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Roles of Microglia in Neurodegenerative Diseases
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ABSTRACT
In recent years, microglia have attracted attention ow-
ing to their roles in various neurodegenerative diseases, 
such as Alzheimer’s disease, Parkinson’s disease, and 
amyotrophic lateral sclerosis. Microglia, which are 
brain-resident macrophages, not only act as immune 
cells but also perform other functions in the body. 
Interestingly, they exert contrasting effects on different 
neurodegenerative diseases. In addition to the previ-
ously reported M1 (toxic) and M2 (protective) types, 
microglia now also include disease-associated microglia 
owing to a more elaborate classification. Understanding 
this detailed classification is necessary to elucidate the 
association between microglia and neurodegenerative 
diseases. In this review, we discuss the diverse roles of 
microglia in neurodegenerative diseases and highlight 
their potential as therapeutic targets.

Key words  Alzheimer’s disease; inflammation; mi-
croglia; Parkinson’s disease; therapeutic target

Microglia, resident brain macrophages, are glial cells 
that play important roles in the immune functions of 
the central nervous system (CNS). They were originally 
described and named by Pío del Río Hortega.1 Unlike 
neurons, astrocytes, and oligodendrocytes, which 
originate from the ectoderm, microglia originate from 
the mesoderm, and erythromyeloid progenitors (EMPs) 
are their precursor cells in the yolk sac.2 They are 
different from hematopoietic stem cell (HSC)-derived 
macrophages. EMPs generated during early develop-
ment migrate throughout the body; those that migrate 
to the liver, epidermis, lungs, and CNS differentiate 
into the Kupffer cells, Langerhans cells, alveolar mac-
rophages, and microglia, respectively.2 Subsequently, 
HSC-derived monocytes are replaced by differentiated 
macrophages in most tissues. Because they cannot 
penetrate the blood–brain barrier formed during de-
velopment, replacement of HSC-derived macrophages 
is not observed in the brain.3 Tracing of fetal and adult 
HSCs with the Flt3 marker has revealed that only 2% 
of brain microglia are HSC-derived in 1-year-old mice.4 
Microglia are distributed throughout the CNS, and 
are often identified by the expression of various cell-
specific intracellular proteins, such as Iba1, CD11b, and 

C-X3-C motif chemokine receptor 1 (CX3CR1)5–7 (Table 
1). The expression of each marker differs depending 
on the microglial subtype and activation state. Hence, 
these markers should be properly used for neuroscience 
research.

Similar to macrophages, microglia play impor-
tant roles as immune cells that phagocytose foreign 
substances and dead cells, and release chemokines 
and cytokines.8 They quickly remove the unnecessary 
substances, such as foreign substances and dead cells, 
and their immune response induces the healing of the 
injured area.8 Owing to these activities, some suggest 
that microglia play a key role in maintaining homeosta-
sis in the CNS. However, microglia can also exacerbate 
the damage in progressive neurodegenerative diseases, 
neuronal damage, and chronic inflammatory responses.9 
Recently, activated microglia have been recognized as 
key players in the aggravation of various neurodegen-
erative diseases.10, 11

Microglia exhibit surprising behaviors in their 
morphology and functions in certain situations, 
drastically changing shape depending on their external 
environment.12 Under normal conditions, microglia are 
of the resting type (ramified type) with elongated pro-
trusions extending from their small cell body. They are 
activated due to nerve injuries, inflammation, or isch-
emia, leading to the enlargement of the cell body and 
shrinking of the protrusions, thus forming an amoeboid 
shape resembling that of macrophages.12 Based on their 
function, microglia are of two types: M1 (neurotoxic) 
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and M2 (neuroprotective) microglia (Fig. 1).11, 13, 14 M1 
microglia are predominantly observed in the brain of pa-
tients with neurodegenerative diseases.13 M1 microglia 
recognize interferon-γ, tumor necrosis factor (TNF)-α, 

and damage-associated molecular patterns (DAMPs) 
and release inflammatory cytokines, such as interleukin 
(IL)-1β, IL-6, and TNF-α, and reactive oxygen species, 
such as nitric oxide.11, 15, 16 In contrast, M2 microglia 

Fig 1.  M1 and M2 microglia. Damage-associated molecular patterns (DAMPs) act on various inflammation-related receptors, includ-
ing the toll-like receptors (TLRs) and ATP receptors (ATPRs), in resting microglia to induce the formation of M1 or M2 microglia. M1 
microglia induce a proinflammatory state and tissue damage by releasing tumor necrosis factor (TNF)-α, interleukin (IL)-1b, IL-6, C–
C motif chemokine ligand (CCL)-2, and reactive oxygen species (ROS) such as nitric oxide (NO). In contrast, M2 microglia exert tissue-
protective effects by releasing anti-inflammatory cytokines such as IL-10, and transforming growth factor (TGF)-β. IL-10 inhibits the 
activation of M1 microglia. M1 microglia are pro-injury, whereas M2 microglia are anti-injury. HMGB1, High Mobility Group Box 1.

