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1. Introduction

The notions “locally finite” and “hereditarily closure preserving” are very impor-
tant in general topology. Recently, in his paper [ 1], J.R. Boone first introduced the
notion of cs-finiteness which is a generalization of locally-finiteness, and then he char-
acterized paracompact spaces in terms of “cs-finite”; and in [ 27] he established a met-
rization theorem of developable spaces.

In this paper, we introduce the notions “as-finite”, “almost as-finite” and “almost
cs-finite” which are generalizations of “locally finite.” Especially, in countably compact
spaces, our as-finiteness has the property which J.R. Boone’s cs-finiteness does not have
(Theorem 3.1).

The purpose of this paper is to study the properties of (almost) as-finite collections
in quasi-k-spaces (to be discussed in §4); then, as applications, to characterize para-
compact spaces in terms of “(almost) as-finite” and to establish a metrization theorem
of semi-stratifiable spaces (to be treated in §6).

We set the outline of this paper as follows: In §2, we will develop the fundamen-
tal notions which are used in this paper; we will illustrate by Diagram 1 the basic
implications which exist among, specifically, the properties of collections. In §3, we
will investigate the properties of as-finite (resp. cs-finite) collections in countably
(resp. sequentially) compact spaces. In §4, we will discuss in what classes of quasi-
k-spaces the inverse implications in Diagram 1 are valid. In §5, we will deal with the
relations between mappings and (almost) as-finite collections. Lastly, in §6, as appli-
cations of these notions, we will characterize paracompact spaces and collectionwise
normal spaces in terms of (almost) as-finite collections, and we will establish a met-
rization theorem of semi-stratifiable spaces.

I wish to express my hearty thanks to Professor A. Okuyama of Osaka University

of Education who has given me much kind advice.

2. Definitions and relations

In this section, we give the definitions of the terms which are used in this paper,
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and then we illustrate their relations.

First, let us recall the definitions of well-known terms. Let be X a topological space
and let §=1{F,|a € A} be a collection of subsets of X. The collection ¥ is said to be
locally finite if every point of X has a neighborhood which intersects only finitely
many elements of §. The collection & is called closure preserving if, for every subcol-
lection ©C, the union of closures is the closure of the union (.e. U{G|Gec®}
=m). The collection § is said to be hereditarily closure preserving if each
collection {G,|a € A} with G, F, is closure preserving. The space X is a guasi-k-
space if and only if a subset F of X is closed whenever FN\C is closed in C for every
countably compact subset C of X. A subset F of X is said to be sequentially closed if
and only if no sequence in F converges to a point not in F. The space X is said to be
a sequential space if each sequentially closed set of X is closed. The space X is a
singly bi-quasi-k-space if and only if, whenever x € F(FC X), there exists a q-sequence™
{4,} in X such that x € FN\A4, for each n. The space X is Fréchet space if and
only if, whenever x € F' in X, there is a sequence {x,} in F such that {x,} converges
to . The space X is said to be a g-space if every x € X has a q-sequence of neigh-
borhoods. And, N denotes the positive integers set. As for other terms and symbols
in general topology, see [ 9].

Next, we define the terms which are used uniquely in this paper.

DerFiniTion 2.1, A sequence {x,} of points of X is said to be an ac-sequence if each
subsequence of {x,} has a cluster point in X.

DerFINITION 2.2, A collection §=4{F, | & A} is almost as-finite if and only if, for
every ac-sequence {x,}, there exists a finite subset Sy of S={x,|n &N} such that
{la € A|Fun(S—Sp)==¢} is finite. Especially, if {¢€ A|F,N\S=¢} is finite for
every ac-sequence {x,}, we say that § is as-finite.

Dermvrrion 2.3, A collection F=4{F,la€ 4} is almost cs-finite if and only if, for
every convergent sequence {x,}, there exists a finite subset S, of S={X,|n &N}
such that {a& € 4| F,N\(S—S,)5=¢} is finite,

According to J.R. Boone [17], a collection F=1{F,|a € A} is said to be cs-finite if
{a€ A|F,NS5¢} is finite for every convergent sequence {x,}. It follows im-
mediately from these definitions that & is asfinite (resp. cs-finite) if and only if it is
almost as-finite (resp. almost cs-finite) and point-finite.

Now, we illustrate the basic implications which exist among these properties of col-
lections (Diagram 1).

