直径 14m 垂直軸風車の翼型選定とロータ性能評価

The selection of blade cross section of a vertical axis wind turbine with a diameter of 14 m and the evaluation of rotor performance

○学 安道 緋呂(鳥取大), ◎正 原 豊(鳥取大),
三浦 卓也(鳥取大), 正 吉田 茂雄(九大・応力研)
Hiro ANDOU, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552 Japan
Yutaka HARA, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552 Japan
Takuya MIURA, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552 Japan
Shigeo YOSHIDA, RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580 Japan

Key Words: Butterfly Wind Turbine, Computational Fluid Dynamics, Aerodynamic Performance, Airfoil

1. 緒言

鳥取大学では小形風力発電の低コスト化を目標として,過 回転抑制機構を持った垂直軸風車である、ロータ直径 7mの バタフライ風車を開発した(1). さらに低コスト化を進めるた め, 次のステップとしてロータ直径を 14m に拡大したバタ フライ風車を開発予定である (図1). 大形化したバタフライ 風車を開発するにあたって構造的強度が高く,空力性能の良 い翼型の採用が必要となる.また、垂直軸風車であるため、 上流と下流の両方で風車特性が良好となるように対称翼で あることも望ましい.7mの風車では翼型として NACA 0018 を使用していたが、構造的強度の増加の要求から厚翼の NACA 0024 を採用することを最初考えていた. しかし厚翼 にすると空力性能が下がってしまうことが判明したため,デ ルフト工科大学が垂直軸風車用に開発した空力性能の高い DU_06-W-200に注目し、DU_06-W-200の厚み比を 24%に増 した DU_06-W-240, DU_06-W-240 を上下反転させた DU_06-W-240_reverse, そして DU_06-W-240 の上面を上下両 方に用いて構成した新規の対称翼 New_AF_1_UP, DU_06-W-240 の下面を上下両方に用いて構成した新規の対 称翼 New_AF_2_DN の 6 種類の翼型(図 2)を比較し、採用す る翼型を検討することになった.本研究では上記の6種類の 翼型について数値流体力学解析(CFD: Computational Fluid Dynamics)により, (a) 単一翼型の2次元空力特性計算と, (b) 3 枚翼の垂直軸風車を想定した2次元風車ロータの特性計算を 行い、14m 直径のバタフライ風車に適した翼型の選定と風車 ロータの性能評価を行うことを目的とする.

2. 計算方法及び計算条件

本研究では計算ソルバーとして **STAR-CCM**+を使用した. 2次元非定常非圧縮のレイノルズ平均 Navier-Stokes 方程式を 基礎方程式とし, 乱流モデルは **SST** *k*-*ω* を選択した.

Fig.1 Butterfly wind turbine of 14m diameter

Fig.2 Six airfoils compared in this study

2.1 単一翼型の2次元空力計算

計算対象は、翼弦長 c = Im 02 次元単一翼型であり、翼 弦長 c 0.25%位置を力の作用点として迎角 $a=5^{\circ}$ を設定した. 計算領域は翼弦長の 25%位置から前方に 20c,後方に 20c, 高さ方向に±10cの距離を持つ長方形(領域 1),翼周りと後流 の流れの詳細をとらえるためにメッシュを細かく設定する 範囲として、翼弦長の 25%位置から前方に 1.5c,後方に 8.5c, 高さ方向に±1.5cの距離を持つ長方形(領域 2)を設定した(図 3 参照). レイノルズ数を Re = 360,000に設定し、遠方境界か ら流入する一様流の速度は $U_{\infty} = 5.44$ m/s と設定した.本研 究では時間ステップ 1×10⁴s で 4s まで計算を行い、4s 時点 で出力される空力性能(揚力係数 C_{1} ,抗力係数 C_{d})を各翼型で 計算する.

