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Abstract
Background  Ferroptosis suppressor protein 1 and glutathione peroxidase 4 have been identified as key molecules in two 
independent pathways associated with ferroptosis inhibition. This study investigated the prognostic significance and clinical 
associations of FSP1 and GPX4 expression in esophageal squamous cell carcinoma (ESCC) and assessed the therapeutic 
potential of regulating these molecules in ESCC cells.
Methods  Immunohistochemical analysis was performed on surgical specimens of 97 patients with ESCC for FSP1 and GPX4 
expression. To identify the change in ESCC cell viability, FSP1 and GPX4 inhibitors were administered to three cell lines. 
In addition, ferroptosis as the cause of reduced cell viability by FSP1 and GPX4 inhibition was confirmed.
Results  Prognosis was significantly worse for patients in the group positive for both FSP1 and GPX4 compared with the 
other groups (p < 0.001). In multivariate analysis, positivity for both FSP1 and GPX4 was an independent poor prognostic 
factor (p = 0.002). The combination of FSP1 and GPX4 inhibitors induced cell death more potently than each inhibitor did 
alone. Furthermore, the ferroptosis inhibitor markedly canceled this cell death.
Conclusions  Overexpression of FSP1 and GPX4 is a poor prognostic factor for patients with ESCC. Simultaneous sup-
pression of both FSP1 and GPX4 caused potent cell death, which was markedly abrogated by ferroptosis inhibitors. These 
findings indicate that simultaneous regulation of FSP1 and GPX4 may be a new therapeutic target in ESCC.
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Introduction

Esophageal cancer is the sixth most common cancer glob-
ally, with more than 480,000 new cases annually [1]. Moreo-
ver, this cancer is the fifth leading cause of cancer-related 
mortality, with 400,000 deaths annually [1]. In addition, the 

5-year survival rate after esophagectomy is only 55.6% [2]. 
Thus, esophageal cancer persists as one of the malignant 
tumors with a poor prognosis [2].

Inducing cancer cell death is an important strategy in 
chemotherapy. Chemotherapeutic drugs for esophageal 
cancer include 5-fluorouracil (5-FU), platinum, and taxane 
[3], all of which induce apoptosis [4]. Esophageal squamous 
cell carcinoma (ESCC) has an extremely high mutation rate 
of apoptosis-inducing p53 (> 90%) [5] and is known to be 
resistant to chemotherapy [6].

In 2012, researchers discovered ferroptosis, defined as 
cell death by iron-dependent lipid peroxidation reaction 
[7]. Research further showed that ferroptosis is a differ-
ent mechanism of cell death than that which occurs from 
apoptosis and necrosis, suggesting that ferroptosis is able to 
induce cell death even in apoptosis-resistant cancer cells [7]. 
Glutathione peroxidase 4 (GPX4) was reported in 2014 as a 
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factor that inhibits ferroptosis [8]. Since then, several reports 
have implicated GPX4 in cancer prognosis [9, 10]. Subse-
quently, in 2019, ferroptosis suppressor protein 1 (FSP1) 
was reported as a new ferroptosis inhibitor [11, 12], previ-
ously known as apoptosis-inducing factor mitochondrion-
associated 2 [13]. Both GPX4 and FSP1 negatively regulate 
ferroptosis by inhibiting lipid peroxidation reactions through 
different pathways [8, 11, 12].

We previously reported that high expression of GPX4 
correlated with worse prognosis in ESCC [14]. The present 
study aimed to determine the prognostic significance of 
FSP1 and its association with GPX4 in patients with ESCC. 
We used the same cohort and performed additional experi-
ments with FSP1, which is associated with another ferrop-
tosis inhibitory pathway. Furthermore, we also examined the 
therapeutic potential for ferroptosis inhibition with FSP1 and 
GPX4 in patients with ESCC.

