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User Verification Using Evoked EEG by Invisible Visual Stimulation
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SUMMARY Person authentication using biometric information has re-
cently become popular among researchers. User management based on
biometrics is more reliable than that using conventional methods. To secure
private information, it is necessary to build continuous authentication-based
user management systems. Brain waves are suitable biometric modalities
for continuous authentication. This study is based on biometric authentica-
tion using brain waves evoked by invisible visual stimuli. Invisible visual
stimulation is considered over visual stimulation to overcome the obsta-
cles faced by a user when using a system. Invisible stimuli are confirmed
by changing the intensity of the image and presenting high-speed stimu-
lation. To ensure invisibility, stimuli of different intensities were tested,
and the stimuli with an intensity of 5% was confirmed to be invisible. To
improve the verification performance, a continuous wavelet transform was
introduced over the Fourier transform because it extracts both time and fre-
quency information from the brain wave. The scalogram obtained by the
wavelet transform was used as an individual feature and for synchronizing
the template and test data. Furthermore, to improve the synchronization
performance, the waveband was split based on the power distribution of the
scalogram. A performance evaluation using 20 subjects showed an equal
error rate of 3.8%.
key words: EEG, event-related potentials, wavelet transform, invisible
visual stimuli

1. Introduction

In recent years, with the development of modern technology,
many people are using personal computers and smartphones
daily. This has led to problems such as private data leaks
and impersonation. Therefore, it has become necessary to
strengthen the security technology. Currently, three major
security technologies are widely used for person authentica-
tion: authentication based on knowledge, such as passwords
and pattern locks; authentication based on possessions, such
as integrated circuit (IC) cards; and authentication based on
biometrics, such as fingerprints and faces [1]. However, sim-
ple spoof attacks can easily forge conventional knowledge-
and possession-based authentication systems. Therefore,
person authentication using biometric information has re-
cently become increasingly popular.

Biometric authentication is employed to identify or ver-
ify a person on account of his physiological and/or behavioral
characteristics. However, conventional biometric authenti-
cation techniques assume one-time authentication, where the
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authentication is performed only once when a user starts to
use a system. However, if the user is replaced by another one,
the one-time authentication cannot detect the user change af-
ter authentication.

To address spoofing, continuous authentication, in
which the user is always authenticated, is essential [2], [3].
Therefore, it is worthwhile to explore unique bio-electrical
signals for continuous biometric authentication.

To overcome this, an electroencephalogram (EEG) is
considered as a potential user authentication technique as it
offers the advantages of being difficult to fake, continuously
generated, and requiring live person recording [4]–[8]. The
brain wave is not exposed on the body surface unlike fin-
gerprints and face images; thus it is difficult for others to
capture an EEG without user consent. That makes it resis-
tant to spoofing. EEG is continuously generated; hence, it
can be used as a continuous real-time authentication system
without requiring user cooperation. Unconsciously record-
able personal data is desirable for real-time authentication.
In addition, the EEG signal cannot be recorded from a dead
person; therefore, the possible threat of misuse of the dead
person’s information is resolved.

The purpose of our research is to realize person au-
thentication using brain waves evoked by invisible visual
stimuli. The evoked brain waves are used as confidential
biological information. In addition, visible stimulation is
an obstacle to users when using a system; therefore, invis-
ible visual stimuli were considered rather than visual stim-
uli [9]. In Refs. [10], [11] a scalogram was obtained using
wavelet transformation as an individual feature. The wavelet
transformation is one of the time-frequency transformation,
which contains both time and frequency information [10]–
[12]. We introduced a synchronization method using corre-
lation for matching scalograms and evaluated the verification
performance based on the Euclidean distance method [10].
Initially, the correlation value in the entire band (1–43Hz) of
the scalogram was used for synchronization; however, there
may be a specified band that is more effective for calculating
the correlation within the waveband.

Thus, in this study, we focus on α-waveband of the
scalogram considering that the power of the α-waveband is
dominant when the invisible stimuli are presented. Further-
more, we split the α-waveband into three sub-bands, low
α-waveband (8–9Hz), mid α-waveband (9–12Hz), and fast
α-waveband (12–14Hz) and proposed the synchronization
scalograms and extraction of features in a sub-band. To
further improve synchronization and feature extraction, we
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Fig. 1 One-time vs continuous authentication.

introduced another sub-band (8–10Hz) and confirmed that
the verification rate was increased in the sub-band.

