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ABSTRACT
Background Doxorubicin (Dox) is effective against 
different types of cancers, but it poses cardiotoxic side 
effects, frequently resulting in irreversible heart failure. 
However, the complexities surrounding this cardiotoxic-
ity, especially at sublethal dosages, remain to be fully 
elucidated. We investigated early cellular disruptions 
in response to sublethal Dox, with a specific emphasis 
on the role of phosphorylated calcium/calmodulin-
dependent protein kinase II (CaMKII) in initiating 
mitochondrial dysfunction.
Methods This study utilized the H9c2 cardiomyocyte 
model to identify a sublethal concentration of Dox and 
investigate its impact on mitochondrial health using 
markers such as mitochondrial membrane potential 
(MMP), mitophagy initiation, and mitochondrial 
calcium dynamics. We examined the roles of and 
interactions between CaMKII, dynamin-related protein 
1 (Drp1), and the mitochondrial calcium uniporter 
(MCU) in Dox-induced mitochondrial disruption using 
specific inhibitors, such as KN-93, Mdivi-1, and Ru360, 
respectively.
Results Exposure to a sublethal dose of Dox reduced 
the MMP red-to-green fluorescence ratio in H9c2 cells 
by 40.6% compared with vehicle, and increased the pro-
portion of cells undergoing mitophagy from negligible 
levels compared with vehicle to 62.2%. Mitochondrial 
calcium levels also increased by 8.7-fold compared with 

the vehicle group. Notably, the activation of CaMKII, 
particularly its phosphorylated form, was pivotal in 
driving these mitochondrial changes, as inhibition 
using KN-93 restored MMP and decreased mitophagy. 
However, inhibition of Drp1 and MCU functions 
had a limited impact on the observed mitochondrial 
disruptions.
Conclusion Sublethal administration of Dox is closely 
linked to CaMKII activation through phosphorylation, 
emphasizing its pivotal role in early mitochondrial 
disruption. These findings present a promising direction 
for developing therapeutic strategies that may alleviate 
the cardiotoxic effects of Dox, potentially increasing its 
clinical efficacy.
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chondrial dysfunction; sublethal dose

Doxorubicin (Dox) presents a therapeutic paradox be-
cause, although it is a potent anthracycline chemothera-
peutic agent, its utility is limited by pronounced, dose-
dependent cardiotoxic effects.1, 2 This cardiotoxicity is 
often typified by cardiomyocyte death, a phenomenon 
that is intimately linked to mitochondrial dysfunc-
tion.3–6 Given the acute sensitivity of mitochondria to 
cellular disturbances,7, 8 exploring early mitochondrial 
disruptions in response to Dox is crucial and may pres-
ent a prospect for innovative therapeutic interventions.

Although previous research has predominantly 
focused on lethal Dox doses,3, 6, 9 we hypothesized that 
investigating sublethal doses may allow examination 
of initial mitochondrial disruptions and the underlying 
mechanisms leading to Dox-induced cardiomyocyte 
death. In this context, the activation of calcium/calmod-
ulin-dependent protein kinase II (CaMKII) by Dox, 
particularly through its autophosphorylation, warrants 
particular attention, given its implicated role in pre-
cipitating mitochondrial dysfunction.9–12 Dox has been 
shown to induce cytotoxicity through the generation of 
reactive oxygen species, which can target proteins and 
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nucleic acids and induce damage in many different cel-
lular compartments. While the paradigm of oxidation-
induced CaMKII activation is well established,13–15 
the current study examines CaMKII activation via 
autophosphorylation in relation to intracellular calcium 
modulation during sublethal Dox administration.10, 16, 17

Mitophagy is regulated by calcium modulation18 
and is essential for maintaining mitochondrial function, 
playing both adaptive19, 20 and potentially maladaptive6 
roles under stress conditions. An increase in intrami-
tochondrial calcium ([Ca2+] mito) can destabilize the 
mitochondrial membrane potential (MMP) and induce 
cell death.4, 11, 21 MMP is inextricably linked to ATP 
synthesis capability22 and serves as an early indicator of 
mitochondrial dysfunction.4 Dynamin-related protein 1 
(Drp1), a target of CaMKII,23 warrants further exami-
nation regarding its role in Dox-induced mitochondrial 
dysfunction during sublethal phases, as it plays a role 
in apoptosis regulated by changes in MMP. Therefore, 
Drp1 emerges as a central element in the investigation 
into the sublethal effects of Dox.

