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1.   Introduction
A software reliability model (SRM) is a mathe-

matical analysis model for the purpose of measuring 
and assessing software quality/reliability quantita-
tively. Many software reliability models have been 
proposed and applied to practical use because soft-
ware reliability is considered to be a “must-be quali-
ty” characteristic of a software product. The software 
reliability models can be divided into two classes as 
shown in Figure 1. One treats the upper software de-
velopment process, i.e., design and coding phases, 
and analyzes the reliability factors of the software 
products and processes, which is categorized in the 
class of static model. The other deals with testing and 
operation phases by describing a software fail-
ure-occurrence phenomenon or software 
fault-detection phenomenon, by applying the stochas-
tic/statistics theories and can estimate and predict the 
software reliability, which is categorized in dynamic 
model. 

In the former class, a software complexity model
is well known and can measure the reliability by as-
sessing the complexity based on the structural char-
acteristics of products and the process features to 
produce the products. In the latter class, a software 
reliability growth model is especially well known. 

Further, this model is divided into three categories:
(1) Software failure-occurrence time model

The model which is based on the software fail-
ure-occurrence time or the software fault-detection 
time. 

(2) Software fault-detection count model
The model which is based on the number of soft-
ware failure-occurrence or the number of detected 
faults.

(3) Software availability model
The model which describes the time-dependent be-

havior of software system alternating up (operation) 
and down (restoration or fault correction) states.

The software reliability growth models are utilized 
for assessing the degree of achievement of software 
quality, deciding the time to software release for op-
erational use, and evaluating the maintenance cost for 
faults undetected during the testing phase. We discuss 
the software reliability growth models.
 

2. Software Reliability Growth Modeling 
Generally, a mathematical model based on sto-

chastic and statistical theories is useful to describe the 
software fault-detection phenomena or the software 
failure-occurrence phenomena and est imate the 
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Fig. 1   Hierarchical classification of software reliability model.

Fig. 2   The stochastic quantities related to a software fault-detection phenomenon 
or a software failure-occurrence phenomenon.

software reliability quantitatively. During the testing 
phase in the software development process, software 
faults are detected and removed with a lot of test-
ing-effort expenditures. Then, the number of faults 
remaining in the software system decreases as the 
testing goes on. This means that the probability of 
software failure-occurrence is decreasing, so that the 
software reliability is increasing and the time interval 
between software failures becoming longer with the 
testing time.

A mathematical tool which describes software re-
liability aspect is a software reliability growth model.

Based on the plausible definitions, we can devel-
op a software reliability growth model based on the 
assumptions used for the actual environment during 
the testing phase or the operation phase. Then, we can 
define the following random variables on the number 

of detected faults and the software failure-occurrence
time (see Figure 2):

)(tN = the cumulative number of software faults 
(or the cumulative number of observed software fail-
ures) detected up to time t,

iS = the i-th software-failure occurrence time

)0;,2,1( 0  Si  ,

iX = the time interval between (i-1)-st and i-th 
software failures )0;,2,1( 0  Xi  .

Figure 2 shows the occurrence of event 

})({ itN  since i faults have been detected up to 
time t. From these definitions, we have
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Assuming that the hazard rate, i.e., the software 
failure rate, for ),2,1( iXi

, )(xzi
, is proportional to 

the current number of residual faults remaining in the 
system, we have

)()1()( xiNxzi 
         ),0,0;,,2,1(  λxNi         (2)

where N is the initial fault content and )(xλ the soft-
ware failure rate per fault remaining in the system at 
time x. If we consider two special cases in Eq. (2) as

 ),0()(  φφλx          (3)

  ),0,0()( 1   mxx m φφλ   (4)

then two typical software hazard rate models, respec-
tively called the Jelinski-Moranda model and the 
Wagoner model can be derived, where φ and m are 
constant parameters. Usually, it is difficult to assume 
that a software system is completely fault free or 
failure free. Then, we have a software hazard rate 
model called the Moranda model for the case of the 
infinite number of software failure occurrences as

),10;0;,2,1()( 1   kDiDkxz i
i   (5)

where D is the initial software hazard rate and k the 
decreasing ratio. Eq. (5) describes a software fail-
ure-occurrence phenomenon where a software system 
has high frequency of software failure occurrence 
during the early stage of the testing or the operation 
phase and it gradually decreases thereafter. Based on 
the software hazard rate models above, we can derive 
several software reliability assessment measures. For 
example, the software reliability function for 

),2,1( iXi

is given as

).,2,1()(exp)(
0





  idxxzxR

x

ii (6)

Further, we also discuss NHPP models, which are 
modeled for random variable N(t) as typical software 
reliability growth models. In the NHPP models, a 
nonhomogeneous Poisson process (NHPP) is assumed 
for the random variable N(t), the distribution function 
of which is given by

),,2,1()](exp[
!
)}({})(Pr{  ntH

n
tHntN

n


t

dxxhtNEtH
0

,)()]([)(        (7)

where ]Pr[・ and ][・E mean the probability and ex-
pectation, respectively. H(t) in Eq. (7) is called a 
mean value function which indicates the expectation 
of N(t), i.e., the expected cumulative number of faults 
detected (or the expected cumulative number of soft-
ware failures occurred) in the time interval ],0( t , and 
h(t) in Eq. (7) called an intensity function which in-
dicates the instantaneous fault-detection rate at time t.