Table 1.  Major markers for microglia

Marker molecule Function Distribution Further information
Iba 1 Ca binding protein Membrane ruffle
TREM2 Receptor for phagocytosis? Membrane
CX3CR1 Fractalkine receptor Membrane
F4/80 Adhesion G protein coupled receptor E1 Membrane
CD11b Immune function ? Membrane CD11b/CD40 ↑:MG, CD11b/CD40 ↓: macrophage
CD68 Protection of lysosomal membrane Lysosome
TREM119 Unknown Membrane MG specific
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recognize IL-4 and transforming growth factor (TGF)-β 
and release anti-inflammatory cytokines, such as IL-10 
and TGF-β, and neurotrophic factors, such as the brain-
derived neurotrophic factor.11, 17–19 Many attempts have 
been made to explore other subtypes of microglia.20 
Recently, single-cell RNA-seq revealed that mouse 
microglia can be divided into at least nine clusters.20 
Additionally, microglia can play various roles, such as 
extend their projections into neuronal synapses, monitor 
the state of neurons via direct contact, and participate in 
synaptic pruning during CNS development.21, 22

Microglia can either promote or suppress the 
progression of various CNS diseases.11–13 Even in the 
same disease, the activation status of microglia can 
be diverse and complex depending on the degree of 
disease progression and affected brain region. Previous 
pathological observations suggest the existence of 
different microglial subtypes, each of which performs 
various functions.11–13 Advances in omics techniques, 
such as transcriptomics and proteomics, have facilitated 
the analysis of cell classification systems and functional 
characteristics at the genetic level with high sensitivity. 
In particular, single-cell analysis technologies, such as 
single-cell RNA-seq, which have made rapid progress 
recently, are useful for cell diversity analysis.20, 23, 24

Masuda et al. investigated the detailed classifica-
tion of microglia using different cutting-edge technolo-
gies, such as single-cell RNA sequencing.25 They 
revealed that different types of microglia exhibit distinct 
gene expression profiles during development. Using a 

mouse model of CNS disease, microglia were isolated 
from pathological lesions, and their genetic profiles 
were analyzed. The results revealed that microglia 
isolated from pathological lesions in the brain exhibit 
a completely different genetic profile than the normal 
microglia, showing different gene expression patterns 
in different animal models.25 Moreover, microglia in 
a demyelination model were classified into two types 
based on their gene expression patterns, suggesting that 
each type performs different functions.25 Masuda et al. 
also reported that microglia shift to an activated state 
under pathological conditions, showing genetic changes 
in a context-dependent manner to appropriately respond 
to each situation.25

DISEASE-ASSOCIATED MICROGLIA (DAM)
Microglia exhibit a common activation state (DAM) 
in aging and neurodegenerative diseases, and their 
involvement in the pathology of various neurodegenera-
tive diseases has attracted attention in recent years.26, 27 
DAM are primarily observed in the disease-affected 
CNS regions, but not in the healthy regions, suggesting 
their role in the pathogenesis of neurodegenerative dis-
eases.27 Keren-Shaul et al. identified DAM via single-
cell RNA-seq analysis in Alzheimer’s disease (AD) 
model mice.26 They classified DAM into two stages: 
stages 1 and 2 DAM. The transition from homeostatic 
to stage 1 DAM requires various stimuli, such as ag-
ing, amyloid plaques in AD, and neuronal death due 
to amyotrophic lateral sclerosis (ALS). Moreover, the 

Fig 2.  Disease-associated microglia (DAM) and the two-step model of DAM induction. Several signaling pathways induced during 
the pathogenesis of neurodegenerative diseases and/or aging promote the transition of microglia from homeostatic to stage 1 DAM. The 
triggering receptor expressed on myeloid cells 2 (TREM2) signaling further induces the transition to stage 2 DAM. This figure is cited 
and modified from reference 26.
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triggering receptor expressed on myeloid cells (TREM)-
2 stimulation is important for the transition from stage 1 
to stage 2 DAM (Fig. 2). Notably, stage 2 DAM are the 
main disease-associated phagocytes in AD.26

