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Chapter 1 
Introduction 

 
 In recent years, with the advent of an aging society, interest in monitoring biological 

information has increased. Currently, problems include an increase in the number of elderly 

people living alone and an increase in lifestyle-related diseases. Along with this, interest in 

the daily monitoring of biological information for daily health management is increasing. 

Monitoring biological information such as heartbeat and breathing rate is effective for early 

detection of illness or sudden changes in physical condition and is also an important indicator 

in the medical field. Many conventional biomonitoring systems require electrodes to be 

brought into contact with the user's body for measurement, which poses the problem of 

placing a large burden on the user due to discomfort and a sense of restraint caused by the 

contact. 

Furthermore, animals have come to live together with humans as important members of 

their owners' families. As a result, there is a growing demand for high-level medical care 

similar to that of humans, but even if animals sense something unusual about their bodies, it 

is difficult for them to tell their owners. For this reason, monitoring of heart rate, respiratory 

rate, etc. has been adopted as an effective means to detect diseases and changes in physical 

condition and is also considered an important indicator in the medical field. However, since 

many animals refuse to be touched by electrodes, it may be uncomfortable to measure heart 

rate and respiratory rate using an electrocardiogram monitor, which is a typical example of a 

contact sensor. 

Therefore, a heartbeat/respiration rate detection system using Doppler radar is attracting 

attention as a non-contact sensing method for biological information. This system obtains 

heart rate and respiratory rate by observing the minute movements of the heart and breathing 

that appear on the body surface. Compared to conventional contact-type biological 

information sensing, it is non-contact and non-restrictive and can be measured even when 

wearing clothes, making it much more convenient. Examples of applications that have been 

proposed include monitoring systems for elderly people while they are sleeping, monitoring 
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the condition of drivers while driving a vehicle, and detecting human bodies hidden in rubble 

during disasters. 

Therefore, there is a need to sense biological information without contact, and heart 

rate/respiration rate detection systems using Doppler radar are attracting attention. There are 

always periodic and minute vibrations associated with breathing and heartbeat on the body's 

surface. Monitoring can be performed by detecting these minute vibrations with Doppler 

radar and calculating respiration and heartbeat through signal processing. 

In non-contact heart rate and breathing rate detection using Doppler radar, detection 

accuracy deteriorates significantly due to body movement noise and respiratory harmonics 

that interfere with the heartbeat. The research was conducted with the aim of improving the 

accuracy of heart rate estimation by removing interference caused by respiratory harmonics 

and factors that degrade estimation accuracy. In the experiment, measurements are performed 

using a Doppler radar with a carrier frequency of 24 GHz, and the optimal parameters for 

computer simulation are investigated. I also confirm the effectiveness of our method by 

comparing the conventional method and the proposed method.  

The research conducted based on the technical background consists of two chapters:  

Chapter 2: A novel heart rate estimation method is proposed that uses an adaptive notch 

filter (ANF). The proposed system estimates respiration frequency. Next, cascaded notch 

filters, the notch frequencies of which are controlled by the estimated respiration frequency, 

eliminate respiration harmonics; thus, the accuracy of heart rate estimation improves [1]-

[27]. 

Chapter 3: This chapter investigates the suitability of bispectrum estimation for 

extinguishing the influence of the received signal. The bispectrum represents the dependency 

between two different frequency spectra. Assuming that the heart-beat component from the 

subject has a strong phase coupling, the bispectrum estimation of a received signal enhances 

the heart-beat component. Then the influence and noise can be reduced. The experimental 

results showed the bispectrum estimation improved the estimation accuracy of heart rate 

[28]-[37]. 
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Chapter 2 
Non-contact Heart Rate Measurement Based 
on Adaptive Notch Filter and Elimination of 

Respiration Harmonics 
 

2. Introduction 
 

Non-contact heart rate estimation is effective because it allows long-term monitoring 

without needing to attach uncomfortable sensors to the body. Therefore, heartbeat and 

respiration rate detection systems using a Doppler radar have been attracting attention as they 

can collect biometric information in a non-contact manner. In recent years, animals are 

increasingly being treated as family members, and the expectations for their health care and 

management are correspondingly high. However, animals cannot communicate their health 

needs to humans; moreover, attaching contact sensors, such as an electrocardiogram (ECG), 

to exhausted animals causes discomfort and adds an additional burden on veterinarians. 