* A sequence {4,} of subsets is said to be a g-sequence if every sequence {x,} with x,& 4, (for each n)
has a cluster point in X,
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(Diagram 1.)

Most of these implications are either known or derived immediately from the defi-

nitions. So, we give the proof of only the following.

Prorostrion 2.1, Let F={F,|a€ A} be a collection of subsets of a topological
space X. If § is hereditarily closure presevving, then §§ is almost as-finite.

Proor. Suppose that §F is not almost as-finite. Then, there exists a distinct ac-
sequence {x,} such that {a€ 4|F,NS,5~¢} is infinite for each n, where S,=
{x;]i=n}. Therefore, we can extract a subsequence {x,,} of {x,} and a distinct
sequence {a;} in 4 such that x,, € F,, for each k€ N. Since § is hereditarily closure
preserving, {x,, |k€ N} is a discrete subset of X. This contradicts the fact that

{x,} is an ac-sequence.

In §4, we will discuss in what classes of quasi-k-spaces the inverse implications in
Diagram 1 are valid. Here, we illustrate the implications which exist among these
notions of the spaces to be treated in §4 (Diagram 2.). (Cf. [8])

first countable > q
l l (+regular)
Fréchet > singly bi-quasi-k

! !

sequential quasi-k

v

{Diagram 2.)

Throughout this paper, topological spaces are assumed to be T;-spaces.
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3. As (cs)-finitenes in countably (sequentially) compact spaces

Turorem 3.1.  Let X be a countably compact space. If F={F,|a€ A} is an
almost as-finite collection in X, then the set

Xo={x € X|{a€ A|x € F,} is infinite}
is finite, and the set
A={ac A|F,N(X—Xy)+¢}

is finite.

Proor. On the contrary, suppose that X is infinite. Then, we can choose a dis-
tinct sequence {x,} in X and a distinct sequence {a,} in 4 such that %, € F,, for
each n€N. Since ¥ is almost as-finite, {x,} is not an ac-sequence. Therefore,
there exists a subsequence {x, } of {x,} such that {#%n,} does not cluster in X.
Since X is a Ti-space, the set {x,,|k€N} is an infinite, discrete set. This contra-
dicts the fact that X is countably compact, and hence the first half of Theorem 3.1 is
proved.

To complete the proof of Theorem 3.1, assume that A’ is infinite. Since % is point-
finite in X—X,, we can choose a distinct sequence {x,} in X — X, and a distinct
sequence {c,} in 4’ such that x, & F «, for each n € N. Similarly, a contradiction fol-
lows from this. The proof is complete.

Remark. Theorem 3.1 does not necessarily hold for a cs-finite (almost cs-finite)
collection even if a space X is compact. This is shown by the following example.

Exampii 3.1. Let X=pN be the Stone-Cech compactification of the integers N,
and put F={{n}|n€N}. Then, X is a compact T,-space and any convergent se-
quence {x,} in X does not contain infinitely many points of N. Therefore, i is a cs-
finite collection in X. Nevertheless, X;=¢ and 4’=N is infinite.

CoroLLARY 3.2. Lel be a countably compact space. If B is an as-finite collection
in X, then § is finite.

CoroLLARY 3.3.  Let X be a space and let F={F,|ac A} be an almost as-finite
collection in X. If Cis a countably compact subset of X, then there exists a finite
subset Cy of C such that {a € A|F N (C—Cy) 5=} is finite.

CororLLary 3.4 (A. Okuyama [11, Theorem 2.17J). Let F={F,|ac A} be a
hereditarily closure preserving closed cover of a space X and C a countably compact set
of X.  Then, there exist x1, %3,---,%, in C such that 5 is locally finite at any x € C—
{x 1, %4}, and only finitely many members of § meet C—{x1,,x,}.
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TuroreM 3.5. Let X be a sequentially compact space. If F=4{F,|a& A} is an
almost cs-finite collection in X, then the set Xo=4{x€ X|{a€ 4|x € F,} is infinite}
is finite, and the set A'={a € A|F,N(X—X,)5=¢} is finite.

Proor. The proof is similar to that of Theorem 3.1.

CoroLLARY 3.6. Let X be a sequentially compact space. If § is a cs-finite collec-
tion in X, then F is finite.

