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Abstract: Exacerbating water and food insecurity in drylands urge the more efficient use of water in irrigation through volumetric water
pricing. The optimum irrigation depths can be determined using a combination of numerical simulation, water costs, and weather forecasts. In
this context, we evaluated the effectiveness of three simulation-based schemes to determine irrigation depths that maximize net income during
each irrigation interval using the WASH_2D model, which simulates water flow and solute transport through the plant–soil–atmosphere
system. Those schemes were three-point (Scheme A) and two-point (Scheme B) schemes, which were used to optimize irrigation depth
using three or two simulated cumulative transpiration at different irrigation depths, respectively, considering volumetric water price and
weather forecasts; and a refilling scheme (Scheme C), which was used to determine irrigation depth required to return the simulated volu-
metric water content in the root zone to the field capacity. Those schemes were compared with the typical tensiometer-based automated
irrigation scheme (Scheme D) by carrying out a field experiment in a sandy field of the Arid Land Research Center, Tottori University, Japan,
using a major crop, sweet potatoes, in 2021. Compared with Scheme D, Schemes A, B, and C achieved 28%, 7%, and 21% higher net income
due to applying 26%, 6%, and 17% less water and producing 21%, 5%, and 16% more biomass, respectively. The total simulated net income
of Schemes A and B matched those of the measured schemes. Both simulated volumetric water content and actual evapotranspiration were in
fair agreement with observed values. Regarding the accuracy of weather forecast, both daily reference evapotranspiration and rainfall fore-
casts were overestimated, with relative RMS error (RMSE) of 0.81 and 0.77 compared with observed values. In conclusion, both the two- and
three-point schemes, which combined simulation, weather forecasts, and water prices, demonstrated significant benefits for farmers in terms
of net income and water use compared with the use of basic types and costly automated irrigation systems. DOI: 10.1061/JWRMD5.
WRENG-5801. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://
creativecommons.org/licenses/by/4.0/.

Introduction

Optimizing irrigation depth (W) is a key factor to improve water-
use efficiency. Gu et al. (2020) summarized four types of irrigation
scheduling methods, including evapotranspiration (ET)-based, soil
water–based, plant water–based, and model-based methods, and
discussed how the methods determine irrigation depth and trigger-
ing time. Those methods mainly depend on two parameters, ET and
volumetric water content (θ). Accurate estimation of those param-
eters significantly contributes to optimal determination ofW (Davis
and Dukes 2010; Payero and Irmak 2013), but determining the trig-
ger value and predicting or measuring the readily available soil
water remain the major challenges (Stirzaker et al. 2017).

Automated irrigation systems (AIS) based on soil-water mon-
itoring are used widely to improve irrigation water-use efficiency

(IWUE) (Ghazichaki and Monem 2019; Farooq et al. 2019).
Several studies have evaluated the AIS based on θ (Munoz-
Carpena et al. 2008), suction-based sensors (Munoz-Carpena et al.
2005; Shock and Wang 2011; Abd El Baki et al. 2020), and elec-
tronic detectors of the wetting front (Stirzaker et al. 2017). How-
ever, these systems have drawbacks associated with inaccuracy of
monitoring using sensors (Evett et al. 2011), the position of sensors
(Shock and Wang 2011), and high initial investment. Even if a soil-
moisture sensor is accurate and the position of the sensor is appro-
priate, water may be wasted when irrigation is carried out just after
rain (Glória et al. 2019). Hence, irrigation decisions can be made
more efficiently based on numerical simulation using soil physical
models with evapotranspiration modules.

Simulation models can simulate water movement across soil,
plant, and atmosphere with fair accuracy if appropriate parameter
values are used (Raes et al. 2009). Some of these models use the
Richards’ equation to compute the soil-water flow in the plant root
zone (e.g., Fujimaki et al. 2014; Šimůnek et al. 2006; Ramos et al.
2017). Kumar et al. (2022) used HYDRUS-1D to simulate various
irrigation scenarios to determine the best sensor depths for better
irrigation scheduling. Many studies used these models to determine
W using a refilling approach in which soil moisture in the root zone
is returned to the desired value. For example, Liu et al. (2017) used
the RZWQM2 model (Ahuja et al. 2000) to calculate the value of
W required to return θ in the soil profile to field capacity (FC).
Fujimaki et al. (2020) conducted a numerical experiment using the
WASH_1D model to refill the soil profile to FC. Other studies used
the refilling approach and crop models to optimize either water pro-
ductivity (WP) or net income. Jalil et al. (2020) used the AquaCrop
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model (Steduto et al. 2009) to optimize WP whenW was applied to
replenishing the soil moisture with 50% of depleted water under
standard ET of total available water (TAW); Cammarano et al.
(2012) used seasonal simulations using the CROPCRO-Cotton
model (Jones et al. 2003) to maximize net income (gross margin)
with 11 different values ofW at each of 10 different sites when 50%
of TAW is depleted. Without considering weather forecasts (WFs),
these models may overestimateW, particularly when heavy rainfall
events occur soon after irrigation.