From Eq. (7), various software reliability assess-
ment measures can be derived. For examples, the ex-
pected number of faults remaining in the system at 
time t is given by

),()( tHatn                (8)

where )(Ha , i.e., parameter a denotes the ex-
pected initial fault content in the software system. 
Given that the testing or the operation has been going 
up to time t, the probability that a software failure 
does not occur in the time interval )0](,(  xxtt
is given by conditional probability 

}|Pr{ 1 tSxX ii  
as

  ).0,0()()(exp)|(  xttxHtHtxR (9)

)|( txR in Eq. (9) is a so-called software reliability.
Measures of MTBF (mean time between software 
failures or fault-detections) can be obtained follows:

,
)(

1)(
th

tMTBF               (10)

         .
)(

)(
tH

ttMTBFC             (11)

MTBFs in Eqs. (10) and (11) are called instanta-
neous and cumulative MTBFs, respectively.

It is obvious that the lower the value of )(tn in 
Eq. (8), the higher the value

)|( txR

for specified x in 
Eq. (9), or the longer the value of MTBFs in Eqs. (10) 
and (11), the higher the achieved software reliability 
is. Then, analyzing actual test data with accepted
NHPP models, these measures can be utilized to as-
sess software reliability during the testing or opera-
tion phase, where statistical inferences, i.e., parameter 
estimation and goodness-of-fit test, are usually per-
formed by a method of maximum likelihood.

MTBFI
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Table 1 A summary of NHPP models.

 
To assess the software reliability actually, it is 

necessary to specify the mean value function H(t) in 
Eq. (7). Many NHPP models considering the various 
testing or operation environments for software relia-
bility assessment have been proposed in the last dec-
ade. Typical NHPP models are summarized in Table 1.
As discussed above, a software reliability growth is 
described as the relationship between the elapsed 
testing or operation time and the cumulative number 
of detected faults and can be shown as the reliability 
growth curve mathematically. Among the NHPP 
models in Table 1, exponential and modified expo-
nential software reliability growth models are appro-
priate when the observed reliability growth curve 
shows an exponential curve. Similarly, delayed 
S-shaped and inflection S-shaped software reliability 

growth models are appropriate when the reliability 
growth curve is S-shaped.

In addition, as for computer makers or software 
houses in Japan, logistic curve and Gompertz curve 
models have often been used as software quality as-
sessment models, on the assumption that software
fault-detection phenomena can be shown by S-shaped 
reliability growth curves. In these deterministic mod-
els, the cumulative number of faults detected up to 
testing t is formulated by the following growth equa-
tions:

).0,0,0(
1

)( 


  km
me
ktL t 

(12)

).0,10,10()( )(  kbakatG
tb (13)
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In Eqs. (12) and (13), assuming that a convergence 
value of each curve ( )(L or )(G ), i.e., parameter 
k, represents the initial fault content in the software 
system, it can be estimated by a regression analysis.

3.    IMPERFECT DEBUGGING MODELING

Most software reliability growth models proposed 
so far are based on the assumption of perfect debug-
ging, i.e., that all faults detected during the testing 
and operation phases are corrected and removed per-
fectly. However, debugging actions in real testing and 
operation environments are not always performed 
perfectly. For example, typing errors invalidate the 
fault-correction activity or fault-removal is not car-
ried out precisely due to incorrect analysis of test re-
sults. We therefore have an interest in developing a 
software reliability growth model which assumes an 
imperfect debugging environment. Such an imperfect 
debugging model is expected to estimate reliability 
assessment measures more accurately.

A. Imperfect debugging model with perfect correction 
rate

To model an imperfect debugging environment, 
the following assumptions are made:

(1) Each fault which causes a software failures 
is corrected perfectly with probability

)10(  pp . It is not corrected with 
probability )1( pq  . We call p the 
perfect debugging rate or the perfect correc-
tion rate.

(2) The hazard rate is given by Eq. (5) and de-
crease geometrically each time a detected 
fault is corrected (see Figure 3).

(3) The probability that two or more software 
failures occur simultaneously is negligible.