Utilizing the H9c2 cardiomyocyte model, this 
study aims to investigate the effects of sublethal Dox 
exposure on mitochondrial function, focusing on 
autophosphorylation-activated CaMKII (pCaMKII) 
and the interrelated dynamics of MMP, mitophagy, and 
calcium within the mitochondria,11, 12, 21, 22 with the goal 
of illuminating potential new therapeutic avenues.

MATERIALS AND METHODS
Cell culture
Embryonic rat heart-derived (H9c2) cells were cultured 
in high-glucose Dulbecco’s Modified Eagle’s Medium 
(Nacalai Tesque, Kyoto, Japan, Catalog no. 08458-
16) supplemented with 10% fetal bovine serum (FBS) 
which has been heat-inactivated (Thermo Fisher 
Scientific, Waltham, MA, Catalog no. 10270-106). Cells 
were maintained at 37°C, 5% CO2 in a humidified in-
cubator. Growth medium was replaced every 48 hours. 
Upon reaching 70-80% confluence, cells were detached 
using a 0.25% trypsin-EDTA solution (Fujifilm Wako 
Pure Chemical Corporation, Osaka, Japan, Catalog no. 
201-16945). To ensure consistent cellular behaviors, ex-
periments were conducted using cells between passages 
25-40.

Determination of sublethal dose of doxorubicin
To identify the sublethal dose of Dox, H9c2 cells were 
seeded at a density of 8.0 × 103 cells/well in 96-well 
plate on a culture medium supplemented with 10% 
FBS and allowed to adhere overnight. The next day, 
cells were then exposed to varying concentrations (0.1, 

0.5, and 1.0 µM) of Dox (Cayman Chemical Company, 
Ann Arbor, MI, Catalog no. 15007) dissolved in DMSO 
(Nacalai Tesque, Catalog no. 09659-14) for 24 hours. 
After exposure, cells were stained with 0.01 mg/mL 
propidium iodide (PI) solution (Dojindo Laboratories, 
Kumamoto, Japan, Catalog no. P378) and 50 µM 
Hoechst 33342 (Hoechst) (Dojindo Laboratories, 
Catalog no. H342) in a light-protected environment. 
Using a fluorescence microscope (Keyence Corporation, 
Osaka, Japan, Catalog no. BZ-X710), images were 
captured from randomly selected fields of the well and 
analyzed using the FIJI (ImageJ) software. The number 
of PI-positive cells was then quantified and compared 
to the total count of Hoechst-positive cells.24 A Dox 
concentration that resulted in less than 10% PI-positive 
cells were considered the sublethal dose.25

Evaluation of mitochondrial membrane potential
H9c2 cells were seeded and treated with Dox as previ-
ously described. Specific cell groups received pre-
treatment with 5.0 µM KN-93 (Cayman Chemical 
Company, Catalog no. 21472), 5.0 µM Mdivi-1 (Selleck 
chemicals LLC., Houston, TX, Catalog no. S7162), or 
5.0 µM Ru360 (Merck KGaA., Darmstadt, Germany, 
Catalog no. 557440) two hours before and during 
the 24-hour Dox treatment. For the assay, cells were 
incubated with 2 µM JC-1 dye (Dojindo Laboratories, 
Catalog no. MT09) for 30 minutes in a CO2 incubator. 
Following incubation, cells were washed twice with 
warm culture medium without phenol red (Fujifilm 
Wako Pure Chemical Corporation, Catalog no. 048-
33575) and fluorescence intensities of both red (JC-1 
aggregates) and green (JC-1 monomers) were recorded 
using a fluorescence microplate reader (Tecan Group 
Ltd., Männedorf, Switzerland, Catalog no. INFINITE 
M200 PRO),26 f luorescence intensity of Ex/Em = 
535/590 nm and Ex/Em = 485/535 nm is determined for 
red and green, respectively. Alterations in the red and 
green fluorescence intensity indicated changes in the 
mitochondrial membrane potential. Measurements were 
taken every 45 seconds, a total of five times, and subse-
quently represented as a red-to-green fluorescence in-
tensity ratio (R/G ratio). Cellular images were captured 
using a fluorescence microscope (Keyence Corporation 
Catalog no. BZ-X710).