2. Basis Knowledge

2.1 Necessity of Continuous Authentication

Conventional authentication using fingerprints, facial im-
ages, passwords, and IC cards is currently being used as
a one-time authentication system. In conventional meth-
ods, it is possible to verify the user at the beginning of the
authentication procedure; however, once the procedure has
been completed, the identity is not guaranteed. Figure 1
shows the difference between (a) one-time authentication
and (b) continuous authentication. In the case of one-time
authentication, the authentication takes place only when a
user starts using a system; therefore, it is impossible to re-
spond to the replacement of users after the completion of the
authentication procedure. However, in the case of continu-
ous authentication [9]–[11], [13], in addition to the sign-in
at the start of using a system, authentication is performed
even when using the system, such that other users cannot
impersonate while using the system. Therefore, identity is
always guaranteed when the system is being used.

2.2 EEG

An EEG is a record of the electrical activity of the brain
captured by electrodes [14]. The EEG is the aggregate of
electrical activities of many cells and is recorded from the
outside of the conductive living tissue (brain, cerebral spinal
fluid, blood vessels, skull, and scalp) indirectly surrounding
the source, as shown in Fig. 2. There is a small potential
difference between the two electrodes attached to the scalp.
The magnitude of the signal is µV, and after amplifying the
signal, it can be observed as a rhythmic wave.

As an EEG can only be recorded by wearing an elec-
troencephalograph, it is highly resistant against spoofing. In
addition, by attaching an electroencephalograph, EEG can be
acquired continuously even when people are sub-conscious
to wear EEG sensor.

Fig. 2 Schematic of the cortex and electrode.

To perform continuous biometric authentication, se-
quential biometric information of the user is required. Fur-
thermore, it should be ensured that while recording the bio-
metric information, the recording process does not interfere
with the actual work being performed by the user. We have
considered an EEG to be the biological information that sat-
isfies the above requirement [9]–[11].

3. Related Works

3.1 EEG Evoked by External Stimuli

There are two types of brain waves: spontaneous brain waves
that are constantly generated even when unconscious, and
evoked brain waves that are generated by external stimuli,
such as light, sound, and psychological changes, such as
the meaning and attention of the stimuli. Brain waves de-
pict electrical activity of the brain that occurs in response
to stimuli, and these brain waves are called event-related
potentials (ERP) or event-related brain potentials [15]–[18].
The captured potential difference is µV. Conventional tech-
niques [19], [20] of person verification using brain waves,
both spontaneous and induced, have been studied.

Conventional authentication using brain waves has al-
ready achieved a high authentication rate. However, con-
ventional studies impose perceptible stimulus presentation
and image tasks, which hinder the use of the authentication
system. Therefore, it is necessary to realize a continuous
authentication method that does not obstruct the use of the
authentication system. In Ref. [21], the imperceptible stimu-
lation and verification performance of ultrasounds was eval-
uated. Consequently, an EER† of 0% was achieved based on
majority of the results obtained using spectrum and nonlin-
ear features. However, there may be some people to whom
such a verification method may not be applied; therefore, it
is necessary to give them alternative methods. One of them
is the proposed method utilizing a visual function. On the
other hand, it is interesting to fuse biometrics based on five
senses. Multi-biometrics using EEGs evoked by invisible
and inaudible stimuli may improve the verification perfor-
mance using either stimulus.

†An EER is the cross-point between the false acceptance rate
and false rejection rate, which indicates the performance of a bio-
metric authentication system. A system with a minimum value of
EER is regarded as having a high accuracy.
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3.2 Creation of Invisible Visual Stimuli

There are several popular methods for creating imperceptible
stimuli. The reason why the visual function is targeted is
vision is as important as hearing.

(1) The simplest method is to present the target stimulus
on the display at a high speed and then change the contrast of
the stimulus to realize the subliminal stimulus [22] as shown
in Fig. 3(a), the circular figure, which is the target stimulus
that was presented only for a short duration of 30ms.

(2) A method called continuous flash suppression [23],
in which each eye is made to observe separate stimuli and
the target stimulus is masked by an image (mask image).
In Fig. 3(b), the face image, which is the target stimulus, is
presented to the right eye, and the mosaic image, which is the
mask image, is presented to the left eye. The displayed image
is a combination of the observations of both eyes; however,
by wearing 3D glasses, it is presented separately for each
eye. Normally, the mask image has a higher contrast than
the target stimulus; therefore, the person viewing the image
tends to be more conscious of the mask image presented to
the left eye, and the target stimulus presented to the right eye
becomes a subliminal stimulus.