Because the utilization of historical weather data to estimate
daily reference ET (ET0) was not applicable in most cases
(Xiong et al. 2016), WFs have been used to estimate ET0 using the
Penman–Monteith (PM) (Allen et al. 1998) method (Cai et al.
2007; Luo et al. 2015). These studies indicated that forecasted
ET0 was more beneficial for real-time irrigation scheduling than
the measured values in previous years, even with the uncertainty
of ET0 forecasts. Currently, the accuracy of WFs is improving;
for example, Bauer et al. (2015) evaluated the accuracy of numeri-
cal weather predictions for 3, 5, 7, and 10 consecutive days, and
demonstrated that short predication intervals of 3 and 5 days
have a high degree of accuracy. Gedam et al. (2022) quantified
inaccuracies of short-term WFs from the India Meteorological
Department and their impact on irrigation scheduling. They found
that using corrected short-term WFs can improve irrigation sched-
uling greatly and save irrigation costs. Hence, the use of short-term
WFs to determine the optimum W can increase the economic ben-
efits compared with irrigation schemes without using WFs (Perera
et al. 2014).

From an economic perspective, the deficit irrigation (DI)
scheme (English 1990) has been used to either save water or in-
crease WP. Several studies aimed to minimize yield loss or maxi-
mize farmers’ income using limited water (Nijbroek et al. 2003;
Zhang and Oweis 2007). However, DI may be beneficial only when
the water price is set at a high level. Garcia-Vila and Fereres (2012)
used an economic optimization procedure to determine an optimal
value ofW that maximizes net income by imposing both water and
crop prices.

A combination of numerical simulations, WFs, and water pric-
ing was used in several studies to determine optimal W values that
maximize farmers’ net income. For example, Wang and Cai (2009)
and Jamal et al. (2019) used the SWAPmodel (van Dam et al. 1997)
to determine the dailyW value that maximizes seasonal net income
based on the yield-W function. Wang and Cai (2009) imposed water
pricing based on cultivated area and used WF data (1–2 weeks),
whereas Jamal et al. (2019) used volumetric water pricing and
7-day WFs. Considering the volumetric water pricing and the
benefit of short-term WFs, Fujimaki et al. (2014), Abd El Baki
et al. (2017, 2018a, b), and Abd El Baki and Fujimaki (2021a,
b) used the WASH_2D model to determine the value of W that
maximizes net income in each irrigation interval. The determina-
tions were based on either a nonlinear (Fujimaki et al. 2014) or
linear (Abd El Baki et al. 2020) relationship between W and
cumulative transpiration by using the 1–2-day WF data in a sandy
soil or 3-day WF data in a loamy clay soil. However, neither of the
simulation-based optimization schemes (Fujimaki et al. 2014; Abd
El Baki et al. 2020) have been compared with a simulation-based
refilling scheme, which is simpler than both.

This study compared the performance of three simulation
schemes incorporated into the WASH_2D model with that of a typ-
ical automated irrigation system, operated via soil-suction monitor-
ing to determine W. Two simulation schemes, called two-point and
three-point schemes, used information from numerical simulations,
volumetric water pricing, and short-term weather forecasts to
determine a value of W that gives maximum net income in each

irrigation interval, whereas the third scheme, called a refilling
scheme, determined a W value of each irrigation interval that
was used to return simulated θ to FC. The evaluation was assessed
by carrying out a field experiment in a sandy field in the Arid Land
Research Center using a major crop, sweet potatoes.

Materials and Methods

Simulation Model

We used the WASH_2D model (Fujimaki et al. 2014) to determine
irrigation depths for the proposed simulation schemes. The model
simulates the two-dimensional movement of water, solute, and heat
in soils using the finite-difference method. It separately calculates
the evaporation using a bulk transfer equation (van Bavel and Hillel
1976) and the transpiration using a combination of the dual crop
coefficient approach (Allen et al. 1998) and a macroscopic root
water uptake model. It also includes a growth module to simulate
the response of plant to irrigation. The software with the open-
source code can be downloaded freely from the website of the Arid
Land Research Center, Tottori University (Fujimaki et al. 2014).

Simulation-Based Schemes

Optimization Schemes
Irrigation depths in millimeters were determined in each irrigation
interval such that net income, In, was maximized. The value of In
(in dollars per hectare) is calculated as

In ¼ Pcετ iki − PwW − Cot ð1Þ

where Pc = producer’s price of crop [$ kg−1 dry matter (DM)];
ε = crop transpiration productivity [produced dry matter (kg ha−1)
divided by cumulative transpiration (kg ha−1)]; τ i = cumula-
tive transpiration over irrigation interval (mm, where 1 mm ¼
10,000 kg ha−1); ki = income correction factor; Pw = price of
water ($ kg−1); and Cot = other costs (e.g., fertilizer, labor, and
so forth) ($ ha−1). The correction factor ki is used to avoid under-
estimating the contribution of low transpiration in the early growth
stage

ki ¼
k̄cb
kcb

¼
R
kcbdτ
τ ekcb

ð2Þ

where k̄cb = average value of basal crop coefficient (kcb); and τ e =
expected cumulative transpiration at end of growing season. Abd El
Baki and Fujimaki (2021a) stated that ki usually ranges between
1 and 3. Because In is determined mainly by the two dynamic fac-
tors, τ i and W, if the other factors are constant, the relationship
between τ i and W is described in two different ways.

Three-Point Scheme
The relationship between τ i and W is described by a nonlinear
function

τ i ¼
Z

Trdt ¼ at½1 − expðbtWÞ� þ τ0 ð3Þ

where Tr = transpiration rate (cm s−1); at and bt are fitting param-
eters; and τ0 = cumulative transpiration at no irrigation. By sub-
stituting Eq. (3) into Eq. (1), the maximum In (Inmax

) is achieved
when the first derivative of Eq. (1) with regard toW becomes zero
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dIn
dW

¼ −Pcεkiatbt expðbtWÞ − Pw ¼ 0 ð4Þ

Thus, the optimal irrigation depth is

W ¼ 1

bt
ln

�
− Pw

Pcεkiatbt

�
ð5Þ

The nonlinear relationship [Eq. (3)] is solved assuming that the
three points of W correspond to τ [Fig. 1(a)]: (W0, τ 0) refers to a
cumulative transpiration value when irrigation is not performed;
(Wmax, τmax) refers to the upper boundary of both values; and
(Wmid, τmid) refers to values intermediate of the previous of two
points. Further details of the calculation procedure were introduced
by Fujimaki et al. (2014).

