

Software Reliability Modeling Research and Its Brief History in My Career

山田 茂

鳥取大学大学院工学研究科社会経営工学講座

Shigeru YAMADA
Department of Social Management Engineering, Graduate School of Engineering

Tottori University, Tottori, 680-8552 Japan
E-mail: yamada@sse.tottori-u.ac.jp

Abstract: Software reliability is one of the most important characteristics of software quality. Its measurement and
management technologies during the software life-cycle are essential to produce and maintain quality/reliable software
systems. In this paper, we discuss software reliability modeling and its applications. As to software reliability modeling,
hazard rate and NHPP models are investigated particularly for quantitative software reliability assessment. Further, im-
perfect debugging and software availability models are also discussed with reference to incorporating practical factors
of dynamic software behavior. Finally, the history of my software reliability modeling research effort is briefly
summarized in Appendix.

Key Words: Product quality/reliability assessment, Software reliability growth modeling, Hazard rate, Nonhomogeneous Poisson
process, Imperfect debugging, Software availability, Markov process.

1. Introduction
A software reliability model (SRM) is a mathe-

matical analysis model for the purpose of measuring
and assessing software quality/reliability quantita-
tively. Many software reliability models have been
proposed and applied to practical use because soft-
ware reliability is considered to be a “must-be quali-
ty” characteristic of a software product. The software
reliability models can be divided into two classes as
shown in Figure 1. One treats the upper software de-
velopment process, i.e., design and coding phases,
and analyzes the reliability factors of the software
products and processes, which is categorized in the
class of static model. The other deals with testing and
operation phases by describing a software fail-
ure-occurrence phenomenon or software
fault-detection phenomenon, by applying the stochas-
tic/statistics theories and can estimate and predict the
software reliability, which is categorized in dynamic
model.

In the former class, a software complexity model
is well known and can measure the reliability by as-
sessing the complexity based on the structural char-
acteristics of products and the process features to
produce the products. In the latter class, a software
reliability growth model is especially well known.

Further, this model is divided into three categories:
(1) Software failure-occurrence time model

The model which is based on the software fail-
ure-occurrence time or the software fault-detection
time.

(2) Software fault-detection count model
The model which is based on the number of soft-
ware failure-occurrence or the number of detected
faults.

(3) Software availability model
The model which describes the time-dependent be-

havior of software system alternating up (operation)
and down (restoration or fault correction) states.

The software reliability growth models are utilized
for assessing the degree of achievement of software
quality, deciding the time to software release for op-
erational use, and evaluating the maintenance cost for
faults undetected during the testing phase. We discuss
the software reliability growth models.

2. Software Reliability Growth Modeling
Generally, a mathematical model based on sto-

chastic and statistical theories is useful to describe the
software fault-detection phenomena or the software
failure-occurrence phenomena and est imate the

34

Software Reliability Modeling Research and Its Brief History in My Career

山田 茂

鳥取大学大学院工学研究科社会経営工学講座

Shigeru YAMADA
Department of Social Management Engineering, Graduate School of Engineering

Tottori University, Tottori, 680-8552 Japan
E-mail: yamada@sse.tottori-u.ac.jp

Abstract: Software reliability is one of the most important characteristics of software quality. Its measurement and
management technologies during the software life-cycle are essential to produce and maintain quality/reliable software
systems. In this paper, we discuss software reliability modeling and its applications. As to software reliability modeling,
hazard rate and NHPP models are investigated particularly for quantitative software reliability assessment. Further, im-
perfect debugging and software availability models are also discussed with reference to incorporating practical factors
of dynamic software behavior. Finally, the history of my software reliability modeling research effort is briefly
summarized in Appendix.

Key Words: Product quality/reliability assessment, Software reliability growth modeling, Hazard rate, Nonhomogeneous Poisson
process, Imperfect debugging, Software availability, Markov process.

1. Introduction
A software reliability model (SRM) is a mathe-

matical analysis model for the purpose of measuring
and assessing software quality/reliability quantita-
tively. Many software reliability models have been
proposed and applied to practical use because soft-
ware reliability is considered to be a “must-be quali-
ty” characteristic of a software product. The software
reliability models can be divided into two classes as
shown in Figure 1. One treats the upper software de-
velopment process, i.e., design and coding phases,
and analyzes the reliability factors of the software
products and processes, which is categorized in the
class of static model. The other deals with testing and
operation phases by describing a software fail-
ure-occurrence phenomenon or software
fault-detection phenomenon, by applying the stochas-
tic/statistics theories and can estimate and predict the
software reliability, which is categorized in dynamic
model.