CoroLLARY 3.7. Let X be a space and let F={F,|a€ A} be an almost cs-finite
collection in X. If C is sequentially compact subset of X, then theve exists a finite
subset Cy of C such that {a € A|F,N\{(C— Cy) =} is finite.

Now, we introduce a certain property which all subparacompact™ spaces have.

DerniTION 3.1. A space X has the property (C) (resp. the property (C')) if and
only if, for every open covering & of X, v (®) has a ¢-almost as-finite (resp. ¢-almost
cs-finite) refinement, where w((®) denotes the collection of all countable unions of

members of &.

Tueorem 3.8. If X is a countably compact space with the property (C), then X is
compact.
Proor. Let & be an open covering of X. Since X has the property (C), there

exists a 0-almost as-finite refinement F=\J %, of 0 (®), where ¥, is almost as-finite
n=1

for each n € N. By Theorem 3.1, for each n €N, there exists a finite subset X, of X
such that . =4{F €F,|FN(X—X,) ¢} is finite. Put V,=U{F|F&€F,} and Y}
=\U{F|F €.}, then we obtain the following:

YOV, ~X,, \JY,=X
n=1

Therefore, \J ¥, O X—\J X,. Since \/ X, is a countable subset, there exists a
n=1 n=1 n=1

countable subcollection $§ of §§ such that O X, CU{F|Fe $%{}. Then, & =\7 I
n=1 i=0

is a countable covering of X and a refinement of »(®). Therefore, »(®) has a coun-
table subcovering {W,|n €N}. Since W, is a countable union of elements of & for

each n €N, we can denote W;=\/ G;; for each i€ N, where G;€@®. Since X is
j=1

J
countably compact, the countable covering {G;;|i, j€N} has a finite subcovering.
Hence, X is compact. The proof is complete.

* A space X issaid to be a subparacompact space if every open covering of X has A o-discrete, closed
refinement.
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Cororrary 3.9 (D.K. Burke [37])). A countably compact, subparacompact space is
compact.

TuroreM 3.10. A sequentially compact space with the property (C') is compact.
Proor. The proof is similar to that of Theorem 3.7.

4. As (cs)-finiteness in quasi-k-spaces

In this section, we discuss in what classes of quasi-k-spaces the inverse implications
in Diagram 1 are valid.

Taeorem 4.1.  In a singly bi-quasi-k-space X, a collection F={F, |a € A} of subsets
of X is hereditarily closure preserving if and only if ¥ is almost as-finite.

Proor. The necessity is clear. To prove the sufficiency, assume that % is not
hereditarily closure preserving. Then, there exists a collection {H,|a € A4} such
that

H,CF, (e 4),

U{H, |a€ Ay —\U{H,|ac 4} +¢.

Let p be a point of \J{H,|awc A} —\J{H,|ac 4A}. Since X is a singly bi-quasi-
k-space, there exists a g-sequence {B,} such that

€Y) p€ UiH, |la€ 4} N B, (for each n € N).
Then, for each n € N and for every neighborhood ¥ of p
(2) {lae A|H,N\B,NV ¢} is infinite.

In fact: Assume that {a€ A|H,N\B,N\V=£¢} is finite for some n €N and some
open neighborhood ¥ of p. Then, we can put {a€ A|H,NB,NVF¢}={a,
Koy -y ak}. From (1),

peE LVAHlac 4} I NB, NV

CLViHslae A} 1NB.NV

c \k]lI?TC VAT, | € 4).

This contradicts the fact that p¢ \UH,|a € 4}. Hence, (2) is valid.
Since p€ [\U{H,|a€ A} JNB; — U{H | € A}, there exist an element a; € 4
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and a point x; in X such that
x1€Hy, NBy, x155p.

The space X is T3, so there exists an open neighborhood V1(p) of p such that x; ¢
Vi(p). Now, from (1),

pe DU, [ac AT TAB NVi(p)

C [UiH |a€ 4} IN BNV (p).
Then, by (2), there exist an element &, € A4 and a point x; in X such that
%2 € Hy,N\BoN\Vi(p), sy, x35p.
Since X is T, there exists an open neighborhood V,(p) of p such that

w22 & Valp), Valp) CVi(p).

By induction, we obtain a distinct pont sequence {x,} in X and a distinct sequence
{a,} in A4 such that

x,€H, N\B,CFy, XuFEp

for each n€N. Since {B,} is a q-sequence, {x,} is an ac-sequence in X. This con-
tradicts the fact that $§ is almost as-finite in X, because both {x,} and {«,} are dis-
tinct sequences. Therefore, % is hereditarily closure preserving. The proof is com-

plete.