Consequently, the use of non-contact sensors on animals has attracted increased research 

interest. Periodic and minute vibrations associated with breathing and heartbeat are prevalent 

on the body’s surface. These minute vibrations can be detected using a Doppler radar and 

monitored by estimating respiration and heartbeat rates [1]. Juan et al. attempted to measure 

the respiration rate of a rat using a Doppler radar [2]. 

In addition to Doppler radar, Garbey et al. used thermal imaging for non-contact 

measurements in humans [3]. This method is based on the property that superficial vessels 

radiate thermal signals and their temperature changes with blood flow. Parnandi et al. 

proposed using an eye tracker to measure heart rate from pupillary fluctuations [4]. This 

method takes advantage of the fact that pupillary and heart rate fluctuations are under the 

control of the autonomic nervous system. Photoplethysmography (PPG)-based methods 

were also proposed to utilize the human face information obtained through a camera [5]-[8]. 

They can detect the heartbeat from the green channel fluctuations because it features most
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characteristics of plethysmographic signals corresponding to hemoglobin absorption. A 

method using HSV, a color space different from RGB, has also been proposed [9]. Another 

technique uses face images obtained from visible and infrared videos [10]. Unfortunately, 

conventional methods [3]-[10] use videos of human faces or pupils, rendering them difficult 

to apply on animals because animals’ skin is not visible because their bodies, including their 

faces, are covered with hair, and pupil detection requires restraint of the animal. Therefore, in 

this study, I focused on the Doppler radar-based method. 

Many systems have been proposed for heart rate measurement using a continuous-wave 

Doppler radar, which is simple and low-cost. Droitcour developed a heart rate estimation 

system that involves a peak search of the autocorrelation or amplitude spectrum based on a 

fast Fourier transform (FFT) [1]. This system requires a long time window to maintain a 

high-frequency resolution. Li et al. introduced the RELAX algorithm for parametric and 

cyclic optimization to estimate heartbeat and respiration frequency [11]. Tariq et al. 

developed a system that uses a continuous wavelet transform (CWT), which has a higher 

time-frequency resolution than FFT [12]. 

A received Doppler radar signal contains respiration and heartbeat components, as well 

as moving artifacts and noise. Respiration harmonics in the frequency band of the heartbeat 

component degrade the accuracy of heart rate estimation. Moving artifacts are generated by 

the body’s movement. An animal moves around in a cage during heart-rate measurements. 

The bodies of animals also slightly and rapidly tremble regardless of respiration or heartbeat, 

generating moving artifacts. Therefore, Tu et al. proposed a method to reduce respiration 

harmonics [13]. However, the method is not practical because it uses an extremely long time 

window to estimate the frequency and power of respiratory harmonics. Subsequently, Tu et 

al. proposed a practical system that uses multiple FFTs with different window lengths to 

eliminate respiration harmonics [14]. However, moving artifacts still degraded estimation 

performance. In addition, Mogi et al. proposed a method based on spectrograms [15]. This 

method takes advantage of positive and negative frequencies corresponding to cardiac 

motion and is robust against respiration harmonics, small moving artifacts, and noise.
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Petrovi et al. and Son et al. proposed heart rate estimation methods using moving averages 

and bandpass filters (BPF) for extracting the heartbeat component [16], [17]. Petrovi et al. 

use a narrow bandpass filter bank (BPFB) [16]. This method switches a bandpass filter to the 

other bandpass filter of the band containing the heartbeat component and then eliminates 

respiration harmonics that are out of the band of the selected bandpass filter. In [17], the data 

recovery procedure doubles the estimated heart rate if the estimated heart rate is excessively 

low. Yang et al. proposed adaptive noise cancellation and a new-type discrete cosine 

transform (N-DCT) to remove artifacts caused by random body motion [18]. However, this 

method assumes that the velocity of body motion is constant within a short time window, but 

in general, the velocity of random body motion is not constant; therefore, this assumption 

may degrade the estimation performance. Chen et al. proposed the heart-rate measurement 

based on difference quadratic sum demodulation to prevent the generation of respiration 

harmonics [19]. This method requires estimating the heart rate from the components with 

frequencies corresponding to doubled heart rate, doubled respiration rate, and the sum of 

respiration and heart rate. However, the unexpected components, other than the three 

abovementioned frequencies, occur because of the body movement, and the estimation 

accuracy is degraded. 