In the former class, a software complexity model
is well known and can measure the reliability by as-
sessing the complexity based on the structural char-
acteristics of products and the process features to
produce the products. In the latter class, a software
reliability growth model is especially well known.

Further, this model is divided into three categories:
(1) Software failure-occurrence time model

The model which is based on the software fail-
ure-occurrence time or the software fault-detection
time.

(2) Software fault-detection count model
The model which is based on the number of soft-
ware failure-occurrence or the number of detected
faults.

(3) Software availability model
The model which describes the time-dependent be-

havior of software system alternating up (operation)
and down (restoration or fault correction) states.

The software reliability growth models are utilized
for assessing the degree of achievement of software
quality, deciding the time to software release for op-
erational use, and evaluating the maintenance cost for
faults undetected during the testing phase. We discuss
the software reliability growth models.

2. Software Reliability Growth Modeling
Generally, a mathematical model based on sto-

chastic and statistical theories is useful to describe the
software fault-detection phenomena or the software
failure-occurrence phenomena and est imate the

Fig. 1 Hierarchical classification of software reliability model.

Fig. 2 The stochastic quantities related to a software fault-detection phenomenon
or a software failure-occurrence phenomenon.

software reliability quantitatively. During the testing
phase in the software development process, software
faults are detected and removed with a lot of test-
ing-effort expenditures. Then, the number of faults
remaining in the software system decreases as the
testing goes on. This means that the probability of
software failure-occurrence is decreasing, so that the
software reliability is increasing and the time interval
between software failures becoming longer with the
testing time.

A mathematical tool which describes software re-
liability aspect is a software reliability growth model.

Based on the plausible definitions, we can devel-
op a software reliability growth model based on the
assumptions used for the actual environment during
the testing phase or the operation phase. Then, we can
define the following random variables on the number

of detected faults and the software failure-occurrence
time (see Figure 2):

)(tN = the cumulative number of software faults
(or the cumulative number of observed software fail-
ures) detected up to time t,

iS = the i-th software-failure occurrence time

)0;,2,1(0  Si  ,

iX = the time interval between (i-1)-st and i-th
software failures)0;,2,1(0  Xi  .

Figure 2 shows the occurrence of event

})({ itN  since i faults have been detected up to
time t. From these definitions, we have

.1
1

, 


 iii

i

k
ki SSXXS (1)

35鳥 取 大 学 大 学 院 工 学 研 究 科 / 工 学 部 研 究 報 告 第４８巻

Assuming that the hazard rate, i.e., the software
failure rate, for),2,1(iXi

,)(xzi
, is proportional to

the current number of residual faults remaining in the
system, we have

)()1()(xiNxzi 
),0,0;,,2,1( λxNi  (2)

where N is the initial fault content and)(xλ the soft-
ware failure rate per fault remaining in the system at
time x. If we consider two special cases in Eq. (2) as

),0()( φφλx (3)

),0,0()(1   mxx m φφλ (4)

then two typical software hazard rate models, respec-
tively called the Jelinski-Moranda model and the
Wagoner model can be derived, where φ and m are
constant parameters. Usually, it is difficult to assume
that a software system is completely fault free or
failure free. Then, we have a software hazard rate
model called the Moranda model for the case of the
infinite number of software failure occurrences as

),10;0;,2,1()(1   kDiDkxz i
i  (5)

where D is the initial software hazard rate and k the
decreasing ratio. Eq. (5) describes a software fail-
ure-occurrence phenomenon where a software system
has high frequency of software failure occurrence
during the early stage of the testing or the operation
phase and it gradually decreases thereafter. Based on
the software hazard rate models above, we can derive
several software reliability assessment measures. For
example, the software reliability function for

),2,1(iXi

is given as

).,2,1()(exp)(
0





  idxxzxR

x

ii (6)

Further, we also discuss NHPP models, which are
modeled for random variable N(t) as typical software
reliability growth models. In the NHPP models, a
nonhomogeneous Poisson process (NHPP) is assumed
for the random variable N(t), the distribution function
of which is given by

),,2,1()](exp[
!
)}({})(Pr{  ntH

n
tHntN

n


t

dxxhtNEtH
0

,)()]([)((7)

where]Pr[・ and][・E mean the probability and ex-
pectation, respectively. H(t) in Eq. (7) is called a
mean value function which indicates the expectation
of N(t), i.e., the expected cumulative number of faults
detected (or the expected cumulative number of soft-
ware failures occurred) in the time interval],0(t , and
h(t) in Eq. (7) called an intensity function which in-
dicates the instantaneous fault-detection rate at time t.