Evaluation of mitophagy
To evaluate mitophagy, H9c2 cells were plated in 96-
well plates and allowed to adhere overnight. Before Dox 
treatment, cells were incubated with 0.1 µM Mtphagy 
Dye (Dojindo Laboratories, Catalog no. MD01) for 30 
minutes in a CO2 incubator. The Dox treatment, KN-93 
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and Mdivi-1 pre-treatment were subsequently carried 
out as previously described. After treatment, cells were 
washed and stained with 50 µM Hoechst to label the 
nuclei. After capturing the image using fluorescence 
microscopy, ImageJ software was used to analyze cells 
that display red (Mtphagy dye) fluorescence27 and co-
localized with blue (Hoechst) fluorescence, indicative of 
active mitophagy.

Evaluation of mitochondrial calcium
H9c2 cells were seeded and treated with Dox and were 
pre-treated with either 5.0 µM KN-93 or 5.0 µM Ru360 
as described in previous sections. To measure [Ca2+] 
mito levels, cells were loaded with a mixture of 2.5 µM 
dihydro-Rhod-2 AM with 0.02% Pluronic acid. This 
mixture was achieved by mixing Rhod-2 AM (Cayman 
Chemical Company, Catalog no. 19355) with Pluronic 
F-127 20% solution in DMSO (Biotium Inc., Fremont, 
CA, Catalog no. 59004) and add a small quantity of so-
dium borohydride (Merck KGaA., Catalog no. 213462) 
until the mixture turned transparent, prior adding to 
the cells. Following this, cells were incubated for 30 
minutes in the dark. The fluorescence intensity was 
measured at 30-minute intervals before and after the 
Dox treatment. The difference in dihydro-Rhod-2 AM 
fluorescence levels corresponded to the [Ca2+] mito.28

Western blotting
To analyze protein expression, H9c2 cells were lysed 
using cold RIPA buffer (Nacalai Tesque, Catalog no. 
16488-34) supplemented with the inhibitors of protease 
(Roche diagnostics corporation, Basel, Switzerland, 
Catalog no. 11697498001) and phosphatase (Merck 
KGaA., Catalog no. P5726). Supernatant was collected 
after centrifugation and the protein concentration 
determined using the BCA Protein Assay Kit (Takara 
Bio Inc, Shiga, Japan, Catalog no. T9300A).29 An equal 
amount of protein (10 µg) was subjected to SDS-PAGE 
and subsequently transferred onto PVDF membranes 
(Merck KGaA., Catalog no. IPVH00010). Membranes 
were blocked with 5% BSA (Merck KGaA., Catalog 
no. A9418) in TBS-T (Takara Bio Inc., Catalog no. 
T9300A-3) for 1 hour and subsequently incubated 
overnight at 4°C with primary antibodies: CaMKII-
pThr286/Thr287 (Cell Signaling Technology Inc., 
Danvers, MA, Catalog no. 12716S) at a 1: 1000 dilution, 
CaMKII (Cell Signaling Technology Inc., Catalog no. 
4436S) at a 1: 1000 dilution, and β-actin (Abcam plc, 
Cambridge, United Kingdom, Catalog no. ab20272) at 
a 1: 4000 dilution. Following a wash, the membranes 
were exposed to horseradish peroxidase-conjugated 
secondary antibodies (Cell Signaling Technology Inc., 

Catalog no. 7074S) for 1 hour at room temperature. 
Protein bands were visualized using Pierce™ ECL Plus 
western blotting substrate (Thermo Fisher Scientific, 
Catalog no. 32132) and ChemiDoc™ Touch MP imag-
ing system (Bio-Rad, Hercules, CA).30 The images were 
quantified using FIJI (ImageJ) software.31

Statistical analysis
Data are presented as mean ± standard deviation (SD). 
Prior to analysis, the normality of all experimental data 
sets was verified. Subsequently, data sets underwent 
analysis using one-way ANOVA, followed by the Tukey 
post-hoc test for multiple group comparisons. A p-value 
of less than 0.05 was considered statistically significant. 
Analyses were performed using GraphPad Prism 
(Version 10.0.2, GraphPad software, Boston, MA).