In this chapter, a heart rate estimation method is proposed that is robust against respiration 

harmonics, moving artifacts, and noise. The proposed method uses an infinite impulse 

response-based adaptive notch filter (IIR-ANF) [20], [21] for estimating the respiration 

frequency in a low-frequency band that is occupied by the respiration component. 

Subsequently, cascaded notch filters, with notch frequencies corresponding to respiration 

harmonics, prevent interference with heartbeat components. These cascaded notch filters are 

composed of all-pass filters with substantially narrow notch bands and minimize heartbeat 

component loss. Finally, the proposed method estimates heart rate using an ANF with an 

adaptive algorithm from the output signal of cascaded notch filters. An ANF based on an all-

pass filter with an adaptive algorithm can accurately estimate a notch frequency without the 

influence of white noise [22]. Animals have large respiration harmonics due to their large 

body movement, and humans have low respiration harmonics due to low body movement.
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The proposed method improves the accuracy of heart rate estimation in the presence of 

moving artifacts and noise. 

This chapter is organized as follows: In Section II, a Doppler radar and the frequency 

spectrum of a received signal are discussed. The proposed heart rate estimation system, 

which is robust against respiration harmonics, moving artifacts, and noise, is detailed in 

Section III. The measurement experiment conducted to evaluate the proposed system is 

discussed in Section IV. Finally, the paper is concluded in Section V. 

 

2.1 Doppler Radar 
A non-contact heart rate estimation system detects minute periodic vibrations on the body 

surface caused by a heartbeat from a reflected microwave. Assuming that amplitude is 

ignored, the transmit signal of a Doppler radar is expressed as [1], 

 
𝑇(𝑡) = cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡)] , (2.1) 

 
where 𝑓𝑐 is the carrier frequency, 𝑡 is the time index, and 𝜙(𝑡) is the phase noise of an 

oscillator. Assuming that the reference distance between a Doppler radar and the subject is 

𝑑0 and that the displacement due to the motion of the subject’s chest is 𝑥(𝑡), the distance to 

the chest from the Doppler radar is expressed as 𝑑(𝑡) = 𝑑0 + 𝑥(𝑡) . When, the chest 

fluctuates before the microwave reaches the subject, the distance between the Doppler radar 

and the chest is 𝑑(𝑡 − (𝑑(𝑡)/𝑐)) at the moment the signal reflects. Therefore, the time 

delay 𝑡𝑑 between transmission and reception can be expressed as [1] 

 

𝑡𝑑 =
2𝑑 (𝑡 −

𝑑(𝑡)
𝑐 )

𝑐
=

2 {𝑑0 + 𝑥 (𝑡 −
𝑑(𝑡)

𝑐 )}

𝑐
, (2.2)

 

 
The respiration-induced chest movement is a 5-cm sinusoid with a 5-second period [1]. 

However, when 𝑑0 is 1 m, 𝑑0/𝑐  is 0.33 × 10−8 seconds. As the motion cycle of the chest 

is sufficiently larger than 𝑑0/𝑐, the term 𝑑(𝑡)/𝑐 can be ignored. The received signal of the 

Doppler radar is delayed by 𝑡𝑑 as expressed in (2.2). When 𝑥(𝑡) ≪ 𝑑0, the received signal 
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𝑅(𝑡) can be approximated as the following equation using (2.1) and (2.2) [1]. 

 

𝑅(𝑡) ≈ cos [2𝜋𝑓𝑐𝑡 −
4𝜋𝑑0

𝜆
−

4𝜋𝑥 (𝑡 −
𝑑(𝑡)

𝑐
)

𝜆
+ 𝜙 (𝑡 −

2𝑑0

𝑐
−

2𝑥 (𝑡 −
𝑑(𝑡)

𝑐
)

𝑐
) + 𝜃0] , (2.3) 

 
where 𝜃0 is the phase change on the reflecting surface, and 𝜆 = 𝑐/𝑓𝑐 is the wavelength. 