Remarx 1. In a sequential space X, an almost as-finite collection % in X need not
be hereditarily closure preserving. This is shown by Example 4.1.

Remark 2. In Theorem 4.1, we cannot replace the term “almost as-finite” by
“as-finite.”” We can see this from Example 4.2.

ExampLE 4.1 Let A be the space defined by S.P. Franklin [ 4, Example 1.87].
Franklin established that X is a sequential space which is not Fréchet. Put F,=

< n—li—l , —i—) and §={F,|n &€ N}. Then, % is an almost as-finite collection which is

not hereditarily closure preserving.

Proor. To show that $§ is almost as-finite, assume that % is not almost as-finite.
Then, there exists a distinct ac-sequence {x,} in X such that {n e N|F,N\S,5=¢}
is infinite for each m € N, where S, ={x;|i==m}. So, we can extract two increasing
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sequences {n;}, {m;} in N such that x,, € F,,, for each i€N. Put
PO={0y UL (i, 2

then 7(0) is an open neighborhood of in X and =x,, & ¥(0) for each i€N. There-
fore, {x,,} does not cluster at any point of X. This contradicts the fact that {x,} is
an ac-sequence. Hence, $§ is almost as-finite. On the other hand, §§ is not hered-

itarily closure preserving, since
UAF,|n €N} =(0, 1]+[0, 1]=U{F,[n €N}.

ExampLE 4.2. Let Y be the disjoint union of a sequence {I[,} of copies of the
interval I, let A={0,€1,|n €N}, and let X=1Y/A be the quotient space obtained
from Y by identifying A to a point x,. Let f: Y —X be the quotient map, and put
F=A{fU,)|n€N}. Then, X is a Fréchet Space, and ¥ is a hereditarily closure
preserving collection which is not as-finite.

Proor. Since f is a closed map, X is a Fréchet space and §¥ is hereditarily closure
preserving. Nevertheless, $ is not point-finite at x,; therefore, §§ is not as-finite.

Tureorem 4.2.  In sequential space X, a collection F=4{F,|a & A} of subsets of X is
almost as-finite if and only if F is almost cs-finite.

Proor. The necessity is obvious. To prove the sufficiency, suppose that § is not
almost as-finite. Then, there exists a distinct ac-sequence {x,} such that {we& 4]
FonS,¢} is infinite for each n €N. So, we can choose a subsequence {x’,} of
{x,} and a distinct sequence {c,} in A such that x',€F, . Since {x,} is an ac-
sequence, {«’,} has a cluster point y € X. Here, we can assume without loss of
generality that y €8 —8, where §'={%'y|ncN}. Since X is T; and sequential,
there exists a distinct sequence {y,} in S’ which converges to a point y'¢ 5. We
put y=x",, (k=1,2...). Here, we will construct subesquence {x’,;} of {x’,}
which converges toy’. Put

x/n(l):_’ylzx/nl, U1=X—{x’i|i§n1}.

Since U; is an open neighborhood of ', there exists an integer %k; >1 such that
yh:x’nkl € U;. So, put

8y =yu =", Up=X—{ai]i<n,}.

In the same way, we can choose an integer ky; >k, such that ykzzx’,,kze U,, and so
put '
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x/n(S):ykz:x/nkza U3:X——{x’,|z§ nkz}'

By induction, we obtain a sequence {x’,} which is a subsequence of both {x’,} and
{y»}. Hence, {x,)} is a distinct subsequence of {x’,} and converges to y’. Now,
{a€ A|Fon\ (T— Ty) 7~ ¢} is infinite for each finite subset of Ty of T={«’,u|l € N}.
This contradicts the fact that § is almost cs-finite. The proof is complete.

CoroLLARY 4.3 In a sequential space X, a collection F of subsets of X is as-finite
if and only if it is cs-finite.

CororLARY 4.4 In a sequential, singly bi-quasi-k-space X, a collection § of subsets
of X is herveditarily closure preserving if and only if it is almost cs-finite.
Proor. This follows immediately from Theorems 4.1 and 4.2,

Franklin’s example ([ 5], Example 7.1) shows that a sequential, singly bi-quasi-k-
space need not be a Fréchet space. Therefore, the following is at least formally
stronger than J.R. Boone’s result [ 1, Lemma 3.4 ].