Two-Point Scheme
In this scheme, the relationship between τ i and W is described by
two linear segments as

τ i ¼
Z

Trdt ¼ atW þ τ0 ð6Þ

τ i ¼ τmax ð7Þ

The former segment is defined by two points of W correspond-
ing to τ [Fig. 1(b)]: (W0, τ0) and (W1, τ1), where W1 = (potential
τ i þ ET0Þ=2 to determine the slope, at. By substituting Eq. (6) into
Eq. (1), the value of W is determined at Inmax

when the first deriva-
tive of Eq. (1) becomes zero

dIn
dW

¼ atPcεki − Pw ð8Þ

Hence, W is determined as

W ¼ 0 → atPcεki − Pw < 0 ð9Þ

W ¼ ðτmax − τ0Þ
at

→ atPcεki − Pw ≥ 0 ð10Þ

Refilling Scheme
This scheme was proposed by Fujimaki et al. (2020). The value of
W is determined in a fixed irrigation interval to return θx, the volu-
metric water content at the end of each irrigation interval, to θfc, the
volumetric water content at field capacity, as follows:

W ¼ 2
R
0
drz

R
0
grz
ðθfc − θxÞdxdz
xr

ð11Þ

where xr = row spacing (cm); grz = width of root zone (cm); and
drz = depth of plant root zone (cm)

drz ¼ adrz½1 − expðbdrzτÞ� þ cdrz ð12Þ
where adrz, bdrz, and cdrz are fitting parameters. The WASH_2D
model estimates θ using the two-dimensional water balance equa-
tion of the combined liquid and gaseous phases as

∂θ
∂t ¼ −

�∂qlx
∂x þ ∂qlz

∂z
�
−
�∂qvx
∂x þ ∂qvz

∂z
�
− S ð13Þ

where t = time (s); ql = liquid water flux (cm s−1); qv = water vapor
flux (cm s−1); x and z = horizontal distance and depth (cm), respec-
tively; and S is a sink term that refers to plant water uptake, which is
described as (van Genuchten 1987)

S ¼ αwβTp ð14Þ
where αw, β, and Tp = reduction coefficient due to drought and
salinity stresses, normalized root density distribution, and potential
transpiration (cm s−1), respectively. Parameter αw is expressed in
the additive form as

αw ¼ 1

1þ ð ψ
ψ50

þ ψo
ψo50

Þp ð15Þ

where ψ50, ψo50, and p are fitting parameters. Parameter β is cal-
culated as

β ¼ 0.75ðbrz þ 1Þd−brz−1rz ðdrz − zþ zr0Þbrzgrzð1 − x2g−2rz Þ ð16Þ
where brz = fitting parameter; z and zr0 = soil depth and depth
below which roots exist (cm), respectively; and x = horizontal

Fig. 1. Schematic diagram of similarities and differences of the two proposed schemes: (a) three-point scheme described by the nonlinear function
between W and τ ; and (b) two-point scheme described by the two linear segments between W and τ .
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distance from the plant (cm). Parameter Tp in Eq. (14) is calculated
using the well-known FAO56 PM equation as (Allen et al. 1998)

Tp ¼ ET0kcb ð17Þ

where ET0 = reference evapotranspiration; and kcb = basal crop
coefficient

kcb ¼ akcb ½1 − expðbkcbτÞ� þ ckcb − dkcbτ
ekcb ð18Þ

where akcb , bkcb , ckcb , dkcb , and ekcb are fitting parameters. The fac-
tors, kcb and drt are expressed as functions of τ , rather than days
after planting, to make the plant more dynamically respondent to
both drought and salinity stresses. Further detail information of the
WASH_2D model were presented by Fujimaki et al. (2014).

Simulation Procedure

To determine W, two steps were performed (Fig. 2). In Step 1, we
ran the simulation to update the initial conditions using the infor-
mation of the previous irrigation interval (48 h): irrigation records,
meteorological data, and cumulative transpiration. In this step, W
was calculated for the refilling scheme to return updated values of
θx to θfc. In Step 2, the optimization was performed for both the
three-point and two-point schemes using information from the up-
date from Step 1 in addition to weather forecast data to determine
values of W that maximize In in each irrigation interval. Weather
forecast data were used to predict liquid water inputs from rain,
evaporation from soil surface, and ET0.

Field Evaluation

The proposed schemes were evaluated using a field experiment lo-
cated in the Arid Land Research Center of Tottori University in
2021. It was carried out as a randomized complete block design
with four independent blocks and the following four treatments
(Fig. 3):
1. Treatment A: W was determined every 2 days using the three-

point scheme.
2. Treatment B: W was determined every 2 days using the two-

point scheme.
3. Treatment C: W was determined every 2 days to return θx to θfc

using the refilling scheme.
4. Treatment D: W was controlled by an automated system con-

sisting of a solenoid valve, a CR300 series data logger (Camp-
bell Scientific, Logan, Utah) and three tensiometers installed at a
depth of 20 cm. Irrigation timing and W were determined auto-
matically by setting the scan interval for the measurement of
average matric potential of the three tensiometers to 15 min
and the trigger value to −40 cm (Abd El Baki et al. 2020). This
value was chosen to minimize downward percolation loss and to
avoid drought stress, which occurs well below field capacity in
sandy soils. We set up this treatment because it somewhat auto-
matically meets crop water requirement in timely manner while
minimizing deep percolation loss if the system is properly set. In
Treatments A, B, and C, the irrigation interval was fixed at
2 days, because this sandy soil has low available water, and
if the irrigation interval was set to three days, plants often would
suffer from severe drought stress, which may negatively affect
the final yield. If we set the irrigation interval at 1 day, Schemes

Fig. 2. Schematic diagram of the simulation procedure used to determine W for three-point, two-point, and refilling schemes.