Next, the received signal is multiplied by the transmission signal to only extract the phase 

shift due to chest movement. The Doppler radar can obtain baseband in-phase/quadrature 

(𝐼/𝑄) signals as expressed by the following equations [1]. 

 

𝐼(𝑡) = cos {𝜃′ +
4𝜋𝑥(𝑡)

𝜆
+ ∆𝜙(𝑡)} + 𝐷𝐶𝐼 , (2.4) 

 

𝑄(𝑡) = sin {𝜃′ +
4𝜋𝑥(𝑡)

𝜆
+ ∆𝜙(𝑡)} + 𝐷𝐶𝑄,  

 
 
where 𝜃𝐼 = 4𝜋𝑑0/𝜆 − 𝜃0  and ∆𝜑(𝑡) = 𝜑(𝑡) − 𝜑(𝑡 − 2𝑑0/𝑐). 𝐷𝐶𝐼  and 𝐷𝐶𝑄 are 𝐷𝐶 offset 

components in 𝐼/𝑄 signals, respectively. Subsequently, the Doppler radar system analyzes 

the orthogonal 𝐼 and 𝑄 signals. 

Then, the effect of respiration components on heart rate estimation is explored using the 

Fourier series expansion of 𝐼/𝑄 signals. The displacement due to chest movement 𝑥(𝑡) is 

expressed as [23] 

 
𝑥(𝑡) = 𝑥𝑟(𝑡) + 𝑥ℎ(𝑡) 

≈ 𝑚𝑟𝑠𝑖𝑛(2𝜋𝑓𝑟𝑡 + 𝜓𝑟0) + 𝑚ℎ𝑠𝑖𝑛(2𝜋𝑓ℎ𝑡 + 𝜓ℎ0), (2.5) 
 
where, 𝑥𝑟(𝑡) and 𝑥ℎ(𝑡) represent the physiological movement generated by respiration and 

heartbeat, respectively. These can be generally modeled as sinusoids with respective: 

amplitudes as 𝑚𝑟 and 𝑚ℎ; frequencies as 𝑓𝑟and 𝑓ℎ; and initial phases 𝜓𝑟0 and 𝜓ℎ0, Using 

(2.5), I/Q signals are represented by the following equations [23].
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𝐼(𝑡) = 𝑐𝑜𝑠 [
4𝜋𝑥𝑟(𝑡)

𝜆
+

4𝜋𝑥ℎ(𝑡)

𝜆
+ 𝛷] + 𝐷𝐶𝐼 

 

= 𝐷𝐶𝐼 + ∑ ∑ 𝐽𝑘

∞

𝑙= −∞

∞

𝑘= −∞

(
4𝜋𝑚𝑟

𝜆
) 𝐽𝑙 (

4𝜋𝑚ℎ

𝜆
) . 𝑐𝑜𝑠(2𝜋𝑘𝑓𝑟𝑡 + 2𝜋𝑙𝑓ℎ𝑡 +  𝛷) , (2.6) 

 

𝑄(𝑡) = 𝑠𝑖𝑛 [
4𝜋𝑥𝑟(𝑡)

𝜆
+

4𝜋𝑥ℎ(𝑡)

𝜆
+ 𝛷] + 𝐷𝐶𝑄 

 

= 𝐷𝐶𝑄 + ∑ ∑ 𝐽𝑘

∞

𝑙= −∞

∞

𝑘= −∞

(
4𝜋𝑚𝑟

𝜆
) 𝐽𝑙 (

4𝜋𝑚ℎ

𝜆
) . 𝑠𝑖𝑛(2𝜋𝑘𝑓𝑟𝑡 + 2𝜋𝑙𝑓ℎ𝑡 +  𝛷) , (2.7) 

 
where the phase term is represented as 𝛷 =  𝜃′ + ∆𝜙(𝑡) for simplicity. 𝐽𝑝(∙) represents the 

Bessel function of the first kind of p-th order. Equations (2.6) and (2.7) indicate that I/Q 

signals comprise the fundamental wave of respiration and its harmonics; the fundamental 

wave of heartbeat and its harmonics; and the intermodulation wave of respiration and 

heartbeat. Consequently, respiration harmonics degrades heart rate estimation accuracy. 

