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Abstract. Studies on the authentication of users based on their finger
writing are underway. Users are asked to draw or write a simple sym-
bol on a smartphone display, which eases authentication from a user’s
perspective than the conventional verification method. In conventional
studies, 40 individual features were extracted from the finger-writing
motion. After normalization and polar-coordinate transformation, they
were fused together and used to verify whether the users were genuine
or imposters. However, the introduced polar transformation method has
limitations and an efficient selection rule to fuse features is required.
In this study, we overcame the limitations of the polar transformation
method. Moreover, we proposed the fusion of features with low correla-
tion and validated their efficiency.
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1 Introduction

Biometrics is convenient because users are not required to have and remember
anything when authenticated. Two types exist: using physical characteristics
such as fingerprints and face images and using behavioral characteristics such
as gait (walking) and keystrokes (typing). Physical biometrics provide stable
biometric information; thus, it achieves a high verification/identification rate.
However, it can be observed (measured) by others, even if people are unaware of
it. Authentication systems may be deceived by unconsciously obtained biomet-
ric data. Conversely, biometric information of the behavioral type is unstable;
therefore, its verification performance is not high. However, it is difficult to steal
biometric information of the behavioral type.

We focus on writing, which is a behavioral biometrics. Signature verification
for authentication using writing has been studied [1–3]. Signature verification
is based on pattern matching, where a written pattern is compared with the
template of a genuine user. Two types exist: offline and online. In the offline
type, a signature already written on paper is converted into digital data using a
scanner. In the online type, the digital data of a signature is directly captured
using a pen-tablet device. In general, the online type is used for authentication.



Some inconveniences are associated with the online signature verification. To
use a dedicated electronic pen is required, writing a signature is time-consuming,
and writing a signature on a small screen of a smartphone is difficult. In addition,
signature verification is problematic in terms of confidentiality. A signature is
easy to guess from a name or can be guessed by observing the writing process.
Written signatures can also be seen by others.

However, another category of writing biometrics exists, writer verification
[4], where users can write anything independent of them. In this case, a written
pattern changes whenever a user writes it. Therefore, a written pattern can-
not be compared with an already-written and stored pattern. The extraction of
writing habits that are independent of written characters is required; however,
a technique to extract writing habits has not been established and practically
implemented.

In the aforementioned situation, writer verification based on the finger writ-
ing of a simple symbol was proposed [5, 6] for user authentication of a smartphone
or table terminal. Users write a simple symbol, which is easy to write on a small
screen, directly using a finger instead of a dedicated pen. This authentication
method lays more emphasis on convenience. As simple symbols, such as circles,
triangles, and squares, which are easy to write, well known, and never forgot-
ten, are assumed, the proposed method is most convenient while there are few
confidentialities in written patterns. In Ref. [5], forty features extracted from
finger-writing motion, such as the maximum, average and minimum values of x
and y coordinates, finger pressure, and finger-touch area are fused in the ver-
ification. In Ref. [6], normalization in fusing different features and coordinate
transformation of features were examined.

However, in the proposed polar-coordinate transformation method, the de-
tected angle difference at ±π rad did not represent the true angle. In addition, in
fusing features, no criteria were laid regarding the type of features to be fused.
Naturally, fusing all the features achieves better performance. However, when
applying the proposed method to a smartphone, the computational load should
be significantly reduced because computational resources are limited.

In this study, we improve the polar coordinate transformation introduced in
Ref. [6]. Next, by investigating the correlation between features, we validated
that the fusion of features with a small correlation achieves better verification
performance than those with a large correlation.

2 Writer verification based on the finger-writing of a
simple symbol

This section briefly introduces writer verification based on the finger writing of
a simple symbol proposed by Takahashi et al. [5, 6].

2.1 Assumed Scenario

The writer verification based on finger writing of a simple symbol is a conve-
nient method to authenticate users of a system; therefore, it is not suitable for



high-security systems. When using information devices for personal use such
as smartphones, tablet terminals, and tablet computers, the proposed method is
used for login authentication. Recently, some smartphones have adopted authen-
tication using fingerprints, face images, and iris images; however, other smart-
phones use authentication using a conventional password or pattern lock, which
requires users to remember it, resulting in the degradation of usability. However,
the proposed method assumes that everyone can write, for example, a circle;
therefore, it is not necessary to remember it.