RESULTS
Determination of the sublethal dose of doxorubicin 
in H9c2 cardiac cells
To determine a sublethal dose of Dox in H9c2 cardiac 
cells, cells were treated with vehicle or increasing 
doses of Dox for 24 hours. Cell viability was assessed 
by observing images and measuring the percentage of 
propidium iodide (PI)-positive cells relative to the total 
cell count, as determined by Hoechst staining (Fig. 1A).

In the vehicle group, PI-positive cells were not 
observed (0%, Fig. 1B). Following treatment with 0.1 
µM Dox, 0%–4.7% of cells were PI-positive, which was 
not statistically significantly different when compared 
with the vehicle group (Fig. 1B). At a concentration of 
0.5 µM Dox, the percentage of PI-positive cells rose 
to 4.2%–7.4% (P < 0.05, Fig. 1B). When treated with 
1.0 µM Dox, cells exhibited a significant increase 
in the percentage of PI-positive cells, ranging from 
19.5%–31.1% (P < 0.01, Fig. 1B).

Given our definition of a sublethal dose as one 
resulting in < 10% PI-positive cells, the 0.5 µM Dox 
treatment for 24 hours was selected for subsequent 
experiments with H9c2 cells (Fig. 1B).

Sublethal doses of doxorubicin decrease mito-
chondrial membrane potential in H9c2 cells
The JC-1 dye assay was used to assess the effects of a 
sublethal dose of Dox on MMP, an early indicator of 
mitochondrial health in H9c2 cells. A decrease in the 
red-to-green ratio (R/G ratio) indicates mitochondrial 
depolarization and dysfunction. H9c2 cells were treated 
with the same Dox concentrations as described earlier 
(Fig. 1C). The vehicle group exhibited an R/G ratio of 3.2. 
Treatment with 0.1 µM Dox resulted in a 21.9% reduc-
tion in the R/G ratio to 2.5 (P < 0.05, Fig. 1D). With 
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0.5 µM Dox, the R/G ratio decreased to 1.9, a 40.6% 
decrease from the vehicle (P < 0.01, Fig. 1D). At 1.0 µM 
Dox, the R/G ratio further decreased to 1.4, a 56.3% de-
crease from the vehicle (P < 0.01, Fig. 1D). These results 
indicate a dose-dependent decrease in MMP in H9c2 
cells after Dox treatment, underscoring its potential 
impact on mitochondrial function.

Phosphorylation-activated CaMKII mediates mito-
chondrial dysfunction induced by a sublethal dose 
of doxorubicin
To evaluate the molecular mechanisms resulting in the 
observed mitochondrial dysfunction induced by subleth-
al Dox treatment, we focused on the role of CaMKII. 
This kinase is activated via autophosphorylation upon 
binding with activated calmodulin.16 Specifically, we 
investigated whether calcium-induced autophosphoryla-
tion of CaMKII potentiates mitochondrial dysfunction 
in H9c2 cells treated with sublethal Dox by using west-
ern blot analysis with an antibody specific to CaMKII 
phosphorylated at Thr286/287. As shown in Fig. 2A, the 

levels of pCaMKII, when normalized to total CaMKII, 
increased from 1.0 in the vehicle-treated group to 2.0 
in the Dox-treated group (P < 0.05). This increase in 
pCaMKII was abolished by the CaMKII inhibitor KN-
93 (P < 0.05), which inhibits the interaction between 
calmodulin and CaMKII.32 This underscores that the 
observed elevation in pCaMKII in response to sublethal 
Dox occurs through calcium-mediated signaling.

Evaluation of MMP by R/G ratio using JC-1 dye 
following treatment with KN-93 demonstrated that the 
R/G ratio was diminished by 42.0%, from 3.1 in the 
vehicle group to 1.8 upon 0.5 µM Dox treatment (P < 
0.01, Fig. 2B). This reduction was entirely restored to the 
level of the vehicle group in cells that were co-treated 
with KN-93 (P < 0.01, Fig. 2C). These findings indicate 
that phosphorylation-activated CaMKII is required for 
the mitochondrial dysfunction observed in H9c2 cells 
treated with sublethal Dox.