(3) Bymasking the preceding stimulus to consciousness

Fig. 3 Presentation method of sub-threshold visual stimulus, (a) high-
speed presentation, (b) continuous flash suppression, and (c) back masking.

with the subsequent visual stimulus using a method called
back-masking [18], [24]–[26], the initially presented stim-
ulus becomes a subliminal stimulus. In Fig. 3(c), a mosaic
image is presented after the face image, which is the target
stimulus.

4. Invisible Visual Stimulation

In Ref. [9], invisible stimuli were created by adjusting the two
parameters of “stimulus presentation speed” and “contrast”.
We selected the method (a) in Fig. 3 since it was the simplest.
The stimulus was presented at 120 frames per second (fps),
which can present fast stimuli on commercially available
computers and displays. However, a stimulus that could
not be perceived was made by creating several patterns of
moving images in which the contrast of the stimulus was
adjusted to confirm whether the experimental subject could
perceive it or not.

4.1 Equipment

A high-configuration computer and display were used in
this study to display a 120 fps stimulation video. A
computer (CPU-Intel core i7-4790K, 4.00GHz, GeForce
GTX750, 16GB memory) with a display (iiyama ProLite
GB2488HSU, 24 inch, 144Hz) was used to play the higher
refresh rate stimulus video.

4.2 Stimulation Content

The stimuli to be presented was in the shape of “O”. Fur-
ther, as shown in Fig. 4, the following four types of stimulus
images were created by changing the contrast of the target
stimuli:

• “White (color model R: 255, G: 255, B: 255)” In the
following, the stimulation intensity is shown as 0%.

• “White + 5% basic color (color model R: 242, G: 242,
B: 242)” The stimulus intensity is shown as 5%.

• “White + 10% basic color (color model R: 220, G: 220,
B: 220)” The stimulus intensity is shown as 10%.

• “White + 100% basic color (color model R: 0, G: 0,
B: 0)” The stimulus intensity is shown as 100%.

The size of each stimulus image was 23 × 30 cm, as shown
in Fig. 5. The gaze point is a red cross with a vertical di-
mension of 0.5 cm and horizontal dimension of 0.8 cm, and

Fig. 4 Stimulation intensity 0% (Upper left), 5% (Upper right), 10%
(Lower left), and 100% (Lower right).
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Fig. 5 Magnitude of the stimulus presented.

Fig. 6 Measurement environment.

the stimulating circle (“O”) has a diameter of 2.0 cm and
appears 2.5 cm above or below the red gaze point.

4.3 EEG Measurement by Invisible Visual Stimulation

Measurements were performed on 20 subjects between 20
and 26 years of age. The subjects were asked to sit in a simple
dark room at a distance of 75 cm from the display on which
the stimulus was presented, and they remained in a resting
state, as shown in Fig. 6. Four types of stimuli (stimulation
intensity 0, 5, 10, and 100%) were used to create a moving
image presented at 120 fps. The EEG measurements were
performed by EMOTIVEPOC (14 electrodes, sampling rate:
128Hz, bandwidth: 0.2–45Hz).

The flow of the stimuli is shown in Fig. 7. A red colored
cross-mark was placed to gaze at the center point of the white
background. To implement the visual stimulation, a black
circle was presented above or below the gaze. By increasing
the frame rate to 120 fps and lowering the intensity, invisible
visual stimulation was achieved. The stimulus intensities
were 0, 5, 10, and 100%, as described in Sect. 4.2. The 0%
were considered to indicate no stimulation. Initially, only the
colored cross-mark was presented for 5000ms, and then the
target stimuli were applied for approximately 8ms. Subse-
quently, only the gazing figure was implemented for 992ms.
This completed one set; the experiment was repeated for
55 sets.

Moreover, to prevent the subject from predicting the
next stimulus, the stimulus was presented irregularly, above
or below the gaze point. The irregular presentation of the

Fig. 7 Stimulus presentation flow.

stimulus was 50%; thus, the probability of the stimulus ap-
pearing above or below was not biased. Measurements were
performed 10 times per subject.

The detailed results were presented in Ref. [9]; there-
fore, they are omitted here but the 5% stimulation intensity
was not recognized by any subject; thus, it was considered
an invisible stimulus in this study.

5. Person Verification Using Evoked EEG

5.1 Verification System

The flow of the verification system is shown in Fig. 8. The
average amplitude of the recorded EEG data of more than
±100 µV was regarded as noise and excluded from the EEG
signal. An EEG recorded for a 55 s duration was divided
into 55 data points of 1 s each, and the 55 data points were
ensemble-averaged to obtain a one-second EEG.