Materials and methods

Patients and pathologic specimens

Study participants were 97 patients who underwent radi-
cal esophagectomy for ESCC at Tottori University Hos-
pital, Yonago, Japan, from January 2009 to December 
2017. Stored paraffin-embedded specimens were obtained 
for immunohistochemical analysis. Patients with multiple 
primary cancers were excluded. Pathological diagnosis 
was confirmed according to the Japanese Classification of 
Esophageal Cancer [15]. The patients with clinical T1N0 
underwent surgery without preoperative treatment. Patients 
with ≥ T2 or with lymph node metastasis (cStage ≥ 2) 
received neoadjuvant chemotherapy (NAC), followed by 
esophagectomy. In principle, patients treated with NAC 
underwent surgery 5–7 weeks after NAC completion avoid 
the influence of NAC. As standard chemotherapeutic drugs, 
5-FU and cisplatin were used for all eligible patients except 
those with impaired renal function, who were instead treated 
with 5-FU and nedaplatin. The standard surgical procedure 
was subtotal esophagectomy by a right thoracic approach 
with three-field lymphadenectomy and reconstruction using 
a gastric tube. The tumor samples were fixed in 10% neutral 
buffered formalin solution and embedded in paraffin.

Immunohistochemical analysis

Immunohistochemistry was performed according to the 
standard protocols, which are further described in the Online 
Resource.

The expression of FSP1 was defined as < 20% nega-
tive and ≥ 20% positive in terms of the tumor-stained area. 
Immunolabeling was evaluated by three investigators (W.M., 

Y.S., and Y.U.); consensus was reached in all cases. To eval-
uate GPX4 expression, our previous staining results were 
used as follows [14]: “Expression of GPX4 and HMOX1 
in the tumor was assessed on a 4-point scale based on the 
percentage of tumor cells with positive staining (immuno-
histochemistry) score: 0 [< 10%], 1 [10–50%], 2 [50–90%], 3 
[> 90%]).” An immunohistochemistry score of ≥ 2 was con-
sidered a positive expression. Immunolabeling was evalu-
ated by three investigators (W.M., Y.S., and Y.U.); consensus 
was reached in all cases.

Cell lines and cell culture

Three human ESCC cell lines, including KYSE30, 
KYSE510, and KYSE520, were grown in Roswell Park 
Memorial Institute Medium supplemented with 10% fetal 
bovine serum. All cell lines were maintained under 37 °C in 
atmospheric air supplemented with 5% carbon dioxide and 
passaged at a ratio of 1:3–1:10 every 2–3 days. Cell line and 
reagent details are described in the Online Resource. Clini-
cal information on these cell lines is summarized in Table S1 
in the Online Resource.

Western blotting analysis

In this analysis, the KYSE30, KYSE510, and KYSE520 cells 
were seeded at 2 × 105 cells in four 6-cm dishes and incu-
bated overnight. After 24 h, the cells were lysed and protein 
extracted. Detailed descriptions of the subsequent steps are 
included in the Online Resource.

Cell proliferation assay after treatment with GPX4 
or FSP1 inhibitors

ESCC cell lines were treated with iFSP1—an FSP1 inhibi-
tor—and (1S, 3R)-RSL3 (RSL3; a GPX4 inhibitor) alone 
or in combination. Cell proliferation was assessed using the 
Cell Counting Kit-8 (CCK8) according to the manufacturer’s 
protocol, which is further detailed in the Online Resource.