2.2 Simple Symbol

No character is suitable for the proposed method because it depends on the
language of the user. Symbols are candidates for written content that is inde-
pendent of language. However, assuming finger writing on a small smartphone
screen, symbols with complicated shapes are unsuitable. In addition, symbols
that take a long time to write are unsuitable. Therefore, a circle, triangle, or
square that is widely known, never forgotten, and never misspelled is used as a
symbol.

2.3 Individual Features

In verification, pattern matching based on the writing shape, such as a signature,
cannot be applied because the shape of a symbol is very simple, and everybody
writes the same shape. Therefore, the following features, which may be indepen-
dent of the symbol shape, were used:

– Offline-type:
• SP: coordinate values at the start point
• EP: coordinate values at the end point
• MinX: the minimum value in the x coordinate
• MinY: the minimum value in the y coordinate
• MaxX: the maximum value in the x coordinate
• MaxY: the maximum value in the y coordinate
• DX: distance between the maximum and the minimum x
• DY: distance between the maximum and the minimum y
• MC: the means of coordinate values
• DSE: distance between the start and end points
• WA: writing area

– Online-type:
• MinP: coordinate values at the minimum pressure
• MaxP: coordinate values at the maximum pressure
• MinT: coordinate values at the minimum touching-area
• MaxT: coordinate values at the maximum touching-area
• MinS: coordinate values at the minimum speed
• MaxS: coordinate values at the maximum speed
• MinA: coordinate values at the minimum acceleration



• MaxA: coordinate values at the maximum acceleration
• WT: writing time
• MP: the mean of pressure
• Pmin: the minimum of pressure
• Pmax: the maximum of pressure
• MT: the mean of touching-area
• Tmin: the minimum of touching-area
• Tmax: the maximum of touching-area
• MS: the mean of speed
• Smin: the minimum of speed
• Smax: the maximum of speed
• MA: the mean of acceleration
• Amin: the minimum of acceleration
• Amax: the maximum of acceleration
• PS: pressure at the start point
• TS: touching-area at the start point
• SS: speed at the start point
• AS: acceleration at the start point
• PE: pressure at the end point
• TE: touching-area at the end point
• SE: speed at the end point
• AE: acceleration at the end point

For convenience, they are categorized into offline and online types. The online
type can only be extracted using a pen-tablet device, whereas the offline type
can also be extracted from a scanned image. The “coordinate values” are two-
dimensional: x and y. The “speed” feature is extracted by calculating the distance
between two successive sampled points assuming a sample period to detect finger-
writing data on a screen of a smartphone or tablet device is constant and one.
The “ acceleration” feature is derived from calculating the distance between two
successive speed features.

2.4 Coordinate Transformation

Generally, coordinate values x and y on a smartphone screen are extracted based
on the origin, which is on one of the four corners of the screen. However, even
if the same user writes the same symbol in different places on a screen, the
extracted coordinate features are regarded as coming from different users. Thus,
the coordinate origin was transformed into the center of the screen. Furthermore,
the coordinate values are represented as angles and distances from the origin in
polar coordinates.

In Ref. [6], the coordinate transformation was examined and the best per-
formance was achieved in many features when using the polar transformation.
However, the type of transformation, including no transformation, was suitable
depending on the features.



2.5 Normalization

The number of dimensions in the aforementioned coordinate features is two and
that of the other features is one. Therefore, their verification performance is
not very high [5]. Thus, to fuse the features, multidimensionalizing is required
to improve the verification performance. The simplest multidimensional method
connects several one-dimensional or two-dimensional features as a multidimen-
sional feature. This is known as feature-level fusion [7].

However, these features had different units. If such features are directly con-
nected, large features become dominant in the characteristics of the fused feature,
and this reduces the effect of fusing features. Thus, normalization is introduced
before fusing the features. Some normalization methods include min-max, MAD,
and Z-score. In Ref. [6], the verification performance using the min-max and Z-
score methods was superior to that using the MAD method.