CororrarY 4.5.  Let X be a sequential and singly bi-quasi-k-space. If F is a cs-
finite collection of subsets of X, then % is hereditarily closure preserving.

Tueorem 4.6  In a g-space X, a collection F={F,|a& A} of subsets of X is locally
Jinite if and only if it is as-finite.

Proor. The necessity is obvious. To prove the sufficiency, assume that $§ is not
locally finite. Then, there exists a point x of X such that every neighborhood of %
meets infinitely many elements of §. Since X is a ¢-space, a decreasing q-sequence
{U,} of neighborhoods of x exists. And, since § is point-finite and X is a 7y-space,
there exist a distinct sequence {x,} of points in X and a distinct sequence {c,} in 4
such that x,%x and x,€ U,NF,, for each n €N. Furthermore, there exists a
finite subset S; of S={x,|n €N} such that {@€ A|F,N(S—S;)=~¢} is finite,
since {x,} is an ac-sequence and $ is almost as-finite. This contradicts the choices of
sequences {x,} and {«,}. Therefore, § is locally finite. The proof is complete.

Remark. In Theorem 4.6, we cannot replace the term “q-space” by “Fréchet
space”. This is shown by the following example. .

ExampLE 4.3. Let R be the real line, let Z be the integers, and let X=R/Z be the
quotient space obtained from R by identifying Z to a point xo. Let f : R—>X be the
quotient map, and put F={F,=f[(n, n-+1)]|n€Z}. Then, X is a Fréchet space,
and § is an as-finite collection which is not locally finite.

Proor. Since f is a pseudo-open map and R is a Fréchet space, X is a Fréchet
space. Let {x,} be an ac-sequence in X, then S={x,|n € N} meets at most finitely
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many elements of §. In fact, assume that {m € N| SN\ F,, ==¢} is infinite. Then, we
can extract a distinct subsequence {x,,} of {x,} and a distinct sequence {m } in N
such that x,, € Fy,, for each k€N. Yet, the sequence {x, } does not cluster in the
space X, because x,, € f[ (ms, m;+1)] for each £€N. This contradicts the fact that
{x,} is an ac-sequence. On the other hand, & is not locally finite at .

Franklin’s example [ 5, Example 7.1 also shows that a sequential, g-space need not
be a first countable space. Therefore, the following is at least formally stronger than

Boone’s result [1, Lemma 3.97].

CoroLrLarY 4.7. In a sequential, q-space, § a collection of subsets of X is locally
Jfinite if and only if it is cs-finite.
Proor. This follows immediately from Theorem 4.6 and Corollary 4.3.

Tueorem 4.8. Let X be a sequential space and let F={F,|a & A} be a collection
of closed subsets of X. Then, $§ is hereditarily closure preserving if and only if it is
almost cs-finite.

Proor. The necessity is obvious. To prove the sufficiency, suppose that & is not
hereditarily closure preserving. Then, there exists a collection {H, |« & A} such that

H,CF, for each ¢ € A,
U{H,|a€ 4} #\U{H,|ac 4}.

Therefore, \U{H,|a € A} is not closed in X. Since X is sequential, there exists a
sequence {w,} in \U{H,|a€ A} which converges to a point % not in \U{H,|a € 4}.
Here, {H,|a€ A} is almost cs-finite, because % is almost cs-finite and H,CF, for
each € 4. Then, there exist an integer m and a finite subset {ay, ¥z,---, &} of
A such that

k
Waln=m}y C\U H,,.
i=1

Consequently, x € {x,|n>m} C UH .C U{H,|a€ 4}. This contradicts the fact

that x ¢ \U{H,|a € 4}. Therefore, % is hereditarily closure preserving. The proof
is complete.

Cororrary 4.9 (J. R. Boone [17]). Let X be a sequetnial space and let T be a col-
lection of closed subsets of X. Then, % is locally finite if and only if it is cs-finite.

TueoreM 4.10. Let X be a quasi-k-space and let F=A{F,|a € A} be a collection of
closed subsets of X. Then, §is hereditarily closure preserving if and only if it is
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almost as-finite.
Proor. The necessity is clear. To prove the sufficiency, assume that % is not
hereditarily closure preserving. Then, there exists a collection {H, | € A} such that

H,CF, for each o € A4,

U{H, Ja€ A} —\U{H,|ac A} F¢.