From Eq. (7), various software reliability assess-
ment measures can be derived. For examples, the ex-
pected number of faults remaining in the system at
time t is given by

),()(tHatn  (8)

where)(Ha , i.e., parameter a denotes the ex-
pected initial fault content in the software system.
Given that the testing or the operation has been going
up to time t, the probability that a software failure
does not occur in the time interval)0](,( xxtt
is given by conditional probability

}|Pr{ 1 tSxX ii  
as

 ).0,0()()(exp)|( xttxHtHtxR (9)

)|(txR in Eq. (9) is a so-called software reliability.
Measures of MTBF (mean time between software
failures or fault-detections) can be obtained follows:

,
)(

1)(
th

tMTBF  (10)

 .
)(

)(
tH

ttMTBFC  (11)

MTBFs in Eqs. (10) and (11) are called instanta-
neous and cumulative MTBFs, respectively.

It is obvious that the lower the value of)(tn in
Eq. (8), the higher the value

)|(txR

for specified x in
Eq. (9), or the longer the value of MTBFs in Eqs. (10)
and (11), the higher the achieved software reliability
is. Then, analyzing actual test data with accepted
NHPP models, these measures can be utilized to as-
sess software reliability during the testing or opera-
tion phase, where statistical inferences, i.e., parameter
estimation and goodness-of-fit test, are usually per-
formed by a method of maximum likelihood.

MTBFI

36 山田茂：Software Reliability Modeling Research and Its Brief History in My Career

Assuming that the hazard rate, i.e., the software
failure rate, for),2,1(iXi

,)(xzi
, is proportional to

the current number of residual faults remaining in the
system, we have

)()1()(xiNxzi 
),0,0;,,2,1( λxNi  (2)

where N is the initial fault content and)(xλ the soft-
ware failure rate per fault remaining in the system at
time x. If we consider two special cases in Eq. (2) as

),0()( φφλx (3)

),0,0()(1   mxx m φφλ (4)

then two typical software hazard rate models, respec-
tively called the Jelinski-Moranda model and the
Wagoner model can be derived, where φ and m are
constant parameters. Usually, it is difficult to assume
that a software system is completely fault free or
failure free. Then, we have a software hazard rate
model called the Moranda model for the case of the
infinite number of software failure occurrences as

),10;0;,2,1()(1   kDiDkxz i
i  (5)

where D is the initial software hazard rate and k the
decreasing ratio. Eq. (5) describes a software fail-
ure-occurrence phenomenon where a software system
has high frequency of software failure occurrence
during the early stage of the testing or the operation
phase and it gradually decreases thereafter. Based on
the software hazard rate models above, we can derive
several software reliability assessment measures. For
example, the software reliability function for

),2,1(iXi

is given as

).,2,1()(exp)(
0





  idxxzxR

x

ii (6)

Further, we also discuss NHPP models, which are
modeled for random variable N(t) as typical software
reliability growth models. In the NHPP models, a
nonhomogeneous Poisson process (NHPP) is assumed
for the random variable N(t), the distribution function
of which is given by

),,2,1()](exp[
!
)}({})(Pr{  ntH

n
tHntN

n


t

dxxhtNEtH
0

,)()]([)((7)

where]Pr[・ and][・E mean the probability and ex-
pectation, respectively. H(t) in Eq. (7) is called a
mean value function which indicates the expectation
of N(t), i.e., the expected cumulative number of faults
detected (or the expected cumulative number of soft-
ware failures occurred) in the time interval],0(t , and
h(t) in Eq. (7) called an intensity function which in-
dicates the instantaneous fault-detection rate at time t.