2.6 Fusion

As earlier mentioned, the multidimensionalization of features is achieved by sim-
ply connecting one or two-dimensional features. In Ref. [6], fusing not only all
forty features (AL) but also offline (Of) and online (On) features, features that
have a relation with the start (St) and end (Ed) points of writing, finger pressure
(FP), finger-touching area (FA), speed (SP), and acceleration(AC) features, and
features that achieved good performance (Gd) were examined.

2.7 Verification

Authentication of users of a system is performed by verifying whether an appli-
cant who wants to use the system is genuine. Before verification, a genuine user
finger-writes a symbol several times, features are extracted, and their averaged
values are enrolled as templates in an authentication system. In the verification
stage, verification data from an applicant who claims to be a regular user are
compared with templates of the regular user using Euclidian distance matching.
If the distance is smaller than the threshold, the applicant is regarded as the
regular user.

2.8 Verification Performance

In Ref. [6], a finger-writing database was created using thirty experimental sub-
jects, who wrote three symbols (circles, triangles, and squares) twenty times.
From twenty genuine data, ten were used to create a template and the others
were used for testing (performance evaluation). Cross-validation reduces the in-
fluence of selecting data to create a template and changes the combination of
data to create a template and test in each cross-validation. The number of cross-
validations was ten. The verification performances presented in the following are
averaged values of ten cross-validations.



For reference, the verification performance obtained in Refs. [6] are intro-
duced in Tables 1 and 2, where the equal error rate (EER) is used to evaluate
the verification performance of biometrics and defined as a rate where the false
rejection rate is equal to the false acceptance rate. A smaller EER indicates a
better verification performance.

Table 1. EERs (%) using min-max method [6].

Symbol AL Of On St Ed FP FA SP AS Gd

⃝ 11.0 14.2 13.0 20.0 15.7 18.0 17.2 16.7 18.5 10.6
△ 14.9 17.5 16.7 22.1 19.0 18.9 18.8 23.6 26.1 12.3
2 12.8 16.7 15.0 20.0 16.4 15.4 17.2 21.5 25.1 11.4

Table 2. EERs (%) using Z-score method [6].

Symbol AL Of On St Ed FP FA SP AS Gd

⃝ 11.9 13.9 12.7 18.1 14.2 17.9 17.7 16.3 18.4 11.0
△ 16.8 16.3 18.1 18.5 16.1 18.2 19.0 22.6 25.2 12.4
2 14.7 17.3 16.0 17.6 14.4 15.7 17.9 22.2 25.1 11.5

When writing a circle, the fusion of good features achieved the smallest EER
of 10.6 % using the min-max method. In all the symbols and normalization
methods, the fusion of all the features achieved a better verification performance.
This is easy to understand because a more multidimensional space makes it easier
to distinguish the targets.

3 Improvement of Coordinate Transformation

The polar coordinate transformation introduced in [6] had a problem as ex-
plained below. As illustrated in Fig. 1, the target angles, • and ◦ are near; thus,
their angle difference must be small. However, when the angle was defined as
−π ≤ θ < π, the angle difference was approximately 2π rad. Originally identical
features located near might be regarded as different, resulting in degradation of
the verification performance.

3.1 Relative Angle

Thus, we improved the polar transformation. First, when the angle θ < 0, it is
transformed into θ

′
= 2π − |θ|. When θ ≥ 0, θ

′
= θ.



Fig. 1. Polar transformation before (left side) and after (right side) improvement.

Next, θ
′

is transformed into a relative angle using a reference angle, which
can be determined arbitrarily. In this study, the minimum value of the data to
create a template was used. Assuming the reference angle is ϕ, when |θ′ −ϕ| > π,
θ
′
is transformed to θ

′′
= 2π − |θ′ − ϕ|. Otherwise, θ

′′
= |θ′ − ϕ|.

The reference angle was set to the minimum value because the features of
a genuine user are distributed in a small-angle region, and each is represented
as an absolute value based on zero degrees. By setting the minimum value as a
base instead of using a zero degree, the angles of all features can be represented
as differences from the minimum value; therefore, intra-individual variations are
reduced, which could improve the verification performance. However, test data
do not always fit within the distribution range of the template data but are
distributed around the same range. Therefore, test data were also represented
as differences from the minimum value of the template data and their intra-
individual variations were also reduced.