Fig. 1. The effect of sublethal doxorubicin on mitochondrial membrane potential. (A) H9c2 cells (8.0 × 103 cells/well in 96-well plate) 
were incubated with 0.1, 0.5, or 1.0 µM Dox or the vehicle group for 24 hours. Cell viability was detected by PI (red) staining. (B) The 
number of dead cells was quantified and is represented as the ratio of PI-positive cells (red) to Hoechst 33342-positive cells (blue) (n = 
4). (C) H9c2 cells were treated with 0.1, 0.5, or 1.0 µM Dox or the vehicle group for 24 hours. Afterward, cells were incubated with 2.0 
µM JC-1 dye for 30 minutes to evaluate the mitochondrial membrane potential (representative image). (D) The mitochondrial membrane 
potential was measured using a microplate reader and is represented as the R/G ratio (n = 5). Data are mean ± SD, scale bar = 100 µm, 
*P < 0.05; **P < 0.01, significantly different as indicated.
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Sublethal doses of doxorubicin induce adaptive 
mitophagy via CaMKII activation
Mitophagy is a selective form of autophagy targeting 
mitochondria that can perform both adaptive (protective) 
as well as maladaptive (pathological) roles. Though 
initially identified as a protective response, excessive 
mitochondrial fission, particularly as mediated by the 
protein Drp1, may lead to cytotoxic effects. As Drp1 
has been shown to be phosphorylated by CaMKII,23 
we explored whether the elevated levels of pCaMKII 
observed in response to sublethal concentrations of Dox 
led to increased mitophagy.

Using the Mtphagy dye, which accumulates in 
intact mitochondria and emits enhanced fluorescence 
upon mitochondrial fusion with lysosomes during 
mitophagy, we assessed mitophagy levels in response 
to Dox in a dose-dependent manner (Fig. 3A). In the 

vehicle-treated group, only 0.1% of the cells were mi-
tophagy-positive. Treatment with 0.1 µM Dox increased 
this to 3.5%; however, this increase was not statistically 
significant (Fig. 3B). A significant rise was observed 
with the sublethal dose of 0.5 µM Dox, where 62.2% 
of cells were mitophagy-positive (P < 0.01, Fig. 3B). In 
contrast, at 1.0 µM Dox, which is the lethal dose for the 
cells as shown in Figs. 1A and B, this percentage surged 
to 97.4% (P < 0.01, Fig. 3B).

To evaluate the role of pCaMKII in Dox-induced 
mitophagy, H9c2 cells were treated with the CaMKII 
inhibitor KN-93 (Fig. 3C). In the vehicle-treated group, 
1.9% of cells showed mitophagy. This proportion 
significantly increased to 58.1% after treatment with 0.5 
µM Dox (P < 0.01, Fig. 3D). However, co-treatment with 
5.0 µM KN-93, an inhibitor of autophosphorylation-
activated CaMKII, significantly reduced the mitophagy 