Fig. 3. Schematic of the experiment layout. Each treatment had four replicates; Treatments A, B, C, and D refer to three-point, two-point, refilling,
and automated irrigation schemes, respectively.
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A and B often gave zero recommended irrigation depth, which
indicates that the interval is too short. In general, a 1-day interval
may keep the soil wet longer, resulting in larger evapora-
tion loss.
A drip irrigation network was installed, and each replicate was

irrigated with seven drip tubes spaced at 60 cm intervals along

10 m. The emitter spacings and discharge rate were 20 cm and
2 × 10−3 m3 h−1, respectively. The soil was sand (99.1% sand);
the hydraulic properties are shown in Fig. 4.

Actual weather data [air temperature (°C), rainfall (mm), wind
speed (m s−1), solar radiation (MJm−2 h−1), and relative humidity
(%)] were collected from a weather station installed in the field
(Fig. 5). Weather forecast data were accessed and downloaded
from the website of Yahoo! Japan (Yahoo Japan Corporation 2022).
Measured weather data were used to compute ET over the growing
season. The Yahoo! website provides numerical values for all
parameters required to compute ET0 except solar radiation. Instead,
it provides nonnumerical forecasts of sky cover such as “rain,”
“cloudy,” or “clear.” Those descriptions were used to calculate the
solar radiation in accordance with Fujimaki et al. (2014). The wind
speed values provided by the Yahoo! website refer to a standard
height of 10 m, so those data were converted to 2-m heights based
on the approach described by Allen et al. (1998).

The feasibility of the WASH_2D model to simulate soil water
flow was evaluated as follows:
1. The simulated values of θ were compared with the measured

values using two soil moisture sensors (WD-3-W-5Y, ARP,
Horikawa, Hatano, Kanagawa, Japan) inserted 5 and 45 cm be-
low the plant in two replicates. The sensor was calibrated for the
Tottori sand (Fig. 6).

2. The simulated values of ET were compared with the observed
values. ET was measured using a weighing lysimeter with a
diameter and depth of 1.5 and 2 m, respectively. The value
of ETi (mmh−1) was calculated using a water balance equation
as follows:

Fig. 4. Soil hydraulic properties of Tottori sand, Arid Land Research
Center, Japan.

Fig. 5. Meteorological data recorded by a weather station from June 10, 2021 to November 2, 2021: (a) air temperature (°C) and rainfall (mm) over
the growing season; and (b) wind speed (m s−1), solar radiation (MJm−2 h−1), and relative humidity (%) over the growing season.
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ETi ¼
wi−1 − wi

Δt
þ Pi þ Ii −Di ð19Þ

where wi = lysimeter water volume per unit lysimeter area
(mm); i = discrete time level; Pi = precipitation (mmh−1);
Ii = irrigation (mmh−1); and Di = drainage from lysimeter
(mmh−1). The lysimeter weight was recorded at 5-min inter-
vals. To reduce the measurement noise, we used the hourly
moving averaged values.
The cuttings of sweet potato [Ipomoea batatas (L.), cv. Kintoki]

were transplanted on June 10 at 40 cm intervals along the drip
tubes. The parameter values of the stress response function
[Eq. (13)] were determined to ψ50 ¼ −45 cm, ψo50 ¼ −1,378 cm,
and p ¼ 4.44, from a pot experiment. The parameter values of the
kcb function [Eq. (16)] were obtained by fitting to those reported by
Allen et al. (1998), assuming that ET0 during the initial, develop-
ment, middle, and late stages was 2, 3, 4, and 3 mmd−1, respec-
tively (Fig. 7). We estimated the net income by setting Pc ¼
$1=kgDM based on typical value of producer prices in 2020
(FAOSTAT 2021); Pw was set to $0.0002/kg, similar to a case in
Israel (Cornish et al. 2004); and ε was set to 0.003 (Siqinbatu
et al. 2013).

Nitrogen-phosphorus-potassium (NPK) fertilizers were applied
throughout the growing seasons in two forms: (1) a solid form in
two types, NPK ¼ 8–8–8 and NPK ¼ 14–14–14, at total rates of
60, 35, and 55 kg ha−1 N, P, and K, respectively; and (2) liquid fer-
tilizer (NPK ¼ 12–5–8) at total rates of 95, 15, and 45 kg ha−1 N,
P, and K, respectively (Laurie et al. 2012). The daily application
rate of NPK liquid fertilizer was constant and equal among treat-
ments. Plant samples were collected at 35, 53, 74, 97, 119, and
144 days after transplanting (DAT) to evaluate the plant growth
in terms of leaf area index (LAI), biomass, and harvest index, de-
fined as the ratio of dry weight (DW) of tubers (g) to the total plant
dry weight (g) (Bourke 1985). Plants were harvested on November
1, 2021. Yield and its components—dry weight of fresh leaves
(g plant−1), dry weight of shriveled leaves (g plant−1), fresh weight
(FW) of tubers (g plant−1), dry weight of dry tubers (g plant−1), dry
weight of stem (g plant−1), and total biomass (g plant−1)—were an-
alyzed statistically using a randomized complete block design. The
ANOVA test was conducted using SPSS version 26.0 software to
estimate the significant differences among the four treatments.

