Metrization of Spaces Which Have σ -as-finite Bases

Shōzō SASADA*,
(Received April 15, 1976)

1. Introduction

In our previous paper [5], we have introduced the notion of as-finite¹⁾ collections which is a generalization of locally finite collections, and have studied their properties. And now, as a continuation of the study, we consider metrization of spaces which have σ -as-finite bases.

The classical Nagata-Smirnov metrization theorem ([2], [6]) asserts that a regular space is metrizable if and only if it has a σ -locally finite²⁾ base. Recently, in [1], D. Burke, R. Engelking and D. Lutzer gave a generalization of the Nagata-Smirnov metrization theorem in terms of a hereditarily closure-preserving base.

In this paper, we will prove the following metrization theorem:

THEOREM. Let X be a regular quasi-k-space.³⁾ X is metrizable if and only if it has a σ -as-finite²⁾ base.

This is a generalization of the Nagata-Smirnov metrization theorem in quasi-k-spaces.

2. Definitions and notations

In this section, we give the definitions and the notations which are used in this paper.

DEFINITION 1 ([5]). A sequence $\{x_n\}$ of points of X is said to be an ac-sequence if each subsequence of $\{x_n\}$ has a cluster point in X.

DEFINITION 2 ([5]). A collection $\mathfrak{F} = \{F_{\alpha} | \alpha \in A\}$ of subsets of X is as-finite if and only if $\{\alpha \in A | F_{\alpha} \cap S \neq \phi\}$ is finite for every ac-sequence $\{x_n\}$, where $S = \{x_n | n \in \mathbb{N}\}$.

Clearly, every locally finite collection is as-finite. But as-finite collections in a space X may fail to be locally finite, even if they are open collections and X is a Fréchet space ([5, Example 4.3]).

Throughout this paper, topological spaces are assumed to be T_1 -spaces. The symbol N denotes the set of all possitive integers. The notation $\{x_n\}$ (resp. $\{n_k\}$) denotes a

^{*)} Laboratory of Mathematics, Faculty of Education, Tottori University, Tottori, Japan.

¹⁾ Cf. § 2 Definition 2 (in this paper).

²⁾ A σ -locally finite (resp. σ -as-finite) collection is one which can be written as a countable union of locally finite (resp. as-finite) subcollections,

³⁾ According to Nagata [4], a space X is said to be a quasi-k-space if a set F of X is closed in X if and only if $F \cap C$ is closed in C for every countably compact set C in X.

24 Sasada, S.

sequence of points in a space X (resp. of possitive integers), and the notation $\{x_n|n\in \mathbb{N}\}$ denotes the image set of the sequence $\{x_n\}$. As for other terms and symbols in general topology, see [3] and [5, § 2].

3. The proof of the theorem

LEMMA 1. Let X be a quasi-k-space and let \mathfrak{H} be an as-finite collection of subsets in X. Then $\bigcap \{H | H \in \mathfrak{H}\}\$ is an open subset of X.

PROOF. For each countably compact subset K of X, the collection $\{H \cap K | H \in \mathfrak{H}\}$ is an as-finite collection in a subspace K. By [5, Corollary 3.2], the collection $\{H \cap K | H \in \mathfrak{H}\}$ contains only finitely many distinct subsets of K. Therefore $K \cap [\cap \{H | H \in \mathfrak{H}\}]$ = $\cap \{H \cap K | H \in \mathfrak{H}\}$ is relatively open in K for each countably compact subset K of X. Since X is a quasi-k-space, $\cap \{H | H \in \mathfrak{H}\}$ is open in X.

LEMMA 2. Let X be a topological space and suppose that $p \in X$ has a countable nbd base. Let \mathfrak{H} be an as-finite collection of subsets of X and suppose that no member of \mathfrak{H} contains p. Then \mathfrak{H} is locally finite at p.