Fig. 2. Role of CaMKII phosphorylation in mitochondrial membrane potential reduction induced by a sublethal dose of doxorubicin. 
(A) Western blot analysis was performed on proteins harvested from H9c2 cells seeded at a density of 3.0 × 105 cells/well in 6-well plate. 
Total CaMKII and phosphorylated CaMKII levels were normalized with corresponding β-actin and represented as the ratio of phos-
phorylated CaMKII to Total CaMKII. Dox treatment significantly increased the phosphorylation level of CaMKII, while KN-93 pre-
treatment prevented this Dox-induced CaMKII activation (n = 4). (B) H9c2 cells (8.0 × 103 cells/well in 96-well plate) were treated with 0.5 
µM Dox or vehicle group for 24 hours, with or without a 5.0 µM KN-93 pre-treatment for two hours. Subsequently, cells were incubated 
with 2.0 µM JC-1 dye for 30 minutes to evaluate the MMP. KN-93 pre-treatment effectively prevented the Dox-induced MMP reduction 
(Representative image). (C) MMP was assessed using a microplate reader and is represented as the R/G ratio (n = 5). Data are shown as 
mean ± SD; scale bar = 100 µm. *P < 0.05; **P < 0.01, indicating significant differences as marked.
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Fig. 3. Role of CaMKII in adaptive mitophagy following a sublethal dose of doxorubicin exposure. (A) H9c2 cells (8.0 × 103 cells/
well in 96-well plate) were treated with varying concentrations of Dox for 24 hours, showing a dose-dependent increase in mitophagic 
activity. (B) Quantification of cells undergoing mitophagy, represented as the ratio of mitophagy-positive staining (red) to Hoechst 
33342-positive staining (blue) (n = 5). (C) KN-93 pre-treatment (5.0 µM) led to a reduction in Dox-induced mitophagy (n = 5). (D) 
Quantitative analysis of the cells from (C) showing the mitophagy ratio. (E) Mdivi-1 pre-treatment (5.0 µM) did not affect Dox-induced 
mitophagy (n = 5). (F) Quantitative analysis of the cells from (E) showing the mitophagy ratio. (G) Representative image of H9c2 cells (8.0 
× 103 cells/well in 96-well plate) treated with 0.5 µM Dox or vehicle group for 24 hours, with or without Mdivi-1 (5.0 µM) pre-treatment. 
Mdivi-1 did not prevent the Dox-induced reduction in MMP (representative image). (H) Quantitative analysis of MMP, represented 
as the R/G ratio (n = 5). Data are shown as mean ± SD; scale bar = 100 µm. *P < 0.05; **P < 0.01, indicating significant differences as 
marked.
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level to 43.7% (P < 0.01, Fig. 3D).
Considering the significant reduction in mitophagy 

after KN-93 treatment, we further explored whether 
Drp1, a downstream target molecule of CaMKII, played 
a role in this process. For this, we used Mdivi-1, a spe-
cific inhibitor of Drp1 (Fig. 3E). In the vehicle-treated 
group, 1.9% of cells were mitophagy-positive (Fig. 3F). 
Treatment with 0.5 µM Dox led to a significant increase 
in mitophagy-positive cells, to 61.8% (P < 0.01, Fig. 3F). 
Notably, the addition of 5.0 µM Mdivi-1 did not lead to 
a significant reduction in mitophagy levels, with 62.6% 
of cells still being mitophagy-positive (Fig. 3F).

Lastly, we aimed to investigate the role of Drp1 in 
the MMP reduction induced by a sublethal dose of Dox, 
using Mdivi-1 and the JC-1 dye as an MMP indicator 
(Fig. 3G). The R/G ratio significantly decreased from 3.2 
in the vehicle group to 1.7 after 0.5 µM Dox treatment 
(P < 0.01, Fig. 3H). The addition of Mdivi-1 did not alter 
this ratio, maintaining it at 1.7 (Fig. 3H).

Mitochondrial calcium uptake is required for sub-
lethal doxorubicin-induced mitochondrial dysfunc-
tion
The importance of mitochondrial calcium ([Ca2+] 
mito) levels in cellular health is well established. 
Dysregulation of these calcium levels, especially exces-
sive [Ca2+] mito, can impair mitochondrial functions 
including ATP synthesis, and may even trigger apopto-
sis. The mitochondrial calcium uniporter (MCU) is re-
sponsible for calcium uptake into the mitochondria18, 33 
and is known to be a phosphorylation target of activated 
CaMKII.11 As we observed that phosphorylation of 
CaMKII was increased in response to sublethal Dox, we 
aimed to determine whether altered [Ca2+] mito levels, 
mediated by the MCU, contribute to the mitochondrial 
dysfunction observed with sublethal Dox treatment.

To address this, we first assessed the [Ca2+] mito 
levels in H9c2 cells treated with Dox by using Rhod-
2 AM dye, a fluorescent indicator that is sensitive to 
[Ca2+] mito. Using Rhod-2 AM, we found a statistically 
significant increase in [Ca2+] mito, to 83.4, representing 
an 8.7-fold increase observed upon 0.5 µM Dox treat-
ment compared with vehicle which is detected at 9.6 (Fig. 
4A). With 1.0 µM Dox treatment, the increase in [Ca2+] 
mito increased further to 232.8, representing a 24.3-fold 
increase over the level of the vehicle group (P < 0.01, 
Fig. 4A).