Results and Discussion

Plant Growth and Yield

The LAI, biomass, and harvest index as functions of time are shown
in Fig. 8. The maximum mean values of LAI for Treatments A, B,
C, and D were 2.9, 2.5, 2.6, and 2.2, respectively, which were mea-
sured at 119 DAT (October 7), after which values declined. The
harvest index indicated similar values for Treatments A, B, C, D,
i.e., 70%, 69%, 74%, and 73%, respectively. The results of LAI and
harvest index agreed with those reported by Bourke (1985). The
growth rate of biomass, which is the slope of Fig. 8(b), was stag-
nant from 74 DAT (August 23) to 97 DAT (September 15), with a
mean value of 3.5 gm−2 day−1. This likely was due to lesser solar
radiation and heavy rainfall events that may have caused deep nu-
trient leaching beyond the plant rootzone. After 97 DAT, the growth
rate recovered and varied among the treatments, which may have
been due to the effect of irrigation on nutrients uptake by plants.
Treatment C tended to have less water applied than other treatments
until August 6, after which irrigation gradually increased (Fig. 9).
This may have led to less nutrient leaching in Treatment C than in
other treatments, and partly offset negative effects of drought stress
in the early stage. As a result, the fresh tuber yield was 19.7, 19.4,
19.7 and 18.8 Mgha−1 for Treatments A, B, C and D, respectively.
The statistical analysis of yield components is presented in Table 1.
There were no significant differences for whole components among
the treatments (F probability > 0.05). Treatment A had a higher
dry mass of leaves and LAI. Treatments A and C had slightly higher
values of fresh tuber yield than the other treatments, probably due
to higher nutrient uptake, which may have increased the photosyn-
thetic rates, which enhanced the transport of carbohydrates from the
leaves to the tubers (Abd El-Baky et al. 2010).

Net Income

We focused on the cost of applied water to motivate farmers to save
water. The main concern of farmers is not water productivity (yield
per applied water), but net income (Fujimaki et al. 2014). Hence,
the effectiveness of the proposed schemes in terms of net income is
presented in Fig. 10. Treatment A achieved net income by 16%, 5%
and 22% higher than that of Treatments B, C, and D, respectively.
This was due to producing 13%, 4% and 17% higher biomass and

Fig. 6. Calibration function of the WD-3-W-5Y sensor for sandy soil,
Tottori, Arid Land Research Center, Japan.

Fig. 7. Basal crop coefficient function [Eq. (16)] for sweet potatoes.
Parameter values were derived by fitting to those reported by Allen
et al. (1998). (Data from Allen et al. 1998.)
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applying 24%, 11%, and 27% less water than in Treatments B,
C, and D, respectively. One of the major advantages of the three-
point and two-point schemes is maximizing the farmers’ net in-
come in each irrigation event, rather than the seasonal net income,

as employed in other studies (e.g., Wang and Cai 2009). To confirm
that simulated net income matched the observed value, the cumula-
tive virtual net income for the three-point and two-point schemes
is illustrated in Fig. 11(a). The total simulated net income
achieved for the three-point and two-point schemes was $9,677 and
$9,409 ha−1, respectively, whereas the actual values were $9,983
and $8,368 ha−1, respectively. The optimization gave almost the
same gross net income as the actual values. The ki values decreased
sharply from 6 to 1 as the crop grew [Fig. 11(b)].

Accuracy of Numerical Simulation

Evapotranspiration

The fluctuation of simulated ET was compared with the observed
value measured with a weighing lysimeter (Fig. 12). The model
tended to underestimate ET values, with a RMS error (RMSE) of
0.08 mmh−1. The discrepancy may have been caused partly by dis-
turbance of weight measurement by wind over 3 ms−1 [Fig. 5(b)],
as reported by Schrader et al. (2013) and Lorite et al. (2012), par-
ticularly because the level of lysimeter surface was slightly higher
than the surrounding field, by 3–5 cm. This also may have caused
the drip tubes to touch the surface of the lysimeter, affecting the
weight measurement due to tension change caused by temperature
fluctuation.

Fig. 8. Changes throughout the growing season: (a) LAI; (b) biomass; and (c) harvest index. Error bars refer to the standard error for measured
samples.

Fig. 9. Cumulative irrigation and rainfall across the growing season.
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Volumetric Water Content

The measured and simulated θ for the period July 15–August 14 is
illustrated in Fig. 13. We showed the response of θ to both irri-
gation and rainfall events in Treatment A for top and deep soil
layers below the plant. The model accurately simulated θ, with
a RMSE of 0.015 and 0.005 cm3 cm−3 compared with the mea-
sured values at 5 and 45 cm below an emitter, respectively. These
results agreed with those reported by Fujimaki et al. (2014) and
Abd El Baki et al. (2020) for Tottori sand and by Zhu et al. (2018)
for loamy soil with the same bulk density as Tottori sand.