From Eq. (7), various software reliability assess-
ment measures can be derived. For examples, the ex-
pected number of faults remaining in the system at
time t is given by

),()(tHatn  (8)

where)(Ha , i.e., parameter a denotes the ex-
pected initial fault content in the software system.
Given that the testing or the operation has been going
up to time t, the probability that a software failure
does not occur in the time interval)0](,( xxtt
is given by conditional probability

}|Pr{ 1 tSxX ii  
as

 ).0,0()()(exp)|( xttxHtHtxR (9)

)|(txR in Eq. (9) is a so-called software reliability.
Measures of MTBF (mean time between software
failures or fault-detections) can be obtained follows:

,
)(

1)(
th

tMTBF  (10)

 .
)(

)(
tH

ttMTBFC  (11)

MTBFs in Eqs. (10) and (11) are called instanta-
neous and cumulative MTBFs, respectively.

It is obvious that the lower the value of)(tn in
Eq. (8), the higher the value

)|(txR

for specified x in
Eq. (9), or the longer the value of MTBFs in Eqs. (10)
and (11), the higher the achieved software reliability
is. Then, analyzing actual test data with accepted
NHPP models, these measures can be utilized to as-
sess software reliability during the testing or opera-
tion phase, where statistical inferences, i.e., parameter
estimation and goodness-of-fit test, are usually per-
formed by a method of maximum likelihood.

Table 1 A summary of NHPP models.

To assess the software reliability actually, it is

necessary to specify the mean value function H(t) in
Eq. (7). Many NHPP models considering the various
testing or operation environments for software relia-
bility assessment have been proposed in the last dec-
ade. Typical NHPP models are summarized in Table 1.
As discussed above, a software reliability growth is
described as the relationship between the elapsed
testing or operation time and the cumulative number
of detected faults and can be shown as the reliability
growth curve mathematically. Among the NHPP
models in Table 1, exponential and modified expo-
nential software reliability growth models are appro-
priate when the observed reliability growth curve
shows an exponential curve. Similarly, delayed
S-shaped and inflection S-shaped software reliability

growth models are appropriate when the reliability
growth curve is S-shaped.

In addition, as for computer makers or software
houses in Japan, logistic curve and Gompertz curve
models have often been used as software quality as-
sessment models, on the assumption that software
fault-detection phenomena can be shown by S-shaped
reliability growth curves. In these deterministic mod-
els, the cumulative number of faults detected up to
testing t is formulated by the following growth equa-
tions:

).0,0,0(
1

)(


  km
me
ktL t 

(12)

).0,10,10()()( kbakatG
tb (13)

37鳥 取 大 学 大 学 院 工 学 研 究 科 / 工 学 部 研 究 報 告 第４８巻

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

In Eqs. (12) and (13), assuming that a convergence
value of each curve ()(L or)(G), i.e., parameter
k, represents the initial fault content in the software
system, it can be estimated by a regression analysis.

3. IMPERFECT DEBUGGING MODELING

Most software reliability growth models proposed
so far are based on the assumption of perfect debug-
ging, i.e., that all faults detected during the testing
and operation phases are corrected and removed per-
fectly. However, debugging actions in real testing and
operation environments are not always performed
perfectly. For example, typing errors invalidate the
fault-correction activity or fault-removal is not car-
ried out precisely due to incorrect analysis of test re-
sults. We therefore have an interest in developing a
software reliability growth model which assumes an
imperfect debugging environment. Such an imperfect
debugging model is expected to estimate reliability
assessment measures more accurately.

A. Imperfect debugging model with perfect correction
rate

To model an imperfect debugging environment,
the following assumptions are made:

(1) Each fault which causes a software failures
is corrected perfectly with probability

)10( pp . It is not corrected with
probability)1(pq  . We call p the
perfect debugging rate or the perfect correc-
tion rate.

(2) The hazard rate is given by Eq. (5) and de-
crease geometrically each time a detected
fault is corrected (see Figure 3).

(3) The probability that two or more software
failures occur simultaneously is negligible.

(4) No new faults are introduced during the
debugging. At most one fault is removed
when it is corrected, and the correction time
is not considered.

Let X(t) be a random variable representing the
cumulative number of faults corrected up to the test-
ing time t. Then, X(t) forms a Markov process. That is,
from assumption (1), when i faults have been cor-
rected by arbitrary testing time t,








,,1
,,

)(
pyprobabilitwithi
qyprobabilitwithi

tx (14)

(see Fig. 4). Then, the one-step transition probability
for the Markov process that after making a transition

Fig. 3 Behavior of hazard rate.