Cell death inhibition assay

The procedure and elapsed time from cell seeding, addition 
of drugs, and cell survival evaluation are the same as the 
cell proliferation assay. The added drug included a combi-
nation of iFSP1 and RSL3 plus liproxstatin-1 (Lipro-1, a 
ferroptosis inhibitor) or Z-VAD-FMK Caspase Inhibitor VI 
(Z-VAD, an apoptosis inhibitor) or Necrostatin-1 (Necro-1, 
a necrosis inhibitor), respectively. Detailed descriptions of 
the subsequent steps are included in the Online Resource.
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Statistical analysis

For overall survival and relapse-free survival, survival 
curves were estimated by Kaplan–Meier analysis; differ-
ences in survival curves were compared using the log-
rank test. Cox proportional hazards models were used 
for univariate and multivariate analyses. All quantitative 
values are presented as the median. For FSP1 and GPX4, 
association between expression and patient's characteris-
tics was examined using the chi-squared test and Fisher 
exact test for categorical variables. All p values < 0.05 
were considered statistically significant. Statistical anal-
yses were performed using GraphPad Prism (GraphPad 
Software, La Jolla, CA, USA) and SPSS version 25.0 
(IBM, Armonk, NY, USA).

Results

FSP1 and GPX4 expression associated with ESCC 
prognosis

Expression of FSP1 and GPX4 in resected specimens from 
patients with ESCC was evaluated by immunohistochemistry 
and classified as positive or negative based on the percentage 
of positively tumor-stained area (Fig. 1).

Of the 97 patients, 20 (20.6%) were positive for FSP1 
and 40 (41.2%) for GPX4. The FSP1-positive group had 
a significantly higher invasion depth (p = 0.001) and dis-
ease stage (p = 0.029) than the FSP1-negative group. The 
GPX4-positive group had significantly higher invasion depth 
(p = 0.014), lymph node metastasis (p = 0.001), lymphatic 
involvement (p = 0.019), vascular involvement (p = 0.011), 
and disease stage (p = 0.002) than the GPX4-negative group 
(Table 1).

Fig. 1   Representative immunohistochemical stains for FSP1 and 
GPX4 in patients with ESCC. Magnification × 100; scale bar, 100 μm. 
a High-expressing FSP1 ESCC. The FSP1 protein is localized in 
cytoplasmic regions. b Low-expressing FSP1 ESCC (FSP1-negative 

case). c High-expressing GPX4 ESCC. The GPX4 protein is localized 
in cytoplasmic regions. d Low-expressing GPX4 ESCC (GPX4-nega-
tive case). ESCC esophageal squamous cell carcinoma; FSP1 ferrop-
tosis suppressor protein 1; GPX4 glutathione peroxidase 4
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Next, we examined the correlation between FSP1 and 
GPX4 expression and prognosis of patients with ESCC. The 
FSP1-positive group had significantly worse overall survival 
and relapse-free survival than the negative group (Fig. 2a, 
b). Similar results were obtained for the GPX4-positive and 
-negative groups (Fig. 2c, d).

In addition, we compared the prognosis between three 
classified groups based on the combined expression patterns 
of FSP1 and GPX4. The breakdown of FSP1 and GPX4 
positivity/negativity is shown below. Both FSP1- and GPX4-
positive; n = 14, FSP1-positive and GPX4-negative; n = 6, 
FSP1-negative and GPX4-positive; n = 26, Both FSP1- 
and GPX4-negative; n = 51. Groups that were positive for 
only one of FSP1 or GPX4 were considered together in 

one group. The group with both FSP1- and GPX4-positive 
expression had a significantly worst prognosis (p < 0.001) 
(Fig. 2e, f). In contrast, the group with both FSP1- and 
GPX4-negative results showed the best prognosis compared 
with the other groups.

We also examined whether the combined FSP1 and 
GPX4 expression pattern was associated with NAC in 
patients with ≥ T2 or lymph node metastasis (Table S2). The 
prognostic comparison of the patients with ≥ T2 or lymph 
node metastasis among the same three groups categorized 
according to the FSP1 and GPX4 expression revealed a pat-
tern that was similar to that observed in the entire patient 
population (Fig. S1). In multivariate analysis, positivity for 
both FSP1 and GPX4 was an independent poor prognostic 