Therefore, \U{H,|a € A} is not closed. Since X is a quasi-k-space, there exist a
countably compact set K and a point p such that

3 pE€ U{H,|lac AANK — U{H,|a e 4}.

Here, {H,|a € A} is almost as-finite, because ¥ is almost as-finite and H, C F, for
each w€ 4. By Corollary 3.3, there exists a finite subset K, of K such that {a &€ 4|
H,N (K—Ky)=~¢} is finite; then we denote {ae A|H,N(K—Ky) ¢} = {a, as,- -,
ay. From (3), without loss of generality, we can assume that p does not belong to
Ko. Since X is T; and K, is a finite set, we can choose an open neighborhood ¥ ( P)
of p with the property V(p)N\Ko=¢. Hence, from (3)

pe V(p)N[U{H,|a€ A} INK

CPAL U, [i=1,2, kY ]C (3117

i

CU{H,|la€ 4}.

This contradicts the fact that p¢ \U{H,|a€ 4}. Consequently, ¥ is hereditarily
closure preserving. The proof is complete.

Remark. If we drop the condition that & is a collection of closed subsets of X,
Theorem 4.10 does not hold. We can see this from Example 4.1.

Cororrary 4.11.  Let X be a quasi-k-space and let F={F,|a€ A} is a collection
of closed subsets of X. Then, ¥ is locally finite if and only if it is as-finite.

5. Mappings and as-finite collections

Tueorem 5.1 Let f 1 X— Y be a continuous, closed map. If F={F,|ac A} is an
almost as-finite collection of subsets of X, then f(F)=A{f(F.)|a € A} is almost as-finite
in Y.

Proor. On the contrary, suppose that f(%¥) is not almost as-finite. Then, there
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exists a distinct ac-sequence {y,} in ¥ such that {a € 4| f(F,)NS,~¢} is infinite
for each n € N, where S,={y;|¢=n}. Hence, we can extract a distinct subsequence
{¥s,} of {y»} and a distinct sequence {a,} in 4 such that y,, € f(F,,) for each
k€N. Now, choose a point x5 € f~'(y,, )N\ Fy, for each k&N. Then, {x} is not
an ac-sequence, because {x,} is distinct and ¥ is almost as-finite. Therefore, there
exists a subsequence {x;} of {x;} which does not cluster in X. Since X is a T}-
space, {w;, |7 € N} is a discrete set. By the closedness of f, {y,, |1 €N} is a discrete
subset of Y. This contradicts the fact that {y,} is an ac-sequénce. Consequently,
f() is almost as-finite. This completes the proof.

Remark. In Theorem 5.1, we cannot replace the term “almost as-finite” by “as-
finite.” We can see this from Example 4.2,

CoroLLary 5.2. Let f : X—Y be a quasi-perfect™ map. If F={Fq|a€ A} is an
as-finite collection of subsets of X, then f(F) is as-finite in Y.
Proor. This follows immediately from Theorem 5.1 and Corollary 3.2.

TueoreM 5.3.  Let f : X—Y be a continuous map. If F={F,|a€ A} is an as-
finite (resp. a cs-finite) collection of subsets of Y, then f N (F)={f '(Fa)|la € 4} is as-
Sinite (vesp. cs-finite) in X.

Proor. We prove this theorem only for the “as-finite” case; the “cs-finite” case
follows similarly. It is clear that f~'(%) is point-finite. Assume that f~'(®) is not
almost as-finite, then there exists a distinct ac-sequence {x,} in X such that {a € 4|
[ (F)NS,=~¢} is infinite for each n €N, where S,={x,|m=n}. So, we can
extract a subsequence {x,,} of {x,} and a distinct sequence {;} in 4 such that
%, € fH(F,,) for each k€N. Put y;=f(x,,) for each k€N, then {y;} is an ac-
sequence in Y and y,&€F,, for each k€N. Since §¥ is point-finite, {y, |k €N} is
infinite; this contradicts the fact that $¥ is as-finite. Consequently, f “1(®) is as-finite.
The proof is complete.

RemARK. In Theorem 5.3, we cannot replace the term “as-finite” (resp. “cs-finite”)
by “almost as-finite” (resp. “almost cs-finite”). We can see this from the following

example.