Furthermore, a continuous wavelet transform (CWT)
was performed which is a time–frequency analysis method
for feature extraction. One second of EEG was converted
into a scalogram of 1–43Hz using CWT as shown in Fig. 9,
where mother wavelet was Morlet. Data for the α-waveband
(8–13Hz), low β-wave (13–20Hz), high β-wave (20–30Hz),
and γ-wave (30–43Hz) bands were extracted from the scalo-
gram.

Furthermore, we performed z-score normalization to
ensure that all data were in a similar range and to make
the synchronization process robust. After normalization, a
scalogramwith an average power of zero and standard devia-
tion of one was used as the template and test data. The scalo-
grams include temporal information; therefore, for compar-
ing them, it is necessary to synchronize them. However, in
our measurement environment, the electroencephalograph
and the device for stimulus presentation were not synchro-
nized. Thus, we utilize the condition that the visual stimu-
lation is presented every one second. It is certain that EEG
data for one second include one evoked response. Based
on the scalogram of a template, the scalogram for verifica-
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Fig. 8 Flow of verification system.

Fig. 9 A scalogram with divided four frequency bands.

tion is cyclically shifted in time direction and the correlation
value is calculated at each shift. After evaluating all shifts,
the shift value with the maximum correlation value is taken
as a synchronization point. Finally, the template scalogram
is compared with the scalogram obtained by test data and
shifted by the synchronization point.

In the experiment, eight EEG recordings were obtained
for each subject. The EEG data of each subject were divided,
and four of themwere used as test data, and the rest were used
as a template. A template was obtained for each subject by
averaging the scalograms of the EEG data. Cross-validation
was performed ten times. Verification was performed us-
ing Euclidean distance matching between the features in the
template and test data. Test data with a distance less than or
equal to the predefined threshold were regarded as genuine
and otherwise rejected.

5.2 Effect of Introducing Time-Frequency Analysis

Synchronization was performed in the frequency bands for
feature extraction. To verify the effectiveness of introducing
temporal information into feature extraction, the time do-

Fig. 10 Averaged scalograms corresponding to different time regions
(n = 0, 1, 2, 3).

Fig. 11 Electrode position.

Table 1 EER (%) in each time region and each band for O1 electrode.
Time α low β high β γ
Region (8–13Hz) (13–20Hz) (20–30Hz) (30–43Hz)

1 25.2 38.5 45.1 45.3
2 11.1 32.1 46.3 47.7
4 13.1 31.1 47.9 44.2
8 12.4 29.3 46.6 49.3
16 9.4 32.2 45.7 46.1
32 11.8 31.7 45.2 46.6
64 12.4 32.1 44.3 44.9
128 11.2 29.4 46.8 44.3

main in a scalogram was divided into several regions, and
the values in a frequency bin were averaged in the same
region. The number of time regions was 2n(n=0, 1, · · · ,
7). A scalogram with n = 7 was the original. Examples
of scalograms averaged in the time direction are shown in
Fig. 10.

The EERs of α, low β, high β, and γ wavebands in
each time region were evaluated for O1, O2, P7, and P8
electrodes [10], [11]. These electrodes were chosen because
theywere positioned in the occipital area, as shown in Fig. 11,
which are primarily responsible for visual processing. The
results for O1 electrode are summarized in Table 1 as the best
case in four electrodes. The best frequency and time region
for other electrodes were approximately equal with those for
O1. The number of times region 1 corresponds to the Fourier
transform, which has no temporal information. EERs in
more than two time regions were greatly reduced compared
to EERs in time region 1. Similar characteristics are found in
other electrodes. By introducing temporal information, the
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Fig. 12 Scalogram in (a) EEG band and (b) Enlarged version of (a) in
α-band.

EER decreased, particularly in the α-waveband. Therefore,
the effect of introducing the time-frequency analysis was
confirmed. The EER was 9.4% in α-waveband when the
number of time regions was 16 [11].

5.3 Effect of Specifying Wave Band

In Fig. 12(a), an example of the power distribution of EEG
data is shown. Blue (dark) indicates a non-significant area
of power distribution, and red (light) indicates the most sig-
nificant power distribution. If the color is changed from blue
to red in the scalogram, it is considered that the amount of
power is increased. As confirmed in the previous section,
verification performance using only α-waveband is preferred
over that using other wavebands. Previous research has con-
firmed that the amount of power in the α-waveband increases
in the occipital region when an imperceptible stimulus is ap-
plied [10]. However, as illustrated in Fig. 12(b), there are
differences in the response, even in α-waveband. Therefore,
to improve the verification performance, we propose to fur-
ther divide the α-waveband, which has a large amount of
power in the scalogram and use each sub-band for synchro-
nizing and feature extraction.