Fig. 4 A diagrammatic representation of

transitions between states of X(t).

into state i, the process }0),({ ttX makes a tran-
sition into state j by time t is given by

]),exp[1()(tDkptQ i
ijij  (15)

where
ijp are the transition probabilities from state i

to state j and are given by













).(,0
),2,1,0,(,

)(,

elsewhere
jip

jiq
pij  (16)

Eq. (15) represents the probability that if i faults have
been corrected at time zero, j faults are corrected by
time t after the next software failure occurs. There-
fore, based on Markov analysis by using the assump-
tions and stochastic quantities above, we have the
software reliability function and the mean time be-
tween software failures for),2,1(iXi

as

,]exp[
1

)(
1

0

1




 






 


i

s

ssis
i xDkqp

s
i

xR (17)

X probability
probability

38 山田茂：Software Reliability Modeling Research and Its Brief History in My Career

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

In Eqs. (12) and (13), assuming that a convergence
value of each curve ()(L or)(G), i.e., parameter
k, represents the initial fault content in the software
system, it can be estimated by a regression analysis.

3. IMPERFECT DEBUGGING MODELING

Most software reliability growth models proposed
so far are based on the assumption of perfect debug-
ging, i.e., that all faults detected during the testing
and operation phases are corrected and removed per-
fectly. However, debugging actions in real testing and
operation environments are not always performed
perfectly. For example, typing errors invalidate the
fault-correction activity or fault-removal is not car-
ried out precisely due to incorrect analysis of test re-
sults. We therefore have an interest in developing a
software reliability growth model which assumes an
imperfect debugging environment. Such an imperfect
debugging model is expected to estimate reliability
assessment measures more accurately.

A. Imperfect debugging model with perfect correction
rate

To model an imperfect debugging environment,
the following assumptions are made:

(1) Each fault which causes a software failures
is corrected perfectly with probability

)10( pp . It is not corrected with
probability)1(pq  . We call p the
perfect debugging rate or the perfect correc-
tion rate.

(2) The hazard rate is given by Eq. (5) and de-
crease geometrically each time a detected
fault is corrected (see Figure 3).

(3) The probability that two or more software
failures occur simultaneously is negligible.

(4) No new faults are introduced during the
debugging. At most one fault is removed
when it is corrected, and the correction time
is not considered.

Let X(t) be a random variable representing the
cumulative number of faults corrected up to the test-
ing time t. Then, X(t) forms a Markov process. That is,
from assumption (1), when i faults have been cor-
rected by arbitrary testing time t,








,,1
,,

)(
pyprobabilitwithi
qyprobabilitwithi

tx (14)

(see Fig. 4). Then, the one-step transition probability
for the Markov process that after making a transition

Fig. 3 Behavior of hazard rate.

Fig. 4 A diagrammatic representation of

transitions between states of X(t).

into state i, the process }0),({ ttX makes a tran-
sition into state j by time t is given by

]),exp[1()(tDkptQ i
ijij  (15)

where
ijp are the transition probabilities from state i

to state j and are given by













).(,0
),2,1,0,(,

)(,

elsewhere
jip

jiq
pij  (16)

Eq. (15) represents the probability that if i faults have
been corrected at time zero, j faults are corrected by
time t after the next software failure occurs. There-
fore, based on Markov analysis by using the assump-
tions and stochastic quantities above, we have the
software reliability function and the mean time be-
tween software failures for),2,1(iXi

as

,]exp[
1

)(
1

0

1




 






 


i

s

ssis
i xDkqp

s
i

xR (17)

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

.)(][
0

1












 


D

q
k
p

dxxRXE

i

ii
 (18)

And if the initial fault content in the system, N, is
specified the expected cumulative number of faults
debugged imperfectly up to time t is given by









N

n

n

i

i
ni tpDkA

p
qtM

1

1

0
,]),exp[1()((19)

where niA , is

.

)1,,2,1,0;,3,2(

)(

1

1
0

)1()2/1(

,

1,0





















 






nin

kk
kA

A

n

ij
j

ij

inn

ni



 (20)

B. Imperfect debugging model for introduced faults

Besides the imperfect debugging factor above in
fault-correction activities, we consider the possibility
of introducing new faults in the debugging process. It
is assumed that the following two kinds of software
failures exist in the dynamic environment, i.e., the
testing or user operation phase:

(F1) software failures caused by faults originally
latent in the software system prior to the
testing (which are called inherent faults),

(F2) software failures caused by faults intro-
duced during the software operation owing
to imperfect debugging.