Examprr 5.1. Let X be the real line, let 4= l%'— |n €N}, and let Y=X/A4 be the

quotient space obtained from X by identifying A to a point y;. Let f : X-—Y be the
quotient map and put F={{yo,n}|n €N}. Then, § is almost as-finite (resp. almost
cs-finite) inY but £~'($) is not almost as-finite (resp. not almost cs-finite) in X.

* A continuous map f : X—Y is said to be quasi-perfect iff it is a closed map and f~*(y) is countably
compact for each ye Y.
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THEOREM 5.4. Let f 1 X— Y be a finite to one, continuous map. If F=4{F,|ac A}
is an almost as-finite (resp. almost cs-finite) collection of subsets of Y, then f~1(%) is
almost as-finite (vesp. almost cs-finite) in X. .

Proor. Let {x,} be a distinct ac-sequence in X, and put v,= f(x,) for each n € N.
Then, {y,} is an ac-sequence in Y. Since ¥ is almost as-finite, there exists a finite
subset Sy of S={y,|n €N} such that {& € 4| F,N(S— S,) #¢} is finite. Therefore,

lacd|fHFIN[{xs]n €N} — £7(So)] ¢}

is finite.  And since f~'(S,)is a finite set, f~X(F) is almost as-finite in X. The
“almost cs-finite” case follows similarly, The proof is complete.

6. Applications

In this section, as applications of the as-finiteness, we mention some characteriza-
tions of paracompact spaces and give a metrization theorem of semi-stratifiable spaces.
In[2], J.R. Boone defines property (w) as follows: A space X is said to have
property () if for each discrete collection {F,|a € A} of closed subsets of X, there
exists a cs-finite collection {G,|a € A} of open subsets of X such that F, G, for
each « € 4 and G,NFs=¢, if «p. Now, modifying this definition, we introduce

the notion of spaces with property (™).

DerinitioN 6.1, A space X said to have property (w*) if and only if for each dis-
crete collection of closed sets {F,|a€ 4} in X, there exists an almost as-finite collec-
tion of open sets {G.|x € 4} such that F,CG,, for each a € 4 and G,NFsz =g, if
a==0.

The following implications are derived immediately from the above definitions.
with property (o)
collectionwise normal
with property (0*)

And, by Theorem 4.2, a sequential space with property (») has property (»*). There-
fore, the following proposition is at least formally stronger than Boone’s result [ 2,
Corollary 3.27].

Prorosrrion 6.1. A quasi-k-space X is collectionwise normal if and only if it is a
normal space with property (w*).
Proor. Cf. Theorem 4.2 and the proof of [ 2, Corollary 3.27].
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ProrosiTion 6.2. The following properties of a vegular, singly bi-quasi-k-space X
are equivalent.

(a) X is paracompact.

(b) Every open covering of X has a 6-almost as-finite open refinement.

(c) X is a subparacompact space with property (v*).

Proor. It follows immediately from Michael’s theorem [ 7, Theorem 2] and
Theorem 4.1 that (a) and (b) are equivalent. (a)=>(c): This is obvious. (c)=>(b):
Let & be an open covering of X. Since X is subparacompact, there exists a o-discrete
closed refinement 61 %n of &, where F,=1{F, | € 4,} is a discrete collection of closed

sets in X. Since X has property (w*), there exists an almost as-finite collection 9,
={H,|lae 4,} of open sets such that FroC H, and 9,<®. Therefore, \U H, is a

n=1
0-almost as-finite open refinement of &. The proof is complete.
Prorosition 6.3. A regular, quasi-k-space X is paracompact if and only if every
open covering of X has an almost as-finite closed refinement.
Proor. This follows immediately from Michael’s theorem [7, Theorem 1] and
Theorem 4.10.

The following is a generalization of [ 12, Theorem 9] as well as [ 6, Theorem 3.1 .

ProposiTION 6.4. A semi-stratifiable space X is metrizable if and only if X isa
regular wd-space with property (w™).

Proor. The necessity is obvious. To prove the sufficiency: Since X is a regular,
semi-stratifiable space, X is a subparacompact space with Gjs-diagonal. Then, by
Proposition 6.2, X is paracompact, since a wd-space is a singly bi-quasi-k-space.
Therefore, X is a paracompact, 7', M-space with Gs-diagonal. By Okuyama’s theorem
[10, Theorem 17, X is metrizable. The proof is complete.
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