To delineate the involvement of autophosphoryla-
tion-activated CaMKII in the increased [Ca2+] mito lev-
els observed following Dox treatment, H9c2 cells were 
pre-treated with KN-93 inhibitor. Interestingly, KN-93 
did not attenuate the elevated [Ca2+] mito levels seen in 

response to sublethal doses of Dox. The fluorescence 
intensity of the vehicle group was measured at 10.2, 
and with 0.5 µM Dox treatment, a 7.2-fold increase of 
fluorescence intensity to 73.2 was detected (P < 0.01). 
In the group treated with both 0.5 µM Dox and KN-
93, the fluorescence intensity was measured at 80.7, 
showing a non-statistically significant change compared 
to the Dox-treated group (Fig. 4B) and suggesting that 
autophosphorylation-activated CaMKII might not regu-
late [Ca2+] mito in response to Dox.

As the MCU has been shown to play a role in 
regulating [Ca2+] mito, we evaluated the impact of 
Ru360, a specific inhibitor of the MCU, on [Ca2+] mito. 
Ru360 did not diminish the increased [Ca2+] mito levels 
induced by sublethal Dox. In the vehicle group, the 
fluorescence intensity was measured at 12.7. Following 
treatment with 0.5 µM Dox, an increase of 6.9-fold to 
88.1 was observed (P < 0.05). Pre-treatment with Ru360 
resulted in a fluorescence intensity of 92.7, which was 
non-significant compared with the Dox-treated group 
(Fig. 4C).

Finally, since sublethal concentrations of Dox were 
shown to decrease MMP as well as increase [Ca2+] mito, 
the effect of inhibiting the MCU on MMP in response 
to Dox was assessed (Fig. 4D). Inhibition of the MCU 
with Ru360 did not ameliorate the reduction in MMP 
induced by sublethal Dox. The R/G ratio of the vehicle 
group was 3.1; following 0.5 µM Dox treatment, the R/
G ratio decreased to 1.7, representing a 45.2% decline 
(P < 0.01). In the Ru360 pre-treated group, the R/G ratio 
was 2.0, which was non-significantly different compared 
with the Dox-treated group (Fig. 4E). This indicates that 
elevated [Ca2+] mito in response to Dox may not be the 
primary mechanism by which Dox decreases MMP and 
disrupts mitochondrial function.

DISCUSSION
Dox, while widely recognized for its potent anticancer 
properties, simultaneously poses a significant clinical 
challenge because of its dose-dependent cardiotoxic 
effects, which often progress to heart failure. To eluci-
date the mechanisms underlying Dox-induced cardio-
myopathy, we evaluated the sublethal effects of Dox 
exposure in a cardiomyocyte model. We hypothesized 
that early mitochondrial dysfunction mediated by 
autophosphorylation-activated CaMKII plays a pivotal 
role in controlling the cellular response to Dox. The 
data from the current study substantiate this hypothesis, 
revealing intricate pathways that intertwine mitophagy 
and mitochondrial calcium dynamics, as depicted in 
Figure 5.

Having established 0.5 µM Dox as a sublethal 
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dose in H9c2 cells, we next identified a crucial phase 
in which the cells, although not lethally compromised, 
have been exposed to substantial stress. Mitochondrial 
perturbations serve as early events,4 but may potentially 
lead to overt cardiomyopathy, and thus, could act as ear-
ly indicators for proactive therapeutic interventions. We 
observed a significant decrease in the R/G ratio of JC-1 
dye, a marker of reduced MMP, following Dox expo-
sure, indicating pronounced mitochondrial dysfunction 
even at sublethal doses of Dox. While this detrimental 
impact of Dox on mitochondrial function aligns with 
findings from previous studies,3, 4, 6 in the current 
study, co-treatment with the CaMKII inhibitor KN-93 
restored the amelioration of the R/G ratio, demonstrat-
ing the novel finding that autophosphorylation-activated 
CaMKII is required for the observed Dox-mediated de-
crease in MMP. Although oxidation-activated CaMKII 

has been shown to play roles in various cellular dynam-
ics,13–15 this study demonstrates that pCaMKII is pivotal 
in mediating Dox-triggered mitochondrial disruptions. 
This finding highlights the potential utility of inhibiting 
CaMKII phosphorylation as a strategy to mitigate Dox-
induced mitochondrial disruption.

