mathcal{F} \times \mathcal{F}) \times \mathcal{F} = \mathcal{F} \times \mathcal{F} \times \mathcal{F} = \mathcal{F} \times (\mathcal{F} \times \mathcal{F}).$$

PROOF. We shall only prove (i), (ii) and (iv).

- (i) 1° It is clear that $\phi \in \mathscr{F} \cdot \mathscr{F}$.
- 2° Let $A \in \mathcal{F} \cdot \mathcal{F}$ and $A \subset B$. Since

$$\begin{split} &\{y_2 \in R^+; \ \{y_1 \in R^+; \ (y_1, \ y_2) \in A\} \in \mathscr{F}\} \subset \{y_2 \in R^+; \ \{y_1 \in R^+: \ (y_1, \ y_2) \in B\} \in \mathscr{F}\} \quad \text{and} \\ &\{y_2 \in R^+; \ \{y_1 \in R^+; \ (y_1, \ y_2) \in A\} \in \mathscr{F}\} \in \mathscr{F}, \end{split}$$

we have $\{y_2 \in R^+; \{y_1 \in R^+; (y_1, y_2) \in B\} \in \mathscr{F}\} \in \mathscr{F}$ and therefore $B \in \mathscr{F} \cdot \mathscr{F}$. 3° Let $A, B \subset \mathscr{F} \cdot \mathscr{F}$. Since

$$\{y_2 \in R^+; \; \{y_1 \in R^+; \; (y_1, \; y_2) \in A \cap B\} \in \mathcal{F}\}$$

$$= \left\{ y_2 \in R^+ \; ; \; \left\{ y_1 \in R^+ \; ; \; \left(y_1, \; y_2 \right) \in A \right\} \in \mathcal{F} \right\} \; \cap \; \left\{ y_2 \in R^+ \; ; \; \left\{ y_1 \in R^+ \; ; \; \left(y_1, \; y_2 \right) \in B \right\} \in \mathcal{F} \right\} \; ,$$

we have

$$\{y_2 \in R^+; \ \{y_1 \in R^+; \ (y_1, \ y_2) \in A \cap B\} \in \mathcal{F}\} \in \mathcal{F};$$

$$A \cap B \in \mathcal{F} \cdot \mathcal{F}.$$

 4° Let $A \in \mathcal{P}(R^+ \times R^+)$ and $A \notin \mathcal{F} \cdot \mathcal{F}$. Define

$$T_{y_2} = \{y_1 \in R^+; (y_1, y_2) \in A\}$$
 for $y_2 \in R^+$, and

$$S = \{ y_2 \in R^+; T_{y_2} \in \mathscr{F} \}.$$

Then $S \notin \mathscr{F}$ and hence $R^+ - S \in \mathscr{F}$. Since

$$R^+-S=\{y_2\in R^+;\ T_{y_2}\oplus \mathscr{F}\},\quad\text{and}$$

$$T_{y_2}\oplus \mathscr{F}\rightleftarrows \{y_1\in R^+;\ (y_1,\ y_2)\in R^+\times R^+-A\}\in \mathscr{F}.$$

we have

$$R^+ - S = \{y_2 \in R^+; \ \{y_1 \in R^+; \ (y_1, \ y_2) \in R^+ \times R^+ - A\} \in \mathcal{F}\} \in \mathcal{F},$$

and hence

$$R^+ \times R^+ - A = A^c \in \mathcal{F} \cdot \mathcal{F}$$
.

We have therefore proved (i).

(ii) 1° It is clear that $\phi \notin \mathscr{F} \times \mathscr{F}$.

2° Let $A \in \mathcal{F} \times \mathcal{F}$ and $A \subset A_0$. There are B_1 , $C_1 \in \mathcal{F}$ such that $B_1 \times C_1 \subset A$. Thus we have $B_1 \times C_1 \subset A_0$, and therefore $A_0 \in \mathcal{F} \cdot \mathcal{F}$.