Table 1   Patient characteristics 
stratified by FSP1 and GPX4 
status

*p < 0.05; **p < 0.01; ***p < 0.001

Characteristics FSP1 p value GPX4 p value

Positive Negative Positive Negative

Age, years 0.400 0.167
 < 70 14 46 28 32
 ≥ 70 6 31 12 25

Sex 0.294 0.301
 Male 15 67 32 50
 Female 5 10 8 7

Body mass index (kg/m2) 0.526 0.484
 < 22 12 52 28 36
 ≥ 22 8 25 12 21

Tumor location 0.295 0.659
 Upper/middle 11 52 27 36
 Lower 9 25 13 21

Neoadjuvant chemotherapy 0.729 0.569
 Absent 9 38 18 29
 Present 11 39 22 28

Differentiation 1.000 0.321
 Well/moderate 18 66 33 51
 Poor 2 11 7 6

Invasion depth 0.001** 0.014*
 pT1 3 43 13 33
 pT2/3/4 17 34 27 24

Lymph node metastasis 0.213 0.001**
 Absent 6 35 9 32
 Present 14 42 31 25

Lymphatic involvement 0.385 0.019*
 Absent 3 21 5 19
 Present 17 56 35 38

Vascular involvement 0.198 0.011*
 Absent 4 27 7 24
 Present 16 50 33 33

Disease stage 0.029* 0.002**
 0/1 2 27 5 24
 2/3/4 18 50 35 33
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factor (p = 0.002) (Table 2). For FSP1 and GPX4 expression, 
both positive groups, which had a particularly poor progno-
sis, were used as one of the covariates in the multivariate 
analysis.

Degree of cell death depends on FSP1 or GPX4 
expression level

We used three human ESCC-derived cell lines to examine 
whether FSP1 and GPX4 inhibition induce cell death in 
ESCC cells. The intensities of FSP1 and GPX4 expression 

assessed by Western blotting varied between the three 
cell lines, with negative FSP1 expression in KYSE30 and 
low expression in KYSE510 and KYSE520. All three cell 
lines expressed GPX4, as follows: moderate expression in 
KYSE30, high in KYSE510, and low in KYSE520 (Fig. 3).

To examine the correlations between the differences in 
FSP1 and GPX4 expression and the degree of ferroptosis 
induced by inhibiting FSP1 and GPX4, we administered 
the FSP1 inhibitor iFSP1, the GPX4 inhibitor RSL3, and 
the ferroptosis inhibitor Lipro-1 to each cell line and 
evaluated cell viability. Administration of iFSP1 alone 

Fig. 2   Kaplan–Meier survival curves categorized by FSP1 and GPX4 
immunoreactivity in ESCC. a, b Survival based on FSP1 expres-
sion. c, d Survival based on GPX4 expression. e, f Survival based on 

simultaneous expression of FSP1 and GPX4. ESCC esophageal squa-
mous cell carcinoma, FSP1 ferroptosis suppressor protein 1, GPX4 
glutathione peroxidase 4
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had no effect on cell death in KYSE30, which showed 
negative FSP1 expression (Fig. 4a). In KYSE510 and 
KYSE520, both of which expressed FSP1, cell viability 
tended to decrease in KYSE510 (Fig. 4b) and significantly 
reduced in KYSE520 (Fig. 4c). Administration of RSL3 
(GPX4 inhibitor) alone caused significant cell death in 
all cell lines (Fig. 4a–c). The iFSP1 and RSL3 combina-
tion induced cell death more potently in KYSE510 and 
KYSE520 than with their administration alone (Fig. 4b, 
c). In all dosing patterns, cell death caused by iFSP1 and 
RSL3 was canceled by the addition of Lipro-1 (ferroptosis 
inhibitor) (Fig. 4a–c).