In addition, it is assumed that one software failure is
caused by one fault and that it is impossible to dis-
criminate whether the fault that caused the software
failure that has occurred is F1 or F2. As to the soft-
ware failure-occurrence rate due to F1, the inherent
faults are detected with the progress of the operation
time. In order to consider two kinds of time depend-
encies on the decreases of F1, let)2,1)((itai

denote
the software failure-occurrence rate for F1. On the
other hand, the software failure-occurrence rate due
to F2 is denoted as constant)0( , since we as-
sume that F2 occurs randomly throughout the opera-
tion. When we consider the software fail-
ure-occurrence rate at operation time t is given by

).2,1()()( itath ii  (21)

From Eq. (21), the expected cumulative number of
software failures in the time interval],0(t (or the
expected cumulative number of detected faults) is
given by

.
)2,1()()(

),()(

0 










t

ii

ii

idxxatA
tAttH 

 (22)

Then, we have two imperfect debugging models based
on an NHPP, where)(thi

in Eq. (21) and)(tHi
in

Eq. (22) are used as the intensity functions and the
mean value functions (i=1,2) for an NHPP, respec-
tively. Especially, exponential and delayed S-shaped
software reliability growth models are assumed for
describing software failure-occurrence phenomena
attributable to the inherent faults (see Table 1).

4. SOFTWARE AVAILABILITY MODELING

Recently, software performance measures such as
the possible utilization factors have begun to be in-
teresting for metrics as well as the hardware products.
That is, it is very important to measure and assess
software availability, which is defined as the proba-
bility that the software system is performing success-
fully, according to the specification, at a specified
time point. Several stochastic models have been pro-
posed so far for software availability measurement
and assessment. One group has proposed a software
availability model considering a reliability growth
process, taking account of the cumulative number of
corrected faults. Others have constructed software
availability models describing the uncertainty of fault
removal. Still others have incorporated the increasing
difficulty of fault removal.

The actual operational environment needs to be
more clearly reflected in software availability model-
ing, since software availability is a customer-oriented
metrics. In existing models the development of a
plausible model is described, which assumes that
there exist two types of software failure occurring
during the operation phase. Furthermore, an opera-
tional software availability model is built up from the
viewpoint of restoration scenarios.

The above models have employed Markov pro-
cesses for describing the stochastic time-dependent
behaviors of the systems which alternate between the
up state, operating regularly, and the restoration state
(down state) when a system is inoperable. Several
stochastic metrics for software availability measure-
ment in dynamic environment are derived from the
respective models.

We discuss a fundamental software availability
model below.

39鳥 取 大 学 大 学 院 工 学 研 究 科 / 工 学 部 研 究 報 告 第４８巻

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

Fig. 5 Sample behavior of the software system
alternating between up and down state.

Fig. 6 Behavior of restoration rate.

A. Model description

The following assumptions are made for software
availability modeling:
(1) The software system is unavailable and starts to

be restored as soon as a software failure occurs,
and the system cannot operate until the restora-
tion action is complete (see Figure 5).

(2) The restoration action implies debugging activ-
ity, which is performed perfectly with probabil-
ity)10(aa and imperfectly with probabil-
ity)1(ab  . We call a the perfect debugging
rate. One fault is corrected and removed from
the software system when the debugging activi-
ty is perfect.

(3) When n faults have been corrected, the time to
the next software failure occurrence and the
restoration time follow exponential distributions
with means of

n/1 and
n/1 , respectively.

Fig. 7 A sample realization of Y(t).

(4) The probability that two or more software fail-
ures will occur simultaneously is negligible.

Consider a stochastic process }0),({ ttX with
the state space (W, R) where up state vector
W= },2,1,0;{ nWn

and down state vec-
tor },2,1,0;{ nRn

. Then, the events })({ nWtX 
and })({ nRtX  mean that the system is operating and
inoperable, respectively, due to the restoration action
at time t, when n faults have already been corrected.

From assumption (2), when the restoration action
has been completed in })({ nRtX  ,






 ,,

,,
)(

1 ayprobabilitwithW
byprobabilitwithW

tx
n

n (23)

We use the Moranda model in Eq. (5) to describe the
software failure-occurrence phenomenon, i.e., when n
faults have been corrected, the software hazard rate

(see Figure 3) is given by

)10,0;,2,1,0( kDnDkn
n  (24)

The expression of Eq. (24) comes from the point of
view that software reliability depends on the debug-
ging efforts, not the residual fault content. We do not
note how many faults remain in the software system.