DAM are molecularly characterized as immune 
cells expressing typical microglial markers, such as 
Iba1, Cst3, and Hexb, and downregulating the expres-
sion levels of homeostatic microglial genes, including 
P2ry12, P2ry13, Cx3cr1, CD33, and Trem119.18 In con-
trast, DAM upregulates the levels of genes involved in 
lysosomal, phagocytic, and lipid metabolism pathways, 
including several known AD risk factors, such as ApoE, 
Ctsd, Lpl, Tyrobp, and TREM2.27

MICROGLIA IN NEURODEGENERATIVE  
DISEASE
Microglia in AD
AD, the most common neurodegenerative disease, 
is characterized by cognitive decline in old age. The 
β-amyloid (Aβ) hypothesis has been proposed as a 
mechanism for the onset of AD; microglia around senile 
plaques, which are Aβ aggregates, are activated in the 
brain of patients with AD.28, 29 Similarly, clusters of 
activated microglia are observed around Aβ aggregates 
in the brain of AD model mice (Fig. 3).

Similar to other macrophages, microglia possess 
phagocytic abilities. Activated microglia phagocytose 
and degrade Aβ aggregates, thereby suppressing AD. 
Therefore, disruption in Aβ clearance by microglia may 
be a potential cause for AD pathogenesis.30

Although various cytokines, such as TNF-α, IL-
1β, and IL-6, glutamate, and reactive oxygen species 
released by microglia mainly promote the progression of 
AD, microglia are suggested to play antagonistic roles 
in AD progression depending on the situation.31

Mechanisms involved in amyloid uptake by mi-
croglia include phagocytosis, pinocytosis, and receptor-
dependent endocytosis.32 Phagocytosis facilitates the 
uptake of polymerized insoluble amyloids, whereas 
pinocytosis facilitates the uptake of less polymerized 
amyloids. Pattern recognition receptors, such as toll-like 
receptors (TLRs) and scavenger receptors, are involved 
in receptor-dependent endocytosis.33 CD14 is important 
as a co-receptor for TLRs.34

The R47H mutation in TREM2, which is expressed 
in microglia, is a risk factor for AD,35, 36 and the associ-
ation between microglia and AD has attracted attention 
recently. TREM2 abnormalities cause the early onset 
of dementia in patients with the Nasu-Hakola disease, 
suggesting that abnormalities in microglial function 
are associated with cognitive function.37 TREM2 may 
be a receptor for Aβ as its deletion increases the Aβ 

aggregates in 5×FAD model mice with familial AD risk 
mutations.38 Moreover, the AD-associated R47H muta-
tion in TREM2 may alter its phagocytotic function.39 
TREM2 recognizes lipids associated with Aβ accumu-
lation and cell damage and plays an important role in 
detecting CNS and associated response abnormalities.40 
Microglial TREM2 regulates the spread of tau proteins, 
which are components of neurofibrillary tangles.41

Microglia in Parkinson’s disease (PD)
PD is a neuropathological disorder involving the 
degeneration of dopaminergic neurons in the substantia 
nigra, with subsequent loss of their terminals in the 
striatum.42 Microglial activation is observed in the brain 
of patients with PD.43, 44 In addition, levels of inflamma-
tory cytokines (IL-1b, TNF-a, and IL-6) are elevated in 
the brain of patients with PD, indicating the importance 
of inf lammation-based non-autonomous neuronal 
death in PD pathology.45, 46 Microglia are activated by 
various proteins, such as leucine-rich repeat kinase 2, 
α-synuclein, parkin, and DJ-1, which cause familial 
PD.47 Many studies are investigating the nature of this 
disease. Recent studies using [11C-]-PK11195 positron 
emission tomography (PET) have shown that periph-
eral benzodiazepine receptors, which are abundantly 
expressed in glial cells, are associated with the onset 
of PD in patients with PD for approximately 10 years 
or dementia patients with Lewy bodies.48, 49 They are 
prevalent in the basal ganglia and frontal lobe/temporal 

Fig 3.  Accumulation of microglia around the amyloid plaque. 
Iba-1-positive macrophages (black arrowheads) are observed 
around a senile plaque (white arrow). Scale bar = 100 μm. This 
picture was kindly provided by Dr. Tadashi Adachi (Tottori 
University). MG, microglia.
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lobe cortex. Another PET study reported an increase 
in the number of activated microglia in PD lesions.48 
Among animal models, the relationship between 
microglial activation and disease pathology has been 
extensively investigated in PD model mice treated with 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 
Infiltration of Iba-1-positive and CD68-positive acti-
vated microglia is localized to the substantia nigra.50 
Furthermore, suppression of microglial function or 
inducible nitric oxide synthase/IL-1 expression via the 
administration of minocycline improves dopaminergic 
neuron death in MPTP-treated model mice.51 These 
studies suggest the important roles of microglia in vari-
ous pathological conditions.