Based on the aforementioned procedure, θ
′′

is given as 0 ≤ θ
′′
< 2π and the

correct angle difference θ between the originally near features is calculated, as
shown on the right side of Fig. 1.

3.2 Results

To validate the effectiveness of the improved polar transformation, we compared
the averaged coordinate values before and after the improvement, using a finger-
writing database obtained by Takahashi et al. [6]. An example is shown in Fig. 2.
Ten genuine angle data points of a feature processed by the original polar trans-
formation are distributed on the left side, and their mean value is indicated as
a red point. Those obtained by the improved polar transformation are indicated
on the right-hand side.

In the original method, the mean value was located outside the distribution of
the genuine data. Originally, the mean value was in the middle of the distribution.



Fig. 2. Angles and their averages before and after improvement of polar transformation.

Therefore, each angle value was incorrectly represented by the original polar
transformation. However, in the improved polar transformation, the mean value
was located in the middle of the distribution of genuine data.

Examples of verification performance by introducing the improved polar
transformation when writing a circle and using the min-max method are pre-
sented in Table 3. For reference, the EERs obtained from the original polar
transformation (Org) [6] and those obtained by setting the minimum value to
0 degrees (0deg) are also presented. In the three methods, the smallest EER is
colored.

Table 3. Examples of EER (%) by the improved polar transformation.

Feature Org 0deg Proposed

MaxX 27.3 29.3 28.4
MinX 25.9 27.5 24.4
MaxY 30.2 30.1 30.1
MinY 33.4 25.6 25.6
Amax 34.9 34.6 34.4
Amin 25.7 29.5 25.5
SP 25.8 29.0 24.7

Pmax 29.6 28.2 28.5
Pmin 27.5 30.4 28.7
Tmax 28.4 25.5 26.3
Tmin 28.2 30.3 28.5
EP 23.0 26.1 22.9

Smax 32.1 32.7 31.8
Smin 32.1 27.9 24.3



From this comparison, the verification performance was improved using an
improved polar transformation. However, cases exist where the original method
or the method using a zero-degree base achieved better performance. The equiv-
alent results were obtained using other symbols and normalization methods. As
shown in Fig. 1, the improved polar transformation is necessary to reduce mis-
detection caused in the original transformation. Although the original method
achieved a higher verification performance, it was never used. However, in some
cases, EERs obtained by setting the minimum value to 0 degrees were smaller
than those obtained by the improved method. Therefore, determination of the
base should be further examined.

Using the improved polar coordinate transformation, we re-evaluated the
verification performance of features that are related to finger-pressure (FP),
finger-touching area (FA), speed (SP), and acceleration (AC) features, features
at the start (St) and end (Ed) points of writing, and miscellaneous features
(MS), as well as the case of using all forty features (AL). The results are shown
in Tables 4 and 5. Compared with the results in Tables 1 and 2, almost all
EERs were reduced; therefore, the effectiveness of the improved polar coordinate
transformation was validated.

Table 4. EERs (%) using min-max method.

Symbol FP FA SP AS St Ed MS AL

⃝ 18.3 17.1 16.3 18.4 20.0 15.7 15.7 9.9
△ 17.6 17.7 20.0 25.5 26.3 19.0 14.0 12.1
2 15.1 16.6 21.8 25.7 20.0 16.4 15.0 11.9

Table 5. EERs (%) using Z-score method.

Symbol FP FA SP AS St Ed MS AL

⃝ 18.6 13.9 24.5 18.0 23.9 15.3 15.6 11.6
△ 17.5 18.0 22.3 32.4 21.6 18.7 13.7 13.0
2 17.9 16.8 35.8 37.8 19.8 16.0 15.7 16.1

The detailed reason why the obtained EERs depended on the symbols is not
clear. However, it is certain that there are some differences among three symbols,
such as writing time, with or without corners. If more complicated symbols or
multiple symbols are written, the verification performance could be improved.
However, the proposed authentication focuses on convenience. More complicated
symbols may be less well known, forgettable, difficult to write and may not be
written on a small screen of a smartphone. Writing multiple symbols is similar.