Next, we describe the time-dependent behavior of
the restoration action. The restoration action for
software systems includes not only the data recovery
and the program reload, but also the debugging activ-
ities for manifested faults. From the viewpoint of the
complexity, there are cases where the faults detected
during the early stage of the testing or operation
phase have low co mplex it y and are eas y to

X
probability
probability

40 山田茂：Software Reliability Modeling Research and Its Brief History in My Career

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

Fig. 5 Sample behavior of the software system
alternating between up and down state.

Fig. 6 Behavior of restoration rate.

A. Model description

The following assumptions are made for software
availability modeling:
(1) The software system is unavailable and starts to

be restored as soon as a software failure occurs,
and the system cannot operate until the restora-
tion action is complete (see Figure 5).

(2) The restoration action implies debugging activ-
ity, which is performed perfectly with probabil-
ity)10(aa and imperfectly with probabil-
ity)1(ab  . We call a the perfect debugging
rate. One fault is corrected and removed from
the software system when the debugging activi-
ty is perfect.

(3) When n faults have been corrected, the time to
the next software failure occurrence and the
restoration time follow exponential distributions
with means of

n/1 and
n/1 , respectively.

Fig. 7 A sample realization of Y(t).

(4) The probability that two or more software fail-
ures will occur simultaneously is negligible.

Consider a stochastic process }0),({ ttX with
the state space (W, R) where up state vector
W= },2,1,0;{ nWn

and down state vec-
tor },2,1,0;{ nRn

. Then, the events })({ nWtX 
and })({ nRtX  mean that the system is operating and
inoperable, respectively, due to the restoration action
at time t, when n faults have already been corrected.

From assumption (2), when the restoration action
has been completed in })({ nRtX  ,






 ,,

,,
)(

1 ayprobabilitwithW
byprobabilitwithW

tx
n

n (23)

We use the Moranda model in Eq. (5) to describe the
software failure-occurrence phenomenon, i.e., when n
faults have been corrected, the software hazard rate

(see Figure 3) is given by

)10,0;,2,1,0( kDnDkn
n  (24)

The expression of Eq. (24) comes from the point of
view that software reliability depends on the debug-
ging efforts, not the residual fault content. We do not
note how many faults remain in the software system.

Next, we describe the time-dependent behavior of
the restoration action. The restoration action for
software systems includes not only the data recovery
and the program reload, but also the debugging activ-
ities for manifested faults. From the viewpoint of the
complexity, there are cases where the faults detected
during the early stage of the testing or operation
phase have low co mplex it y and are eas y to

Fig. 8 A state transition diagram for software availability modeling.

correct/remove, and as the testing is in progress, de-
tected faults have higher complexity and are more
difficult to correct/remove. In the above case, it is
appropriate that the mean restoration time becomes
longer with the increasing number of corrected faults.
Accordingly, we express as follows (see Figure
6):

)10,0;,2,1,0( rEnErn
n  (25)

where E and r are the initial restoration rate and the
decreasing ratio of the restoration rate, respectively.
In Eq. (25) the case of r=1, i.e., En  , means that
the complexity of each fault is random.

Let
nT and),2,1,0(nUn

be the random
variables representing the next software failure oc-
currence and the next restoration time intervals when
n faults have been corrected, in other words the so-
journ times in states

nW and
nR , respectively. Fur-

thermore, let Y(t) be the random variable representing
the cumulative number of faults corrected up to time t.
The sample behavior of Y(t) is illustrated in Figure 7.
It is noted that the cumulative number of corrected
faults is not always coincident with that of software
failures or restoration actions. The sample state tran-
sition diagram of X(t) is illustrated in Figure 8.