Impact of Short Weather Forecast on Irrigation
Optimization

To check the accuracy of rain forecasts and WF data, which greatly
affected the determination of W, we compared daily forecasted
rainfall and daily forecasted ET0 with the daily observed values
(Fig. 14). As WFs were downloaded in the morning of each irri-
gation day at 09:00 until the day end at 23:59, the term “daily”
means from 9:00 to 24:00. Total measured and forecasted rainfall
across the growing season were similar, 598 and 648 mm, respec-
tively. In contrast, the forecasted amount of each rainfall event often
deviated greatly from the measured amounts. The total number of
measured and forecasted rainfall events were 39 and 52 over
120 days, respectively. Setting effective rainfall to 25 mmd−1, the
RMSE between measured and forecasted values was 5.6 mmd−1,

in which 17% and 15% of rain events exceeded this setting (25 mm
d−1), respectively. This is consistent with the findings of Shrestha
et al. (2013), who found that the RMSE for daily forecasted rainfall
ranged from 4.67 to 14.64 mmday−1. Relative RMSE, which is the
ratio of the average value to the RMSE, was 0.77. Those underes-
timations and overestimations of rain may have caused overestima-
tion and underestimation of W, respectively. On the other hand,
daily ET0 calculated using hourly forecasted values generally was
overestimated, with a RMSE of 0.7 mmd−1 compared with ET0

calculated using the measured values. Relative RMSE was 0.81.
Those overestimations may have caused overestimations of W.
This likely was due to overestimation of wind speed, with a RMSE
of 0.9 ms−1, and underestimation of relative humidity, with a rel-
ative RMSE of 1.17. These results agreed with the possible reasons
reported by Lorite et al. (2015), who observed that high wind speed
and close proximity to the sea caused larger errors in ET0 estima-
tion, and by Xiong et al. (2016), who indicated that relative humid-
ity is an important factor to estimate ET0 in humid regions. An
interval longer than 2 days in this study is appropriate in finer-
textured soils, but accuracy at longer forecast horizons would be
even lower than that at 2 days. Gowing and Ejieji (2001) observed
that using short-term weather forecasts (up to 5 days ahead) is use-
ful to save both cost and irrigation depth, and thereby increases net
income in wet seasons, whereas it led to improved water-use effi-
ciency of limited water supply in dry seasons. Cai et al. (2011) re-
ported that even an imperfect 1-week forecast still was valuable in
terms of both profit gain and water saving. In parallel to the present
study, Abd El Baki and Fujimaki (2021a) observed that using 1-day
weather forecasts led to more-accurate estimates of ET0, with a
RMSE 0.5 mmd−1 for a sandy filed. We expect that the accuracy
of numerical weather forecast will continue improving with the
use of faster supercomputers using finer grids and improved sub-
models. Despite the current accuracy of WFs, they may still have
benefits for determining irrigation depths.

Advantages and Disadvantages of the Proposed
Schemes

The combination of numerical simulation, volumetric water pric-
ing, and weather forecasts could be useful in making optimal irri-
gation decisions. In this regard, Fig. 15 shows an example of
determining W using the three-point and two-point schemes on
July 15. Both gave similar recommended values of W, as 0.69 and
0.71 cm at a maximum value of In, respectively. We found that both
schemes gave similar values of recommended W only when irriga-
tion was not performed in the previous event. In other cases, the
two-point scheme often gave a higher W, partly due to inappropri-
ate setting of W1 (0.55 cm in Fig. 15), which is the main drawback
of the scheme (Abd El Baki and Fujimaki 2021). Scheme B may

Table 1. Statistical analysis of yield components

Variable

Treatment ANOVA
(F probability)A B C D

DW, green leaves (g plant−1) 21.0� 1.8 18� 2.1 14.87� 2.5 13.78� 1.7 0.46
DW, shriveled leaves (g plant−1) 30.1� 0.7 27.3� 6.0 20.52� 2.3 24.36� 1.5 0.33
DW, stem (g plant−1) 28.1� 2.8 25.3� 2.0 22.50� 3.0 21.54� 2.1 0.34
FW, tubers (g plant−1) 480� 15.7 458� 89 485� 41 434� 25 0.06
DW, tubers (g plant−1) 186.3� 9.5 160.5� 33 188.02� 18 159.8� 11 0.14
Biomass (g plant−1) 265.6� 10.3 231.1� 31 255.6� 19 219.5� 14 0.23
LAI 1.76� 0.15 1.50� 0.17 1.24� 0.20 1.15� 0.14 0.46

Note: Treatments A, B, C, and D refer to three-point, two-point, refilling, and automated irrigation schemes, respectively. Data are mean values ±
standard error.

Fig. 10. Gross net income, total dry yield, applied water, and cost of
water among the treatments.
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give higher net income than other treatments only when the rela-
tionship between W and cumulative transpiration can be described
by two linear segments (trapezoidal). Our results indicate that
the assumption invoked in Scheme B generally was inappropriate
in the experimental condition. On the same day, the refilling
scheme suggested refilling water into the root zone with W ¼
0.7 cm for the next 2 days. The drawback of the refilling scheme
is that it neglects the near-future rainfall events [Fig. 16(a)].

For example, the refilling scheme suggestedW ¼ 1.09 cm to return
θx to θfc on September 17. Irrigation began at 09:00, and rainfall
started at 17:00. Such a case occurred only once across the entire
season. This may be another reason why Treatment C gave higher
values of In than Treatment B. The automated irrigation scheme
also tended to neglect the near-forecast rainfall events [Fig. 16(b)].
On August 7, water was applied automatically with W ¼ 0.64 cm
at 13:00 when the trigger suction value approached −40 cm.

Fig. 11. (a) Cumulative virtual net income calculated using Eq. (1) for both three-point and two-point schemes; and (b) time evolution of net income
correction factors throughout the growing season.