2.2 3 枚翼の垂直軸風車を想定した 2 次元風車ロータ計算

計算対象は、ロータ直径 D = 14m の 2 次元ロータであり、 風車中心から半径 7m の場所に 120°毎に翼弦長 c = 350mm

(a) Entire region (b) Near an airfoil Fig.3 Calculation mesh of CFD for a single airfoil

(a) Entire region (b) Near a 3-blade rotor Fig.4 Calculation mesh of CFD for a 2D rotor

の3枚の翼型を取付位置 50%c で配置した.回転領域は風車 中心からロータを囲む 1.2D の円 (領域 1) とした.風車中心 から前方に 20D,後方に 30D,高さ方向に±20D の距離を持 つ長方形 (領域 2) を全計算領域とし、その中に、翼周りと 後流の流れの詳細をとらえるためにメッシュを細かく設定 する範囲として、風車中心から直径 1.4D の半円と風車中心 から後方に 3D,高さ方向に±0.7D の距離を持つ長方形 (領 域 3)を設けた.また、翼近傍のメッシュを細かくする範囲 として翼を囲む楕円形 (領域 4)を設定した(図 4 参照).遠 方境界から流入する一様流の速度は $U_{\infty} = 6.0$ m/s と設定し、 先端周速比 λ を変化させ(λ = 4.0, 4.5, 5.0, 5.5, 6.0),出力 係数 $C_{\rm p}$ への依存性を調べる.本研究では時間ステップを 1/12/回転数(720step 時点で出力されるロータ性能($C_{\rm p}$)を各 翼型をもつロータ間で比較する.

3. 計算結果及び考察

3.1 単一翼型の2次元空力計算

6 種類の各翼型について CFD を用いて得られた空力性能 (C_1 , C_d , C_1/C_d)を表1に示す. 揚抗比 C_1/C_d は DU_06-W-240 が最も高くなり、2 番目に NACA 0018 が高くなった. しか し、強度のある厚翼で対称翼という条件で考えると、揚抗比 が最も高くなるのは New_AF_1_UP であり、14m 級バタフラ イ風車の翼型として New_AF_1_UP が第1 候補になると考え られる.

3.2 3枚翼の垂直軸風車を想定した2次元計算

表1の結果より,本研究で新規に考えた New_AF_2_DN は 揚抗比も低く,垂直軸風車への応用を想定した場合に,もう 一つの新規翼型と比べて望ましい結果は得られないと推測 される. そこで New_AF_2_DN を除外した5 種類の翼型につ

Table.1 Aerodynamic performance of each airfoil($\alpha = 5^{\circ}$)

Airfoil	C_1	$C_{\rm d}$	$C_{\rm l}/C_{\rm d}$
NACA0018	0.503	0.018	27.7
NACA0024	0.423	0.022	19.6
DU_06-W-240	0.594	0.021	28.2
DU_06-W-240_reverse	0.493	0.026	18.8
New_AF_1_UP	0.509	0.021	24.7
New_AF_2_DN	0.570	0.026	21.7

Fig.5 Torque change of one blade at turn 10 roll (λ =5.0)

いて,各翼型で構成したロータの特性計算を行った. λ=5.0

における 10 回転目の一枚翼のトルク変化を図 5 に、ロータ 性能(C_p)を図 6 に示す.なお NACA 0024 については λ = 4.5 の場合の値が特異であったため、 λ = 3.5 の場合についても計 算を行った.図 5 より、対称翼である NACA 0018, NACA 0024, New_AF_1_UP の下流側(180°~360°)のトルク値はほぼ変わら ず、上流側(0°~180°)でトルク値に差があった.非対称翼であ る DU_06-W-240 はトルク値が他翼に比べ上流側では小さく、 下流側 では大きくなった.また、非対称翼である DU_06-W-240_reverse はトルク値が他翼に比べ上流側では大 きく、下流側では小さくなった.図 6 よりロータ全体の性能 を見ると、各翼型において λ =4.5、または λ =5.0の場合に最 大の C_p を得る.図 6 より、強度のある厚翼で対称翼という 条件では新規の翼型 New_AF_1_UP が適していると考えられ る.

本稿には図示していないが新規翼型 New_AF_1_UP をもつ ロータにおいて C_p の翼取付位置への依存性について調べた ところ, C_p は 45% cの取付位置としたロータにおいて最大 (C_p =0.399)となった.

4. 結言

本研究で得られた知見を以下にまとめる.

- (1) 厚翼で対称翼であるという条件では、新規に考案した New_AF_1_UP 翼型が 14m 級バタフライ風車に適してい る.
- (2) 出力係数は本計算で用いた翼型すべてにおいて、先端周速比λ=4.5または5.0の場合で最大となる.

謝辞

本研究は、九州大学応用力学研究所の共同利用研究および 日軽金アクト株式会社との共同研究として実施された.

文献

(1) Yutaka Hara, et al., Development of a Butterfly Wind Turbine with Mechanical Over-Speed Control System, *Designs*, Vol. 2, No.2, 17, (2018).