(4) No new faults are introduced during the 
debugging. At most one fault is removed 
when it is corrected, and the correction time 
is not considered.

Let X(t) be a random variable representing the 
cumulative number of faults corrected up to the test-
ing time t. Then, X(t) forms a Markov process. That is, 
from assumption (1), when i faults have been cor-
rected by arbitrary testing time t,








,,1
,,

)(
pyprobabilitwithi
qyprobabilitwithi

tx      (14)

(see Fig. 4). Then, the one-step transition probability
for the Markov process that after making a transition

Fig. 3 Behavior of hazard rate.

 
Fig. 4   A diagrammatic representation of

transitions between states of X(t).

into state i, the process }0),({ ttX makes a tran-
sition into state j by time t is given by

]),exp[1()( tDkptQ i
ijij          (15)

where 
ijp are the transition probabilities from state i

to state j and are given by













).(,0
),2,1,0,(,

)(,

elsewhere
jip

jiq
pij             (16)

Eq. (15) represents the probability that if i faults have 
been corrected at time zero, j faults are corrected by 
time t after the next software failure occurs. There-
fore, based on Markov analysis by using the assump-
tions and stochastic quantities above, we have the 
software reliability function and the mean time be-
tween software failures for ),2,1( iXi

as

,]exp[
1

)(
1

0

1



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




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And if the initial fault content in the system, N, is 
specified the expected cumulative number of faults 
debugged imperfectly up to time t is given by 
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B. Imperfect debugging model for introduced faults

Besides the imperfect debugging factor above in 
fault-correction activities, we consider the possibility
of introducing new faults in the debugging process. It 
is assumed that the following two kinds of software 
failures exist in the dynamic environment, i.e., the 
testing or user operation phase:

(F1) software failures caused by faults originally 
latent in the software system prior to the 
testing (which are called inherent faults),

(F2) software failures caused by faults intro-
duced during the software operation owing 
to imperfect debugging.

In addition, it is assumed that one software failure is 
caused by one fault and that it is impossible to dis-
criminate whether the fault that caused the software 
failure that has occurred is F1 or F2. As to the soft-
ware failure-occurrence rate due to F1, the inherent 
faults are detected with the progress of the operation 
time. In order to consider two kinds of time depend-
encies on the decreases of F1, let )2,1)(( itai

denote 
the software failure-occurrence rate for F1. On the 
other hand, the software failure-occurrence rate due 
to F2 is denoted as constant )0(  , since we as-
sume that F2 occurs randomly throughout the opera-
tion. When we consider the software fail-
ure-occurrence rate at operation time t is given by

).2,1()()(  itath ii         (21)

From Eq. (21), the expected cumulative number of 
software failures in the time interval ],0( t (or the 
expected cumulative number of detected faults) is 
given by

.
)2,1()()(

),()(

0 










t

ii

ii

idxxatA
tAttH 

         (22) 

Then, we have two imperfect debugging models based 
on an NHPP, where )(thi

in Eq. (21) and )(tHi
in 

Eq. (22) are used as the intensity functions and the
mean value functions (i=1,2) for an NHPP, respec-
tively. Especially, exponential and delayed S-shaped
software reliability growth models are assumed for 
describing software failure-occurrence phenomena 
attributable to the inherent faults (see Table 1).

4.    SOFTWARE AVAILABILITY MODELING

Recently, software performance measures such as 
the possible utilization factors have begun to be in-
teresting for metrics as well as the hardware products. 
That is, it is very important to measure and assess 
software availability, which is defined as the proba-
bility that the software system is performing success-
fully, according to the specification, at a specified 
time point. Several stochastic models have been pro-
posed so far for software availability measurement 
and assessment. One group has proposed a software 
availability model considering a reliability growth 
process, taking account of the cumulative number of 
corrected faults. Others have constructed software 
availability models describing the uncertainty of fault 
removal. Still others have incorporated the increasing 
difficulty of fault removal.

The actual operational environment needs to be 
more clearly reflected in software availability model-
ing, since software availability is a customer-oriented 
metrics. In existing models the development of a 
plausible model is described, which assumes that 
there exist two types of software failure occurring 
during the operation phase. Furthermore, an opera-
tional software availability model is built up from the 
viewpoint of restoration scenarios. 

The above models have employed Markov pro-
cesses for describing the stochastic time-dependent
behaviors of the systems which alternate between the 
up state, operating regularly, and the restoration state
(down state) when a system is inoperable. Several 
stochastic metrics for software availability measure-
ment in dynamic environment are derived from the 
respective models.

We discuss a fundamental software availability 
model below.
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Fig. 5   Sample behavior of the software system 
alternating between up and down state.

 

Fig. 6   Behavior of restoration rate.