The main focus is to determine the sub-band with the
most significant power distribution in theα-waveband. Thus,
we split α-waveband into three different sub-bands, which
are defined in the brain wave research shown in Fig. 12(b).
The three sub-bandswere considered to be a lowα-waveband
(8–9Hz), mid α-waveband (9–12Hz), and fast α-waveband
(12–14Hz).

The verification performance at O1, O2, P7, and P8
electrodes was re-evaluated in the three bands. The other
verification procedure was the same as that in the previ-
ous sections. Table 2 lists the average EER of α-waveband
and the three sub-bands for O2 electrode as the best case in

Table 2 EER (%) in α-waveband and three sub-bands for O2 electrode.
Time α low α mid α fast α
Region (8–13Hz) (8–9Hz) (9–12Hz) (12–14Hz)

1 30.6 7.3 8.2 11.2
2 13.6 6.5 7.9 9.9
4 15.4 5.9 6.8 6.8
8 15.0 5.3 5.8 5.0
16 13.4 4.8 5.3 4.8
32 16.1 4.5 5.2 4.6
64 15.5 4.4 5.5 4.8
128 15.0 4.9 4.6 4.7

Fig. 13 Variation of EER according to the number of time-regions for
O1 electrode.

four electrodes. The smallest EER was 4.4% in the low α-
wavebandwhen the number of time regions was 64. The best
result was found for 64 time regions; however, considering
all wave-band results, the EER (%) decreases when the num-
ber of time regions increases. The results for other electrodes
were approximately equal with those for O2. The verifica-
tion performance significantly improved after splitting the
α-waveband. The EER was less than half of that of the full
α-waveband. Similar characteristics are found in other elec-
trodes. It was confirmed that splitting the α-waveband for
synchronization and feature extraction is effective in improv-
ing verification performance.

Figure 13 shows the variation in EERs according to the
number of time regions for O1 electrode. As the number of
time regions increased, the EERs decreased, but converged
above 16 time regions as well as Table 2. Therefore, to
simplify the processing, we selected the maximum time re-
gion to evaluate the verification performance using the time
region 128, that is, directly using the scalogram.

In the previous evaluation, we used categories for brain
wavebands: low α, mid α, and fast α. However, it is not
guaranteed that such categories are suitable for synchroniza-
tion and individual features. Thus, we considered another
sub-band (8–10Hz). This band was selected as a sub-band
because the most significant power distribution area was
within this bandwidth, as determined by detailed visual in-
spection of the scalogram. To confirm the visual inspection,
we assume the other two sub-bands (8–11Hz) and (9–11Hz).
Using these sub-bands, we re-evaluated the verification per-
formance. The results are presented in Fig. 14. The best
result was obtained for (8–10Hz) at the P8 electrode, with
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Fig. 14 EER (%) for sub-bands.

an EER of 3.8%. The verification performance was slightly
improved using the sub-band.

6. Conclusions

Considering the continuous authentication of users using
EEG evoked by an external stimulus, it is desirable that an
external stimulus that cannot be perceived by the user should
be presented. Based on this technical background, this study
focused on invisible visual stimulation and aimed to realize
person verification using evoked EEG when visual stimuli
that the user cannot recognize were presented.

We created invisible visual stimulation by inserting a
target image with low intensity into a moving picture with a
fast frame rate. Using this stimulation, we measured EEGs
from 20 subjects. We also introduced CWT for feature
extraction based on the fact that users had different time-
frequency responses (scalograms) depending on the given
stimuli and made them individual characteristics. Next, four
types of bands were extracted as features from the scalo-
gram: α, low β, high β, and γ wavebands. The verifica-
tion performance of these bands was evaluated using Eu-
clidean distance-matching. The effect of introducing the
time-frequency analysis was confirmed, but the best result
was 9.4%, which was insufficient for practical use.

To improve the verification performance, we divided the
α-waveband into three sub-bands: low α-waveband, mid α-
waveband, and fast α-waveband, which had a large amount
of power in the scalogram, and evaluated the verification
performance using each waveband. Consequently, the best
EER was improved to 4.4%. For further improvement, we
introduced another new sub-band (8–10Hz) and confirmed
that the verification performance was improved with an EER
of 3.8%.

The verification performance was still not suitable for
practical use of this method. In the future, it will be neces-
sary to introduce individual-related stimuli such that we can
obtain higher evoked responses than those obtained using
the common stimuli used in this study. It is also necessary
to consider increasing the number of subjects and databases
to improve the reliability of the verification accuracy.
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