PROOF. Let $\mathfrak{B} = \{V_n | n \in \mathbb{N}\}$ be a decreasing nbd base at p. Suppose that each member of \mathfrak{B} meets infinitely many members of \mathfrak{S} . Inductively choose members $H_n \in \mathfrak{S}$ for each $n \in \mathbb{N}$ such that $V_n \cap H_n \neq \phi$ for each $n \in \mathbb{N}$. Since \mathfrak{B} is a nbd base at p and no member of \mathfrak{S} contains p, we can choose a sequence $\{n_k\}$ of distinct integers and a sequence $\{x_k\}$ of distinct points in X such that

$$x_k \in V_{n_k} \cap H_{n_k}, \qquad n_1 < n_2 < n_3 < \cdots.$$

Then the sequence $\{x_k\}$ converges to p because $\{V_{n_k}|k \in \mathbb{N}\}$ is a nbd base at p. Therefore $\{x_k\}$ is an ac-sequence. From the construction of the sequence $\{x_k\}$,

$$\{H \in \mathfrak{H} | \{x_k | k \in \mathbb{N}\} \cap H \neq \emptyset\}$$

is infinite. This contradicts the fact that $\mathfrak S$ is as-finite. Consequently, $\mathfrak S$ is locally finite at p.

By using the technique of the proof of [1, Theorem 5], we obtain the proof of the theorem.

PROOF of THEOREM. The necessity follows directly from the Nagata-Smirnov theorem.

To prove the sufficiency, let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ be a σ -as-finite base for X. Here we can assume without loss of generality that X belongs to \mathfrak{B}_n for each $n \in \mathbb{N}$. Let p be a nonisolated point of X and put

$$\mathfrak{C}_n = \{C = B - \{p\} | B \in \mathfrak{B}_n\}.$$

Then \mathfrak{C}_n is as-finite. By Lemma 1, $B_n = \bigcap \{B | B \in \mathfrak{B}_n, p \in B\}$ is an open nbd of p because X is a quasi-k-space and \mathfrak{B}_n is as-finite. Since $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ is a base for X, $\{B_n | n \in \mathbb{N}\}$ is a nbd base at p. Therefore, by Lemma 2, \mathfrak{C}_n is locally finite at p. Since p is a non-isolated point,

$$\operatorname{ord}(V, \mathfrak{B}_n) = \operatorname{ord}(V, \mathfrak{C}_n)^{4}$$

for each nbd V of p. Consequently, \mathfrak{B}_n is locally finite at p. Put

$$X_n = \{x \in X | \mathfrak{B}_n \text{ is locally finite at } x\}$$

for each $n \in \mathbb{N}$, then each set X_n is an open set and contains all nonisolated points of X. Let

$$\mathfrak{B}'_n = \{B \cap X_n | B \in \mathfrak{B}_n\}$$

for each $n \in \mathbb{N}$. Then each \mathfrak{B}'_n is locally finite in X and $\mathfrak{B}' = \bigcup_{n=1}^{\infty} \mathfrak{B}'_n$ contains a nbd base at each nonisolated point of X.

Let

$$\mathfrak{B}_n'' = \{\{x\} | \{x\} \in \mathfrak{B}_n\}$$

for each $n \in \mathbb{N}$. Then \mathfrak{B}_n'' is an as-finite collection of open and closed subsets in X. Since X is a quasi-k-space, by [5, Corollary 4.11] \mathfrak{B}_n'' is locally finite. Also $\mathfrak{B}'' = \bigcup_{n=1}^{\infty} \mathfrak{B}_n''$ contains a nbd base at each isolated point of X. Therefore $\mathfrak{B}' \cup \mathfrak{B}''$ is a σ -locally finite base for X. According to the Nagata-Smirnov theorem, the space X is metrizable. The proof is complete.

REMARK. Every locally finite collection is as-finite, but an as-finite collection \mathfrak{F} of subsets of a space X may fail to be locally finite even if \mathfrak{F} is a collection of open subsets of X and X is a Fréchet space ([5, Example 4.3]). Therefore the theorem is a generalization of the Nagata-Smirnov metrization theorem in quasi-k-spaces.

References

- D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc., 51 (1975), 483–488.
- [2] J. NAGATA, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A Math., 1 (1950), 93-100.
- [3] ——, Modern general topology, Wiley (Interscience), New York (1968).
- [4] ———, Quotient and bi-quotient spaces of M-spaces, Proc. Japan Acad., 45 (1969), 25-29.
- [5] S. SASADA, A generalization of locally finite collections, J. Fac. Educ. Tottori Univ., Nat. Sci., 23 (1972), 164-178.
- [6] J. M. SMIRNOV, A necessary and sufficient condition for metrizability of a topological space, Dokl. Akad. Nauk SSSR, 77 (1951), 197-200. (MR 12, 845.)

⁴⁾ ord (V, \mathfrak{F}) denotes the cardinal number of $\{F \in \mathfrak{F} \mid V \cap F \neq \emptyset\}$.