3° Let $A_1, A_2 \in \mathscr{F} \times \mathscr{F}$. There are $B_1, B_2, C_1, C_2 \in \mathscr{F}$ such that $B_1 \times C_1 \subset A_1$ and $B_2 \times C_2 \subset A_2$. Since

$$(B_1 \cap B_2) \times (C_1 \cap C_2) \subset A_1 \cap A_2$$
 and $B_1 \cap B_2$, $C_1 \cap C_2 \in \mathcal{F}$,

we have $A_1 \cap A_2 \in \mathcal{F} \times \mathcal{F}$.

4° Let $A \in \mathscr{F} \times \mathscr{F}$. There are $B, C \in \mathscr{F}$ such that $B \times C \subset A$. Since $\{y_2 \in R^+; \{y_1 \in R^+; (y_1, y_2) \in B \times C\} \in \mathscr{F}\} \in \mathscr{F}$ we have $B \times C \in \mathscr{F} \cdot \mathscr{F}$ and hence $A \in \mathscr{F} \cdot \mathscr{F}$. We have therefore proved (ii).

(iv) Since

$$\begin{split} & \{A \in \mathscr{P}(R^+ \times R^+ \times R^+); \; \{y_3 \in R^+; \; \{(y_1, \; y_2) \in R^+ \times R^+; \; (y_1, \; y_2, \; y_3) \in A\} \in \mathscr{F} \cdot \mathscr{F}\} \in \mathscr{F}\} \\ &= \{A \in \mathscr{P}(R^+ \times R^+ \times R^+); \; \{y_3 \in R^+; \; \{y_2 \in R^+; \; \{y_1 \in R^+; \; (y_1, \; y_2, \; y_3) \in A\} \in \mathscr{F}\} \\ &\in \mathscr{F}\} \in \mathscr{F}\} \\ &= \{A \in \mathscr{P}(R^+ \times R^+ \times R^+); \; \{(y_2, \; y_3) \in R^+ \times R^+; \; \{y_1 \in R^+; \; (y_1, \; y_2, \; y_3) \in A\} \in \mathscr{F}\} \\ &\in \mathscr{F} \cdot \mathscr{F}\} \end{split}$$

we have

$$(\mathcal{F}\cdot\mathcal{F})\cdot\mathcal{F}=\mathcal{F}\cdot\mathcal{F}\cdot\mathcal{F}=\mathcal{F}\cdot(\mathcal{F}\cdot\mathcal{F})\,.$$

DEFINITION 2.3. Let $K \neq \phi$, and let $a(y_1, y_2)$, $b(y_1, y_2) \in \prod_{(y_1, y_2) \in R^+ \times R^+} K$. Define $a(y_1, y_2) \sim 2 b(y_1, y_2)$ if the following condition is satisfied:

$$\{(y_1,\ y_2)\!\in\! R^+\!\times\! R^+;\ a(y_1,\ y_2)\!=\!b(y_1,\ y_2)\}\!\in\! \mathcal{F}\cdot\mathcal{F}.$$

It is easy to see that this relation ~ 2 is an equivalence relation. Define

$$^{(*2)}K = \prod_{(y_1, y_2) \in R^+ \times R^+} K/\sim 2.$$

The equivalence class determined by $a(y_1, y_2)$ will be denoted with $[a(y_1, y_2)]$.

THEOREM 2.4.

$$**K = (*2)K$$
.

PROOF. If $(a(y_1))(y_2) \in \prod_{y_2 \in R^+} (\prod_{y_1 \in R^+} K)$, then we consider $(a(y_1))(y_2) \in \prod_{(y_1, y_2) \in R^+ \times R^+} K$, and write $(a(y_1))(y_2) = a(y_1, y_2)$. Let $[[a(y_1)](y_2)]$, $[[b(y_1)](y_2)] \in **K$. Since

$$\begin{aligned} & [[a(y_1)](y_2)] = [[b(y_1)](y_2)] \\ & \rightleftharpoons \{y_2 \in R^+; \ [a(y_1)](y_2) = [b(y_1)](y_2)\} \in \mathscr{F} \\ & \rightleftharpoons \{y_2 \in R^+; \ \{y_1 \in R^+; \ (a(y_1))(y_2) = (b(y_1))(y_2)\} \in \mathscr{F}\} \in \mathscr{F} \\ & \rightleftharpoons \{(y_1, y_2) \in R^+ \times R^+; \ a(y_1, y_2) = b(y_1, y_2)\} \in \mathscr{F} \cdot \mathscr{F} \\ & \rightleftharpoons [a(y_1, y_2)] = [b(y_1, y_2)]. \end{aligned}$$

we immediately have **K = (*2)K.