In response to a decrease in MMP, mitophagy 
may occur, as has been demonstrated in various stud-
ies.7, 19, 22 Sublethal Dox increased the percentage of 
cells undergoing mitophagy (Fig. 3), which aligns with 
the findings of Bisaccia et al. and Kim and Lemasters, 
suggesting that mitophagy acts as a cellular defense 
mechanism against stress.7, 19 This response to stress 
could be interpreted as an adaptive mechanism to coun-
terbalance Dox-induced alterations in mitochondrial 
dynamics.20 Our findings indicate that the inhibition of 
pCAMKII by KN-93 significantly reduced Dox-induced 

Fig. 4. Role of CaMKII in mitochondrial calcium dynamics upon sublethal doxorubicin exposure. [Ca2+] mito was measured using 
dihydro-rhod-2 AM. (A) H9c2 cells treated with 0.1, 0.5, or 1.0 µM Dox display increased [Ca2+] mito. Data, representing the fluores-
cence intensity difference before and 30 min post Dox treatment, were collected using a microplate reader. (n = 4). (B) Pre-treatment 
with 5.0 µM KN-93 for 2 hours did not mitigate the Dox-induced rise in [Ca2+] mito. (n = 5). (C) Similarly, Ru360 pre-treatment did not 
avert the Dox-induced surge in [Ca2+] mito, (n = 4). (D) H9c2 cells were treated with 0.5 µM Dox for 24 hours, with or without a 2-hour 
pre-treatment using 5.0 µM Ru360 (MCU inhibitor). Subsequent incubation with 2.0 µM JC-1 dye for 30 min was conducted to assess 
MMP. (E) Ru360 pre-treatment failed to prevent the Dox-induced MMP decline, with MMP data measured via a microplate reader and 
presented as the R/G ratio (n = 7). Data are expressed as mean ± SD; scale bar = 100 µm. *P < 0.05; **P < 0.01, indicating significant 
differences where noted.
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mitophagy, suggesting a role of pCAMKII in this 
process. In contrast, inhibition of Drp1 with Mdivi-1 
did not lead to a significant reduction in mitophagy 
levels, indicating that the role of Drp1 in Dox-induced 
mitophagy might be more complex or context-specific 
than previously anticipated.

The observed increase in [Ca2+] mito following 
sublethal Dox exposure suggests that, despite the well-
characterized role of calcium dysregulation as a pivotal 
cellular stress factor,4 this increase occurred indepen-
dently of autophosphorylation-activated CaMKII and 
the MCU, leading to additional questions. Further 
analysis of potentially more intricate and alternative cal-
cium regulatory mechanisms is required, which merits 
further exploration.12, 33, 34

Destabilization of MMP disrupts ATP synthesis 
and, consequently, the electromechanical functional-
ity of cardiomyocytes through disrupted calcium 
homeostasis.7, 22 Given the elevated energy demands of 
the heart,7, 22 even a minor deviation in mitochondrial 
functionality could cascade into cellular dysfunction, 
affecting contractility and rhythm to varying degrees. 
While our study centered on early mitochondrial dis-
turbances, the path from mitochondrial dysfunction to 
observable cardiomyopathy is not well established and 
requires further investigation.

The current study has certain limitations. Notably, 
the focus was on in vitro models, which may not 

accurately recapitulate the in vivo microenvironment 
and may overlook the dynamics of cell-to-cell interac-
tions and systemic responses.9 Moreover, the reliance of 
this study on specific molecular inhibitors to interrogate 
mitochondrial mechanisms of sublethal Dox concentra-
tions might obscure potential, as-yet unidentified, com-
ponents within a complex cellular signaling network 
that could impact cardiomyocyte toxicity.

In conclusion, our study reinforces the multifaceted 
and intricate cellular responses elicited by Dox; in 
particular, highlighting the impact of Dox on early 
mitochondrial dysfunction and the pivotal roles of 
pCaMKII, mitophagy, and mitochondrial calcium 
dynamics. Understanding how these pathways intersect 
may lay the foundation for evolving therapeutic strate-
gies. By extension, understanding how Dox impacts 
mitochondrial dynamics may influence the approach 
toward managing Dox-induced cardiomyopathy, poten-
tially altering the therapeutic landscape and improving 
patient outcomes.

The authors declare no conflict of interest.
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