FSP1 and GPX4 inhibitor‑induced cell death caused 
by ferroptosis

Finally, we tested whether cell death caused by the combina-
tion of iFSP1 and RSL3 could be counteracted by other cell 
death inhibitors. In all cell lines, cell death was markedly 
inhibited by the combination of Lipro-1, but administra-
tion of Z-VAD and Necro-1 did not cancel the decrease in 
cell viability (Fig. 5). These results indicated that cell death 
induced by iFSP1 and RSL3 was due to ferroptosis and not 
apoptosis or necrosis.

Discussion

This study showed that expression of FSP1 and GPX4, iden-
tified as inhibitors of ferroptosis, correlated with prognosis 
for patients with ESCC. Furthermore, regulation of these 
factors markedly induced ferroptosis in ESCC cell lines. To 
the best of our knowledge, this report is the first to show a 
correlation between the combination of FSP1 and GPX4 and 
prognosis in ESCC.

Immunostaining of ESCC and analysis of clinical data 
indicated that high FSP1 and GPX4 expression was a sig-
nificantly poor prognostic factor. Both FSP1 and GPX4 
are capable of suppressing iron-dependent lipid peroxida-
tion reactions [11, 12]. Oxidative stress is known to induce 
cell death [16], and the present results are consistent with 
the evidence. However, previous literature reported bet-
ter prognosis in lung squamous cell carcinoma when both 
FSP1 and GPX4 were highly expressed compared with other 

Table 2   Univariate and multivariate analyses of clinicopathological factors influencing overall survival

FSP1 ferroptosis suppressor protein 1, GPX4 glutathione peroxidase 4
*p < 0.05; **p < 0.01; ***p < 0.001

Variables Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Age, years (< 70 vs. ≥ 70) 0.693 0.361–1.330 0.270
Sex (male vs. female) 1.636 0.643–4.158 0.301
Body mass index (< 22 vs. ≥ 22 kg/m2) 0.627 0.321–1.225 0.172
Tumor location (lower vs. upper/middle) 0.567 0.308–1.044 0.068
Neoadjuvant chemotherapy (present vs. absent) 2.356 1.251–4.434 0.008** 1.713 0.769–3.814 0.187
Differentiation (poor vs. well/moderate) 0.750 0.333–1.687 0.484
Invasion depth (pT2/3/4 vs. pT1) 3.753 1.879–7.498  < 0.001*** 0.793 0.297–2.117 0.644
Lymph node metastasis (present vs. absent) 5.372 2.384–12.106  < 0.001*** 2.474 0.978–6.258 0.056
Lymphatic involvement (present vs. absent) 9.772 2.347–40.270 0.002** 1.678 0.263–10.694 0.584
Vascular involvement (present vs. absent) 8.554 2.641–27.704  < 0.001*** 4.059 0.838–19.669 0.082
FSP1 (positive vs. negative) 2.379 1.223–4.629 0.011*
GPX4 (positive vs. negative) 3.077 1.658–5.713  < 0.001***
FSP1 and GPX4 (double positive vs. other) 5.677 2.655–12.139  < 0.001*** 3.631 1.628–8.099 0.002**

Fig. 3   Expression of FSP1 and GPX4 in ESCC cell lines. ESCC 
esophageal squamous cell carcinoma, FSP1 ferroptosis suppressor 
protein 1, GPX4 glutathione peroxidase 4
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expression patterns, although no difference in prognosis was 
observed when FSP1 or GPX4 were analyzed alone [17].

The expression pattern of GPX4 also differs depending on 
the cancer type. For example, GPX4 expression is reported 
to be upregulated in hepatocellular carcinoma and colorectal 
cancer [18, 19], and high GPX4 expression is associated 
with poor prognosis in gastric cancer [9] and lung adeno-
carcinoma [10]. Conversely, GPX4 expression is weaker in 
pancreatic cancer than in nontumor areas [20]. The reason 
for the conflicting expression patterns in different types of 
cancer is unclear, but reactive oxygen species affect cancer 
development in seemingly contradictory ways—promoting 
tumorigenesis or causing cell death, depending on the con-
centration [21]. Furthermore, different thresholds of reactive 
oxygen species concentration at which cell death occurs may 
be related to different levels of FSP1 or GPX4 expression in 
different cancers.

