Change of Variable in the Finite Parts of Divergent Integrals

Yukio Kuribayashi*

(Received September 14, 1974)

1. Introduction

In the present paper we intend to give a method of change of variable in the finite parts of divergent integrals. Related work has been discussed by L. Schwartz [1].

2. Change of variable in the finite parts of divergent integrals

We use the notation R^N as follows:

$$R^{N} = \{x = (x_{1}, x_{2}, ..., x_{k}, ...); x_{k} \in R \text{ for all } k \in N\},$$

where R denotes the set of all real numbers, N denotes the set of all natural numbers.

DEFINITION 1. Let $a \in \mathbb{R}^N$ and let f be a real valued function having the following property:

There exists a natural number k_0 such that $f(a_k)$ is defined whenever $k \ge k_0$. Define

$$f(a) = (f^*(a_1), f^*(a_2), ..., f^*(a_k), ...),$$

where $f^*(a_k)$ is defined as follows:

$$f^*(a_k) = f(a_k)$$
 where $f(a_k)$ is defined and $f^*(a_k) = 0$ elsewhere.

DEFINITION 2. Let $a, b \in R^N$. Define a=b [resp. a < b, $a \le b$] if there exists a natural number k_0 such that $a_k = b_k$ [resp. $a_k < b_k$, $a_k \le b_k$] whenever $k \ge k_0$,

DEFINITION 3 (Interval). Let $a, b \in \mathbb{R}^N$ and $a \leq b$. Define

$$[a,b]\!=\!([a_1,b_1]^*,[a_2,b_2]^*,\ldots,[a_k,b_k]^*,\ldots)\,,$$

where $[a_k, b_k]^*$ is defined as follows:

$$[a_k, b_k]^* = [a_k, b_k] \quad \text{for } a_k \leq b_k,$$

$$[a_k, b_k]^* = \phi \quad \text{for } a_k > b_k.$$

^{*} Laboratory of Mathematics, Faculty of Education, Tottori University, Tottori, Japan.

DEFINITION 4. A function f is said to be summable [resp. bounded, measurable, absolutely continuous] on the interval [a, b] if there exists a natural number k_0 such that f is summable [resp. bounded, measurable, absolutely continuous] on the interval $[a_k, b_k]$ whenever $k \ge k_0$.

DEFINITION 5 (Integral). Let f be summable on the interval [a, b]. Define

$$\int_{a}^{b} f(x)dx = \left(\int_{a_{1}}^{b_{1}} f(x)dx^{*}, \int_{a_{2}}^{b_{2}} f(x)dx^{*}, \dots, \int_{a_{k}}^{b_{k}} f(x)dx^{*}, \dots\right),$$

where $\int_{a_k}^{b_k} f(x) dx^*$ is defined as follows:

$$\int_{a_k}^{b_k} f(x)dx^* = \int_{a_k}^{b_k} f(x)dx \text{ where } f \text{ is summable on the interval } [a_k, b_k] \text{ and } \int_{a_k}^{b_k} f(x)dx^* = 0 \text{ elsewhere.}$$

DEFINITION 6 (Finite part). Let f be summable on the interval [a, b]. Define

$$Pf. \int_{a}^{d} f(x) dx = I,$$

if there exists a function g such that

$$g(k) = c_0 \log k + c_1 k^{\lambda_1} + \dots + c_l k^{\lambda_l}$$

for all $k \in N$, and

$$\lim_{k\to\infty} \left(\int_{a_k}^{d_k} f(x) dx - g(k) \right) = I,$$

where c_i , $0 \le i \le l$, are real constants.

The following theorem is derived from the above definitions.

THEOREM. Let f be bounded and measurable on the interval [a, b]. Let φ be absolutely continuous on the interval $[\alpha, \beta]$ having the following property: There exists a natural number k_0 such that $a_k \leq \varphi(t) \leq b_k$ for all $t \in [\alpha_k, \beta_k]$ whenever $k \geq k_0$.