B. Software availability measures

We can obtain the state occupancy probabilities that
the system is in state

nW and
nR at time point t as

})(Pr{)(nW WtXtP
n


nn

n

n

n

a
tg

a
tg


)()(11  



),2,1,0(n , (26)

})(Pr{)(nR RtXtP
n


n

n

a
tg


)(1

),2,1,0(n

, (27)

respectively, where)(tgn
is the probability density

function of random variable
nS , which denotes the

first passage time to state
nW , and

dttdgtg nn /)()( .)(tgn
and)(tgn can be given

analytically.
The following equation holds for arbitrary time t:

.1)]()([
0




n
RW tPtP

nn
 (28)

The instantaneous availability is defined as

,)()(
0






n

W tPtA
n

 (29)

which represents the probability that the software
system is operating at specified time point t. Fur-
thermore, the average software availability over

],0(t is defined as

,)(1)(
0
t

a v dxxA
t

tA (30)

which represents the ratio of system’s operating time
to the time interval

],0(t

. Using Eqs. (26) and (27),
we can express Eqs. (29) and (30) as

41鳥 取 大 学 大 学 院 工 学 研 究 科 / 工 学 部 研 究 報 告 第４８巻

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

Fig. 9 Dependence of perfect debugging rate a on

)(tA .











 









0

1

0

11)(1)()()(
n n

n

n nn

n

n

n

a
tg

a
tg

a
tgtA


, (31)











 









0

1

0

11 ,)(11)()(1)(
n n

n

n nn

n

n

n
a v a

tG
ta

tg
a

tG
t

tA


(32)

respectively, where)(tGn
is the distribution function

of
nS .

Figures 9 and 10 show numerical illustrations of
)(tA and)(tAav

in Eqs. (31) and (32), respectively.

Fig. 10 Dependence of perfect debugging rate a on

)(tAav .

REFERENCES
[1] S. Yamada and Y. Tamura, OSS Reliability Measurement

and Assessment, Springer International Publishing, Swit-
zerland, 2016.

[2] S. Yamada, Software Reliability Modeling: Fundamentals
and Applications , Springer-Verlag, Tokyo/Heidelberg,
2014.

[3] S. Yamada, Elements of Software Reliability: Modeling
Approach (in Japanese), Kyoritsu Publishing, Tokyo, 2011.

[4] S. Yamada, Fundamentals and Applications of Software
Engineering (in Japanese), Surikogaku-sha, Tokyo, 2013

[5] S. Yamada and T. Fukushima, Quality-Oriented Software
Management (in Japanese), Morikita Publishing, Tokyo,
2007.

[6] S. Yamada, Software Reliability Modeling (in Japanese),
JUSE Press, Tokyo, 1994.

[7] S. Yamada and M. Takahashi, Introduction to Software
Management Models (in Japanese), Kyoritsu Publishing,
Tokyo, 1993.

APPENDIX

42 山田茂：Software Reliability Modeling Research and Its Brief History in My Career

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

Fig. 9 Dependence of perfect debugging rate a on

)(tA .











 









0

1

0

11)(1)()()(
n n

n

n nn

n

n

n

a
tg

a
tg

a
tgtA


, (31)











 









0

1

0

11 ,)(11)()(1)(
n n

n

n nn

n

n

n
a v a

tG
ta

tg
a

tG
t

tA


(32)

respectively, where)(tGn
is the distribution function

of
nS .

Figures 9 and 10 show numerical illustrations of
)(tA and)(tAav

in Eqs. (31) and (32), respectively.

Fig. 10 Dependence of perfect debugging rate a on

)(tAav .

REFERENCES
[1] S. Yamada and Y. Tamura, OSS Reliability Measurement

and Assessment, Springer International Publishing, Swit-
zerland, 2016.

[2] S. Yamada, Software Reliability Modeling: Fundamentals
and Applications , Springer-Verlag, Tokyo/Heidelberg,
2014.

[3] S. Yamada, Elements of Software Reliability: Modeling
Approach (in Japanese), Kyoritsu Publishing, Tokyo, 2011.

[4] S. Yamada, Fundamentals and Applications of Software
Engineering (in Japanese), Surikogaku-sha, Tokyo, 2013

[5] S. Yamada and T. Fukushima, Quality-Oriented Software
Management (in Japanese), Morikita Publishing, Tokyo,
2007.

[6] S. Yamada, Software Reliability Modeling (in Japanese),
JUSE Press, Tokyo, 1994.

[7] S. Yamada and M. Takahashi, Introduction to Software
Management Models (in Japanese), Kyoritsu Publishing,
Tokyo, 1993.

APPENDIX

鳥 取 大 学 大 学 院 工 学 研 究 科／工 学 部 研 究 報 告 第 号

43鳥 取 大 学 大 学 院 工 学 研 究 科 / 工 学 部 研 究 報 告 第４８巻