Microglia in ALS
ALS is an incurable neurological disease that causes the 
selective degeneration of motor neurons.52 Activated 
microglia are observed in the motor nerve ablation area 
of the ventral horn of spinal cord. In a disease model 
based on the expression of mutant superoxide dismutase 
(SOD)-1, causative gene of hereditary ALS, mutant 
SOD1 expressed in microglia and astrocytes accelerated 
ALS pathology.53 Another clinical study that analyzed 
microglial activation in sporadic ALS using PET 
reported that microglial activation in the cerebral cortex 
is correlated with the disease pathology.54 Microglial 
xCT-mediated glutamate release outside the cells is 
involved in the pathology of ALS. Interestingly, ALS 
mice crossed with xCT knockout mice exhibit a long 
lifespan.55

ASSOCIATION BET WEEN DEPRESSIVE 
SYMPTOMS AND MICROGLIA IN  
NEURODEGENERATIVE DISEASES
Many studies have shown that neuroinflammation is 
related to depressive symptoms,56, 57 which are not only 
observed in depression but also in various neurodegen-
erative diseases, such as AD and PD. In recent years, 
the involvement of chronic neuroinflammation and 
microglial activation in depressive symptoms has at-
tracted attention.58 High serum IL-6 levels in childhood 
increase the risk of developing depression in adoles-
cence in a concentration-dependent manner. A study 
demonstrated that psychosocial stress during childhood 
has long-term effects on the immune system via PET 
imaging,58 which labels activated microglia, revealing 
the positive correlation between depressive symptoms 
and microglial activation in the prefrontal cortex, 
anterior cingulate cortex, and hippocampus in patients 
with depression.58 These symptoms are also observed 
in patients with suicidal tendencies.59 In a rat model of 

repeated social defeat stress, bone marrow hematopoi-
esis was promoted via the sympathetic nervous system, 
and immature monocytes migrated into the brain and 
activated microglia. Emotional response (anxiety-like 
behavior) caused by psychosocial stress causes periph-
erally derived monocytes and intracerebral microglia to 
mutually amplify neuroinflammation.60 Similar microg-
lial activation is observed in various neurodegenerative 
disease models, suggesting a common mechanism.

ASSOCIATION BETWEEN BLOOD-BRAIN 
BARRIER DISRUPTION AND MICROGLIA IN 
NEURODEGENERATIVE DISEASES
The blood-brain barrier isolates the brain from the 
systemic circulatory system and maintains a constant 
environment by restricting the movement of substances 
into and out of the brain.61 However, the functions of 
this barrier are impacted by systemic inflammation in 
neurodegenerative diseases, such as AD.62 Haruwaka 
et al. investigated the process by which the blood–brain 
barrier breaks down due to systemic inflammation in 
mice and reported that the action of microglia on the 
blood–brain barrier becomes protective over time.63 
Microglia play an important role in the regulation of the 
blood–brain barrier functions. Inhibition of microglial 
activation ameliorates blood–brain barrier dysfunction. 
Abnormalities in blood–brain barrier function are 
observed in various neurodegenerative diseases, such as 
PD and AD,64 suggesting the involvement of microglia-
mediated blood–brain barrier functional abnormalities 
in various pathological conditions.

Microglia as therapeutic targets for neurodegen-
erative diseases
Microglial activation is widely observed in various 
neurodegenerative diseases. However, microglial activa-
tion has little disease-specificity because it is a common 
mechanism in various diseases. Suppression of microg-
lial activation may reduce the overall inflammation, 
inhibit the release of inflammatory cytokines and reac-
tive oxygen species, and reduce glutamate release into 
the extracellular space by suppressing cystine/glutamate 
exchange transporters. Moreover, microglia can serve 
as targets for the treatment of various neurodegenerative 
diseases owing to their ability to phagocytose patho-
genic proteins such as Aβ, and modulate the brain en-
vironment, including the blood–brain barrier. Because 
microglia change their characteristics depending on the 
surrounding environment, future studies should explore 
their roles and underlying mechanisms in the pathogen-
esis of different neurodegenerative diseases.
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