Fig. 12. ET values from simulation and measured with a weighing lysimeter.
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Soon after that, 2.5 cm of rainfall occurred at 17:00. This overirri-
gation repeated six times, which may be a reason why Treatment D
applied more water and leached nutrients beyond the plant rootzone
than did the other schemes. Automated irrigation systems also are
sensitive to the selection of optimum trigger suction value, which
requires additional field studies (Migliaccio et al. 2010). If one ten-
siometer was set under a clogged emitter, the observed suction
value could result in the application of more water. Thus, the pro-
posed simulation schemes, as an innovative technology considering
weather forecasts, would be more affordable to farmers to maxi-
mize their net income or, at the very least, provide promising trends
for optimizing water use. The proposed schemes are a type of ap-
propriate and/or intermediate technology (Schumacher 1999) that
farmers can adopt easily after being trained using the most effective
agricultural extension methods, such as demonstration, farmer-to-
farmer, and household extension methods.

Conclusions

The use of numerical simulation considering weather forecasts
and volumetric water prices could maximize farmers’ net income
compared with automated irrigation. Both the two-point and the
three-point schemes aimed to determine irrigation depth to achieve
maximum net income in each irrigation interval. As a result of a
field experiment, we found that the three-point scheme was the
most effective in terms of net income. The cumulative simulated
net income with the three- and two-point schemes at the end of the
growing season fairly matched the measured values. Although the
refilling scheme attained the second highest net income, it some-
times could not respond to the near-future rainfall events, which
may waste water and deeply leach nutrients beyond the rootzone.

Fig. 13. Measured and simulated volumetric water content under
Treatment A (three-point scheme).

Fig. 14. (a) Measured and simulated daily rainfall throughout the growing season; and (b) ET0 throughout the growing season. “Daily” is counted
from 09:00 to 24:00.

Fig. 15. Example of W determination on July 15 for three-point and
two-point schemes.
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Similarly, automated irrigation wasted more water and cause
more nutrient leaching than did the other treatments. The model
could simulate θ and ET in fair agreement with observed values.
Estimates of daily ET0 using WF data were affected by overesti-
mation, with a RMSE of 0.7 mmd−1. Total forecasted rainfall
matched with the measured value, but although weather forecasts
frequently failed to predict the occurrence of rainfall events. These
simulation schemes will be practiced widely in the future under
semiarid conditions and compared with rainfed agriculture. In gen-
eral, the use of numerical simulation and weather forecasts can
increase farmers’ net income under volumetric water pricing. In
addition, farmers may save the high cost of purchasing, installing,
and maintain automated systems.
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Acknowledgments

We thank all members of irrigation and drainage lab of the Arid
Land Research Center for their assistance in data collection and
other processes that led to successful results.

References

Abd El Baki, H. M., and H. Fujimaki. 2021a. “Determining economical
irrigation depths in a sandy field using a combination of weather fore-
cast and numerical simulation.” Water 13 (Nov): 3403. https://doi.org
/10.3390/w13233403.

Abd El Baki, H. M., and H. Fujimaki. 2021b. “An evaluation of a new
scheme for determination of irrigation depths in the Egyptian Nile
Delta.” Water 13 (Sep): 2181. https://doi.org/10.3390/w13162181.

Abd El Baki, H. M., H. Fujimaki, I. Tokumoto, and T. Saito. 2017.
“Determination of irrigation depths using a numerical model of crop
growth and quantitative weather forecast and evaluation of its effect
through a field experiment for potato.” J. Jpn. Soc. Soil Phys. 136 (Apr):
15–24. https://doi.org/10.34467/jssoilphysics.136.0_15.

Abd El Baki, H. M., H. Fujimaki, I. Tokumoto, and T. Saito. 2018a. “A new
scheme to optimize irrigation depth using a numerical model of crop
response to irrigation and quantitative weather forecasts.” Comput.
Electron. Agric. 150 (5): 387–393. https://doi.org/10.1016/j.compag
.2018.05.016.

Abd El Baki, H. M., H. Fujimaki, I. Tokumoto, and T. Saito. 2018b.
“Optimizing irrigation depth using a plant growth model and weather
forecast.” J. Agric. Sci. 10 (7): 55–66. https://doi.org/10.5539/jas
.v10n7p55.

Abd El Baki, H. M., M. Raoof, and H. Fujimaki. 2020. “Determining irri-
gation depths for soybean using a simulation model of water flow and
plant growth and weather forecasts.” Agronomy 10 (3): 369. https://doi
.org/10.3390/agronomy10030369.

Abd El-Baky, M. M. H., A. A. Ahmed, M. A. El-Nemr, and M. F.
Zaki. 2010. “Effect of potassium fertilizer and foliar zinc application
on yield and quality of sweet potato.” Res. J. Agric. Biol. Sci. 6 (4):
386–394.

Ahuja, L. R., K. W. Rojas, J. D. Hanson, M. J. Shaffer, and L. Ma. 2000.
Root zone water quality model: Modeling management effects on
water quality and crop production. Littleton, CO: Water Resources
Publications.

Allen, R., L. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspira-
tion: Guidelines for computing crop water requirements, 135–142.
Rome: FAO.

Bauer, P., A. Thorpe, and G. Brunet. 2015. “The quiet revolution of numerical
weather prediction.” Nature 525 (Aug): 47–55. https://doi.org/10.1038
/nature14956.