A.   Model description

The following assumptions are made for software 
availability modeling:
(1) The software system is unavailable and starts to 

be restored as soon as a software failure occurs, 
and the system cannot operate until the restora-
tion action is complete (see Figure 5).

(2) The restoration action implies debugging activ-
ity, which is performed perfectly with probabil-
ity )10( aa and imperfectly with probabil-
ity )1( ab  . We call a the perfect debugging 
rate. One fault is corrected and removed from 
the software system when the debugging activi-
ty is perfect.

(3) When n faults have been corrected, the time to 
the next software failure occurrence and the
restoration time follow exponential distributions 
with means of 

n/1 and 
n/1 , respectively.

Fig. 7   A sample realization of Y(t).

(4) The probability that two or more software fail-
ures will occur simultaneously is negligible.

Consider a stochastic process }0),({ ttX with 
the state space (W, R) where up state vector 
W= },2,1,0;{ nWn

and down state vec-
tor },2,1,0;{ nRn

. Then, the events })({ nWtX 
and })({ nRtX  mean that the system is operating and 
inoperable, respectively, due to the restoration action 
at time t, when n faults have already been corrected.

From assumption (2), when the restoration action 
has been completed in })({ nRtX  ,






 ,,

,,
)(

1 ayprobabilitwithW
byprobabilitwithW

tx
n

n (23)

We use the Moranda model in Eq. (5) to describe the 
software failure-occurrence phenomenon, i.e., when n
faults have been corrected, the software hazard rate 

(see Figure 3) is given by

)10,0;,2,1,0(  kDnDkn
n  (24)

The expression of Eq. (24) comes from the point of 
view that software reliability depends on the debug-
ging efforts, not the residual fault content. We do not 
note how many faults remain in the software system.

Next, we describe the time-dependent behavior of 
the restoration action. The restoration action for 
software systems includes not only the data recovery 
and the program reload, but also the debugging activ-
ities for manifested faults. From the viewpoint of the 
complexity, there are cases where the faults detected 
during the early stage of the testing or operation 
phase have low co mplex it y and are  eas y to 

X
probability
probability
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Fig. 8 A state transition diagram for software availability modeling.

correct/remove, and as the testing is in progress, de-
tected faults have higher complexity and are more 
difficult to correct/remove. In the above case, it is 
appropriate that the mean restoration time becomes 
longer with the increasing number of corrected faults.
Accordingly, we express as follows (see Figure
6):

)10,0;,2,1,0(  rEnErn
n  (25)

where E and r are the initial restoration rate and the
decreasing ratio of the restoration rate, respectively. 
In Eq. (25) the case of r=1, i.e., En  , means that 
the complexity of each fault is random.

Let
nT and ),2,1,0( nUn

be the random 
variables representing the next software failure oc-
currence and the next restoration time intervals when 
n faults have been corrected, in other words the so-
journ times in states 

nW and 
nR , respectively. Fur-

thermore, let Y(t) be the random variable representing 
the cumulative number of faults corrected up to time t.
The sample behavior of Y(t) is illustrated in Figure 7.
It is noted that the cumulative number of corrected 
faults is not always coincident with that of software
failures or restoration actions. The sample state tran-
sition diagram of X(t) is illustrated in Figure 8.

B.   Software availability measures

We can obtain the state occupancy probabilities that 
the system is in state 

nW and 
nR at time point t as

})(Pr{)( nW WtXtP
n
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nn

n

n

n

a
tg

a
tg


)()( 11  
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),2,1,0( n , (26)

})(Pr{)( nR RtXtP
n
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n

n

a
tg


)(1

),2,1,0( n

, (27)

respectively, where )(tgn
is the probability density 

function of random variable 
nS , which denotes the 

first passage time to state 
nW , and 

dttdgtg nn /)()(  . )(tgn
and )(tgn can be given 

analytically.
The following equation holds for arbitrary time t:

.1)]()([
0




n
RW tPtP

nn
           (28)

The instantaneous availability is defined as

,)()(
0






n

W tPtA
n

               (29)

which represents the probability that the software 
system is operating at specified time point t. Fur-
thermore, the average software availability over 

],0( t is defined as

,)(1)(
0
t

a v dxxA
t

tA             (30)

which represents the ratio of system’s operating time 
to the time interval 

],0( t

. Using Eqs. (26) and (27), 
we can express Eqs. (29) and (30) as
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Fig. 9   Dependence of perfect debugging rate a on 
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respectively, where )(tGn
is the distribution function 

of 
nS .

Figures 9 and 10 show numerical illustrations of 
)(tA and )(tAav

in Eqs. (31) and (32), respectively.

 
Fig. 10   Dependence of perfect debugging rate a on 

)(tAav .
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