4 Effect of Fusing Uncorrelated Features

When applying writer verification based on the finger writing of a simple symbol
to smartphones, less computational load is required because they have limited
computational resources. It is important to examine a method to obtain better
performance with less computational load (complexity). Several combinations of
features were examined in Ref. [5, 6] and also in the previous section. However,
no criteria exist for which combination of features is best for verification.

4.1 Correlation Coefficient

We refer to majority vote, a decision-level fusion method [7]. In the majority
vote, even if many people have the same opinion, it results in one opinion;
therefore, the majority vote does not work. However, although some people make
an incorrect decision, the final decision may be corrected if other people make a
correct decision. The robustness of the majority decision is exhibited and decision
errors can be prevented. Therefore, it is better to gather people with different
opinions on the majority vote. This suggests that different features should be
fused to achieve robustness in the decision. Undoubtedly, fusing all features
achieves better performance, although it is redundant in processing. However, it
is efficient to obtain equivalent verification performance by fusing fewer features.

In this study, we regarded uncorrelated features as different. In biometric fu-
sion, “physically uncorrelated traits are expected to result in better performance
improvement than correlated traits ” [7]. However, no method directly examines
the correlation between three or more features. Thus, we calculated the correla-
tion coefficient between the two features, and features with low coefficient values
were fused.

To calculate the correlation, the Pearson product-moment correlation coeffi-
cient was used, which is defined as:

Covariance of A and B
(Standard Deviation of A)× ( Standard Deviation of B)

, (1)

where “A” and “B” are features for which correlations are examined.
Table 6 presents the general definition of the strength of the correlation. The

correlation between the two features is evaluated by comparing the obtained
correlation coefficient values with the definition of this table.

Table 6. Strength of Correlation.

Coefficient Value Strength

0.0 - 0.2 no correlation
0.2 - 0.4 weak correlation
0.4 - 0.7 correlated
0.7 - 1.0 strong correlation



4.2 Correlation Results

Using the finger-writing database in Ref. [6], the correlation of all forty features
was investigated. Some of the results are presented as a matrix in Table 7.
Because diagonal elements correspond to the correlation coefficients of the same
features, they have a value of 1 and are excluded. In the other elements, no
element has a strong correlation (0.7-1.0). The selection of features with strong
correlations is difficult.

Table 7. Part of correlation coefficient matrix.

DX MinX MaxX DY MinY MaxY
DX 1 0.14 -0.25 0.43 -0.23 -0.02

MinX 0.14 1 -0.43 0.48 -0.15 0.19
MaxX -0.25 -0.43 1 -0.53 0.46 -0.08
DY 0.43 0.48 -0.53 1 -0.27 0.04

MinY -0.21 -0.15 0.46 -0.27 1 -0.25
MaxY -0.02 0.19 -0.08 0.04 -0.25 1

Thus, rather than using the general definition in Table 6, we use a modified
definition in Table 8, where the strength of the correlation is evaluated as only
two cases, with or without correlation, and the threshold to distinguish them
is set to a low value. Based on the modified definition, it was found that the
features that were uncorrelated with the DX feature were MinX and MaxY, and
DX was correlated with only the DY feature in Table 7.

Table 8. Modified Strength of Correlation.

Coefficient Value Strength

0.0 - 0.2 without correlation
0.3 - 1.0 with correlation

4.3 Comparison of Verification Performance

In this study, we focused on five features: DX, MinX, MaxX, DY, and MinY,
and evaluated their correlation with other features. Consequently, we selected six
correlated and uncorrelated features, as shown in Tables 9 and 10 and evaluated
the verification performance of the fused features.

The results are shown in Tables 11 and 12. Comparing the averaged values
obtained using the uncorrelated features with those obtained using the correlated
features in each symbol, EERs of the uncorrelated features are less than those
of the correlated features. The fusion of uncorrelated features was confirmed to
be more effective than the fusion of correlated features.



Table 9. Combinations of Uncorre-
lated Features.