COROLLARY 2.5. **Map
$$(R^n, C) = (*2)$$
 Map (R^n, C) .

DEFINITION 2.6. Let $K \neq \phi$, and let $a(y_1, y_2, y_3)$, $b(y_1, y_2, y_3) \in \prod_{(y_1, y_2, y_3) \in R^+ \times R^+ \times R^+} K$. Define $a(y_1, y_2, y_3) \sim 3 \ b(y_1, y_2, y_3)$ if the following condition is satisfied:

$$\{(y_1,\ y_2,\ y_3)\in R^+\times R^+\times R^+;\ a(y_1,\ y_2,\ y_3)=b(y_1,\ y_2,\ y_3)\}\in \mathcal{F}\cdot \mathcal{F}\cdot \mathcal{F}.$$

It is easy to see that this relation ~ 3 is an equivalence relation. Define

$$^{(*3)}K = \prod_{(y_1, y_2, y_3) \in R^+ \times R^+ \times R^+} K/\sim 3.$$

The equivalence class determined by a function $a(y_1, y_2, y_3)$ will be denoted by $[a(y_1, y_2, y_3)]$.

Theorem 2.7. Let $K \neq \phi$. Then

$$(2.7) (*3)K = *(*2)K = (*2)*K = ***K.$$

PROOF. Since

$$\prod_{(y_1, y_2, y_3) \in R^+ \times R^+ \times R^+} K/\sim 3 = \prod_{y_3 \in N^+} (\prod_{(y_1, y_2) \in R^+ \times R^+} K/\sim 2)/\sim$$

$$= \prod_{(y_2, y_3) \in R^+ \times R^+} (\prod_{y_1 \in R^+} K/\sim)/\sim 2$$

$$= \prod_{y_3 \in R^+} (\prod_{y_2 \in R^+} (\prod_{y_1 \in R^+} K/\sim)/\sim)/\sim,$$

we immediately have (2.7).

COROLLARY 2.8.
$$(*3)$$
 Map $(R^n, C) = (*2)*$ Map (R^n, C) $= (*2)*$ Map $(R^n, C) = ***$ Map (R^n, C) .

We can generalize Theorem 2.7 and Corollary 2.8 as follows:

Theorem 2.9. Let $K \neq \phi$. Then

$$(*d)K = *(*(d-1))K = \cdots = *\cdots *K.$$

COROLLARY 2.10. (**a) Map $(R^n, C) = *(*(d-1))$ Map $(R^n, C) = \cdots = *\cdots *$ Map (R^n, C) .

EXAMPLE 2.11. Let

$$\begin{split} & \left[\delta(x_1, \dots, x_n, y_1, \dots, y_n) \right] \\ & = \left[\frac{1}{(2\pi i)^n} \left(\frac{1}{x_1 - iy_1} - \frac{1}{x_1 + iy_1} \right) \cdots \left(\frac{1}{x_n - iy_n} - \frac{1}{x_n + iy_n} \right) \right] \\ & = \left[\frac{1}{\pi^n} \cdot \frac{y_1}{x_1^2 + y_1^2} \cdots \frac{y_n}{x_n^2 + y_n^2} \right] \quad \text{for} \quad x_1, \dots, x_n \in R \text{ and } y_1, \dots, y_n \in R^+. \end{split}$$

Then $[\delta(x_1,...,x_n,y_1,...,y_n)]$ is a delta function of *n*-variables and $[\delta(x_1,...,x_n,y_1,...,y_n)]$ $\in (*n)$ Map (R^n,C) .

References

- [1] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer, Berlin-Heiderberg-New York. 1974.
- [2] Y. Kuribayashi, A generalization of the concept of functions (I), J. Fac. Educ. Tottori Univ., Nat. Sci., 27-2 (1977), 27-31.
- [3] _____, A generalization of the concept of functions (II), J. Fac. Educ. Tottori Univ., Nat. Sci., 28-1 (1978), 1-8.