Then we have

$$Pf. \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = Pf. \int_{\alpha}^{\beta} f(\varphi(t)) \dot{\varphi}(t) dt,$$

where $\dot{\phi}$ is defined as follows:

$$\dot{\varphi}(t) = \varphi'(t)$$
 where $\varphi'(t)$ is defined and finite and $\dot{\varphi}(t) = 0$ elsewhere.

PROOF. There exists a natural number k_1 such that

- (1) f is bounded and measurable on the interval $[a_k, b_k]$ and
- (2) φ is absolutely continuous on the interval $[\alpha_k, \beta_k]$ and $a_k \leq \varphi(t) \leq l_k$ for all $t \in [\alpha_k, \beta_k]$,

whenever $k \ge k_1$.

By (1) and (2), we have

$$\int_{\varphi(\alpha_k)}^{\varphi(\beta_k)} f(x) dx = \int_{\alpha_k}^{\beta_k} f(\varphi(t)) \dot{\varphi}(t) dt,$$

whenever $k \ge k_1$.

Hence, we have

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \left(\int_{\varphi(\alpha_1)}^{\varphi(\beta_1)} f(x) dx^*, \dots, \int_{\varphi(\alpha_k)}^{\varphi(\beta_k)} f(x) dx^*, \dots \right) \\
= \left(\int_{\alpha_1}^{\beta_1} f(\varphi(t)) \dot{\varphi}(t) dt^*, \dots, \int_{\alpha_k}^{\beta_k} f(\varphi(t)) \dot{\varphi}(t) dt^*, \dots \right) = \int_{\alpha}^{\beta} f(\varphi(t)) \dot{\varphi}(t) dt .$$

Using the Definition 5 we have the result that

Pf.
$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = Pf. \int_{\alpha}^{\beta} f(\varphi(t)) \dot{\varphi}(t) dt$$
.

Example 1. Let
$$f(x) = \frac{1}{x}$$
, $\varphi(t) = 2t$, $\alpha = \left(\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2k}, \dots\right)$, $\beta = \left(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, \dots\right)$.

Then

$$\int_{\frac{1}{k}}^{1} \frac{1}{x} dx = \int_{\frac{1}{2k}}^{\frac{1}{2}} \frac{1}{t} dt = \log k$$

for all $k \in \mathbb{N}$. Therefore

$$Pf. \int_{\alpha(\alpha)}^{\varphi(\beta)} \frac{1}{x} dx = Pf. \int_{\alpha}^{\beta} \frac{1}{t} dt = 0.$$

Example 2. Let
$$\alpha = \left(1, \frac{1}{2}, ..., \frac{1}{k}, ...\right), \beta = (1, 2, ..., k, ...)$$

and let ψ be a indefinitely differentiable function with compact support. Let H be a function of R onto R having the following properties:

- (1) H(0) = 0,
- (2) H is continuously differentiable,
- (3) H'(x) > 0 for all $x \in R$.

Since

$$\int_{\frac{1}{k}}^{k} \phi(H^{-1}(y)) \frac{dy}{y} = \int_{H^{-1}(\frac{1}{k})}^{H^{-1}(k)} \phi(x) \frac{H'(x)}{H(x)} dx$$

for all $k \in N$, we have

$$\begin{split} & \operatorname{Pf.} \int_{\alpha}^{\beta} \! \! \phi(H^{-1}(y)) \frac{dy}{y} \\ &= \lim_{k \to \infty} \left(\int_{\frac{1}{k}}^{k} \! \! \phi(H^{-1}(y)) \frac{dy}{y} - \phi(0) \log k \right) \\ &= \lim_{k \to \infty} \left(\int_{H^{-1}(\frac{1}{k})}^{H^{-1}(k)} \! \! \! \phi(x) \frac{H'(x)}{H(x)} dx - \phi(0) \log k \right) \\ &= \operatorname{Pf.} \int_{H^{-1}(\alpha)}^{H^{-1}(\beta)} \! \! \! \phi(x) \frac{H'(x)}{H(x)} dx \; . \end{split}$$

Reference

[1] L. Schwartz, Théorie des distributions, Hermann, Paris (1973), 41, 383.