Ferroptosis is a mechanism of cell death that differs from 
apoptosis, and it is proven to have the potential to induce cell 
death even in apoptosis-resistant tumors [7]. Chemotherapy 

for esophageal cancer primarily uses apoptosis-inducing 
agents [3, 4]. Inhibition of GPX4 is reported to induce fer-
roptosis in persister tumor cells [22], the source of drug-
resistant tumor cells. Therefore, cancer therapy may be 
improved if a novel therapy for the induction of ferropto-
sis is developed. In the aforementioned report showing the 
relationship between lung squamous cell carcinoma prog-
nosis and FSP1 and GPX4 expression, the combination 
of iFSP1 and RSL3-induced marked ferroptosis, and the 
same was true when FSP1 and GPX4 were knocked out by 
CRISPR–Cas9 [17]. Furthermore, in an in vivo study, 5-ami-
nolevulinic acid, a natural amino acid, suppressed GPX4 and 
resulted in tumor shrinkage [14]. Considered with the cur-
rent study results, simultaneous FSP1 and GPX4 regulation 
may represent a new target for cancer therapy via induction 
of ferroptosis. Although these results were obtained only in 
in vitro experiments, further validation with animal experi-
ments is needed because FSP1 and GPX4 inhibitors were 
simply used instead of genome editing technology, and 
administration in vivo is also technically simple.

Fig. 4   iFSP1 and RSL3 administered alone or in combination with 
examination of the effect adding Lipro-1 on the decrease in cell via-
bility and the inhibition of the decrease in cell viability. *p < 0.05; 
**p < 0.01; ***p < 0.001. a KYSE30, b KYSE510, c KYSE520. 

FSP1 ferroptosis suppressor protein 1, FSP1 inhibitor iFSP1, GPX4 
glutathione peroxidase 4, GPX4 inhibitor RSL3, Liproxstatin-1 
Lipro-1, NS not significant
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The preclinical development of both iFSP1 and RSL3 
has not been well reported [23]. Several reports focusing 
on GPX4 suppression in animals showed that mice lacking 
GPX4 in a nerve-specific manner developed neurodegen-
eration [24, 25] or died [26]. However, all studies were 
conducted after genome editing and cannot be directly 
applied iFSP1 and RSL3 administration to adult mice for 
whom organ development was already completed. Future 

studies must confirm the tumor suppression effect and any 
adverse events in animal experiments.

This study had several limitations. First, it was a single-
center study, and the number of samples used was small. 
Second, the study did not examine the effects of iFSP1 and 
RSL3 on normal cells. Third, this study contained only a 
cellular experiment and not an in vivo evaluation.

Fig. 5   Examination of the different effects of the combination of 
iFSP1 and RSL3 plus Lipro-1, Z-VAD, and Necro-1 on the three 
cell lines in preventing the reduction of cell viability. *p < 0.05; 
**p < 0.01; ***p < 0.001. a KYSE30, b KYSE510, c KYSE520. 

FSP1 ferroptosis suppressor protein 1, FSP1 inhibitor iFSP1, GPX4 
glutathione peroxidase 4, GPX4 inhibitor RSL3, Liproxstatin-1 
Lipro-1, Necrostatin-1 Necro-1, Z-VAD-FMK Caspase Inhibitor VI 
Z-VAD, NS not significant
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Conclusion

Overexpression of FSP1 and GPX4, especially in cases of 
simultaneous overexpression, is a significant poor prog-
nostic factor in ESCC tumors. In ESCC cell lines, simulta-
neous suppression of both FSP1 and GPX4 caused potent 
cell death, which was markedly abrogated by ferroptosis 
inhibitors. These results indicate that simultaneous regula-
tion of FSP1 and GPX4 may be a new target for therapy in 
patients with ESCC.
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