DX MinX MaxX DY MinY

Ymax MinA MinA MinA MinA
MA PS Amax SP SS
SS Pmin MA PS Pmin
TE EP SP TS MS
MS PE PS EP WT
WT Tmin Tmin MinS WA

Table 10. Combinations of Correlated
Features.

DX MinX MaxX DY MinY

MinY MaxX MinX DX MaxX
MinP DY DY MinX MinA
Tmin SS MinY MaxX EP
AE MA MinP PE SE
PE Smin Tmin Smax AE
WA WA Smin WA MinS

Table 11. EERs (%) by Uncorrelated
Features.

⃝ △ 2

DX 20.4 18.0 17.3
MinX 18.2 20.5 19.6
MaxX 16.2 19.6 19.6
DY 20.0 20.5 26.8

MinY 16.1 23.8 19.2
Ave. 18.1 20.5 20.5

Table 12. EERs (%) by Correlated
Features.

⃝ △ 2

DX 19.6 20.6 21.2
MinX 16.7 17.0 21.5
MaxX 19.6 28.0 16.3
DY 16.6 20.2 23.1

Dmin 22.3 20.8 25.0
Ave. 18.9 21.3 22.0

Table 13. EERs (%) by All Uncorrelated Features.

⃝ △ 2

DX 10.8 12.8 10.0
MinX 12.0 15.0 13.3
MaxX 10.5 14.6 9.8
DY 11.8 14.4 11.3

MinY 12.3 16.1 14.2
Ave. 11.5 14.6 11.7

Next, we evaluated the verification performance of these five features by
fusing all uncorrelated features. The results are shown in Table 13, where the
number of fused features is 18, 26, 23, 20, and 18 for DX, MinX, MaxX, DY, and
MinY, respectively. Compared with EERs in Table 11, increasing the number of
fused uncorrelated features improved the verification performance. When writing
a square symbol, the smallest EER of 9.8 % was obtained by fusing the MaxX
feature with twenty-three uncorrelated features. In Table 4, EER = 9.9 % was
obtained by fusing all the 40 features. An equivalent verification performance
can be achieved using approximately half of the features. In the uncorrelated
features, there are no characteristics other than being uncorrelated.

Notably, fusing correlated features does not degrade verification performance.
Although many people may have the same opinion in the majority vote, they
are redundant but never lead to wrong decisions. If the redundancy in fusing



features is not a problem and all features obtained can be used in fusing, it is
not necessary to consider whether the fusion of features is correlated. However,
the fusion of uncorrelated features will be efficient when person authentication is
performed in devices with limited computational resources, such as smartphones
and better verification performance is required with minor computations.

In this study, the differences in features were examined based on the corre-
lation between two features. Therefore, only the features of the row elements in
Table 7 were examined. However, other combinations use the features of both
rows and columns in Table 7. Not all combinations of the features were exam-
ined. In Ref. [6], it was confirmed that the fusion of “good” features achieved
better performance than the fusion of all features. In a majority vote, people
who not only have different opinions (robustness) but also can decide accurately
(accuracy) should be assembled. The combination of uncorrelated and good fea-
tures may be the best method to fuse features. In the future, the verification
performance of these features will be evaluated.

5 Conclusions

As a novel person authentication method when using smartphones, studies on
the finger writing of a simple symbol on a screen are underway, where user
convenience has the highest priority. In Ref. [6], forty features, which were in-
dependent of written contents, were extracted from writing motion, normalized,
sometimes coordinate-transformed, and fused to verify individuals. However, the
normalization introduced was problematic in that the calculated angle values did
not correspond to the true values. In addition, features that should be used for
efficient fusion have not been discussed.

In this study, the polar coordinate transformation was improved and its ef-
fectiveness was validated. Furthermore, the correlation between the features was
examined, and it was confirmed that the fusion of uncorrelated features achieved
equivalent performance with fewer features. In an environment with limited com-
putational resources, such as smartphones, this is effective for feature selection
because a better verification performance is required with few features.

To achieve the best verification performance, the combination of uncorre-
lated and good features should be examined. For practical use, to examine the
verification time is needed for evaluating the proposed authentication method.
Evaluation of the usability of the proposed authentication method is also a topic
for future research.
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