Bourke, R. M. 1985. “Influence of nitrogen and potassium fertilizer on
growth of sweet potato (Ipomoea batatas) in Papua New Guinea.” Field
Crops Res. 12 (Jan): 363–375. https://doi.org/10.1016/0378-4290(85)
90081-4.

Cai, J. B., Y. Liu, T. Lei, and L. S. Pereira. 2007. “Estimating reference
evapotranspiration with the FAO Penman–Monteith equation using
daily weather forecast messages.” Agric. For. Meteorol. 145 (1): 22–35.
https://doi.org/10.1016/j.agrformet.2007.04.012.

Cai, X., M. I. Hejazi, and D. Wang. 2011. “Value of probabilistic weather
forecasts: Assessment by real-time optimization of irrigation schedul-
ing.” J. Water Resour. Plann. Manage. 137 (5): 391–403. https://doi.org
/10.1061/(asce)wr.1943-5452.0000126.

Cammarano, D., J. Payero, B. Basso, P. Wilkens, and P. Grace. 2012.
“Agronomic and economic evaluation of irrigation strategies on cotton
lint yield in Australia.” Crop Pasture Sci. 63 (Feb): 647–655. https://doi
.org/10.1071/CP1202.

Cornish, G., B. Bosworth, and C. Perry. 2004. Water charging in irrigated
agriculture—An analysis of international experience, 19–26. Rome:
FAO.

Fig. 16. Example showing a drawback of (a) refilling scheme on September 17; and (b) automated irrigation scheme on August 7.

© ASCE 04023043-11 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(9): 04023043 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

12
6.

15
6.

13
8.

22
3 

on
 0

7/
07

/2
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.3390/w13233403
https://doi.org/10.3390/w13233403
https://doi.org/10.3390/w13162181
https://doi.org/10.34467/jssoilphysics.136.0_15
https://doi.org/10.1016/j.compag.2018.05.016
https://doi.org/10.1016/j.compag.2018.05.016
https://doi.org/10.5539/jas.v10n7p55
https://doi.org/10.5539/jas.v10n7p55
https://doi.org/10.3390/agronomy10030369
https://doi.org/10.3390/agronomy10030369
https://doi.org/10.1038/nature14956
https://doi.org/10.1038/nature14956
https://doi.org/10.1016/0378-4290(85)90081-4
https://doi.org/10.1016/0378-4290(85)90081-4
https://doi.org/10.1016/j.agrformet.2007.04.012
https://doi.org/10.1061/(asce)wr.1943-5452.0000126
https://doi.org/10.1061/(asce)wr.1943-5452.0000126
https://doi.org/10.1071/CP1202
https://doi.org/10.1071/CP1202


Davis, S. L., and M. D. Dukes. 2010. “Irrigation scheduling performance
by evapotranspiration-based controllers.” Agric. Water Manage. 98 (1):
19–28. https://doi.org/10.1016/j.agwat.2010.07.006.

English, M. 1990. “Deficit irrigation. I: Analytical framework.” J. Irrig.
Drain. Eng. 116 (3): 399–412. https://doi.org/10.1061/(ASCE)0733
-9437(1990)116:3(399).

Evett, S. R., R. C. Schwartz, N. T. Mazahrih, M. A. Jitan, and I. M. Shaqir.
2011. “Soil water sensors for irrigation scheduling: Can they deliver a
management allowed depletion?” Acta Hortic. 888 (26): 231–237.
https://doi.org/10.17660/ActaHortic.2011.888.26.

FAOSTAT (Food and Agriculture Organization Corporate Statistical Data-
base). 2021. “Producer prices.” Accessed June 23, 2021. https://www
.fao.org/faostat/en/#data/PP.

Farooq, M., M. Hussain, S. Ul-Allah, and K. H. M. Siddique. 2019.
“Physiological and agronomic approaches for improving water-use ef-
ficiency in crop plants.” Agric. Water Manage. 219 (Sep): 95–108.
https://doi.org/10.1016/j.agwat.2019.04.010.

Fujimaki, H., H. M. Abd El Baki, S. M. Mahdavi, and H. Ebrahimian.
2020. “Optimization of irrigation and leaching depths considering
the cost of water using WASH_1D/2D models.” Water 12 (9): 2549.
https://doi.org/10.3390/w12092549.

Fujimaki, H., I. Tokumoto, T. Saito, M. Inoue, M. Shibata, T. Okazaki,
K. Nagaz, and F. El Mokh. 2014. “Determination of irrigation depths
using a numerical model and quantitative weather forecast and compari-
son with an experiment.” In Vol. 5 of Practical applications of agricul-
tural system models to optimize the use of limited water, edited by L. R.
Ahuja, L. Ma, and R.J. Lascano, 209–235. Madison, WI: ACSESS.

Garcia-Vila, M., and E. Fereres. 2012. “Combining the simulation crop
model AquaCrop with an economic model for the optimization of irri-
gation management at farm level.” Eur. J. Agron. 36 (May): 21–31.
https://doi.org/10.1016/j.eja.2011.08.003.

Gedam, S., S. Pallam, B. V. N. P. Kambhammettu, V. Anupoju, and S. K.
Regonda. 2022. “Investigating the accuracies in short-term weather
forecasts and its impact on irrigation practices.” J. Water Resour. Plann.
Manage. 149 (2): 04022079. https://doi.org/10.1061/JWRMD5.WRENG
-5644.

Ghazichaki, Z. H., and M. J. Monem. 2019. “Development of quantified
model for application of control systems in irrigation networks by sys-
tem dynamic approach.” Irrig. Drain. 68 (12): 433–442. https://doi.org
/10.1002/ird.2331.
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