 
2.2 Heart Rate Estimation System 
 

2.2.1  Structure of Adaptive Notch Filter System 

FIGURE 2.1. Structure of the proposed system.
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The proposed heart rate estimation system uses an ANF to eliminate respiration harmonics. 

Fig. 2.1 shows the flow of the proposed system, comprising a bandpass filter (BPF), low pass 

filter (LPF), complex signal demodulation (CSD) component, ANF 𝐻𝑟(𝑧)  for estimating 

respiration frequency, respiration harmonics eliminating filter (RHEF) 𝐻(𝑧), and another ANF 

𝐻ℎ(𝑧)  for estimating heartbeat frequency.  

I/Q signals from (2.4), are converted into discrete-time signals of 𝐼(𝑛) and 𝑄(𝑛), where 𝑛 

represents the time index for a discrete-time signal. First, I/Q signals are filtered by the LPF 

and BPF to separate respiration and heartbeat components. Because respiration frequency is 

generally smaller than heartbeat frequency, the LPF obtains the fundamental wave of 

respiration. The BPF separates the components, including heartbeat and respiration harmonics, 

from the fundamental wave of respiration. The output I/Q signals of the LPF are represented 

as 𝐼𝑟(𝑛) and 𝑄𝑟(𝑛) respectively. Similarly, the output I/Q signals of the BPF are represented 

as 𝐼ℎ(𝑛) and 𝑄ℎ(𝑛), respectively. 

Next, the CSD component is used for combining I/Q signals [23]. The cosine and sine of 𝛷 

in (2.6) and (2.7) respectively, determine the relative strength between even-order and odd-

order harmonics. Therefore, the heart rate is difficult to detect because of phase 𝛷. To solve 

this problem, the CSD component reconstructs complex signals from I/Q signals. The 

respective complex input signals for 𝐻𝑟(𝑧) and 𝐻ℎ(𝑧) are represented as [23]. 

 

𝑆𝑟(𝑛) = 𝐼𝑟(𝑛) + 𝑗. 𝑄𝑟(𝑛) (2.8) 
𝑆ℎ(𝑛) = 𝐼ℎ(𝑛) + 𝑗. 𝑄ℎ(𝑛) (2.9) 

 
𝐻𝑟(𝑧) estimates the respiration frequency as a notch frequency 𝑓𝑟̂(𝑛) of 𝐻𝑟(𝑧) from 𝑆𝑟(𝑛). 

This filter is explained in detail in Section Ⅲ-B. Next, 𝐻(𝑧) which comprises cascaded notch 

filters, eliminates respiration harmonics from 𝑆ℎ(𝑛). The output signal of 𝐻(𝑧) is represented 

as 𝑠𝑅𝐻𝐸𝐹(𝑛). Section Ⅲ-C explains the RHEF 𝐻(𝑧) in detail. Finally, 𝐻ℎ(𝑧) estimates the 

heartbeat frequency as a notch frequency 𝑓ℎ̂(𝑛)  of 𝐻ℎ(𝑧) . The structure of this filter is 

described in Section Ⅲ-D. The estimated heart rate 𝐻𝑅𝑒𝑠𝑡(𝑛) (beats per minute (bpm)) is 

obtained by multiplying 𝑓ℎ̂(𝑛) by 60.
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2.2.2  Respiration Frequency Estimation 
 

 

FIGURE 2.2. Structure of ANF for estimating respiration frequency.  
 

Respiration frequency 𝑓𝑟(𝑛) is estimated using 𝐻𝑟(𝑧). The ANF 𝐻𝑟(𝑧) comprises a 2nd 

order IIR filter, which has all-pass filter characteristics. The structure of this filter is illustrated 

in Fig. 2.2. The transfer function 𝐻𝑟(𝑧) is given by [24] 

 

𝐻𝑟(𝑧) =  
1

2
∙

1 + 𝜌
𝑟

+ 2𝛽
𝑟
𝑧−1 + (1 + 𝜌

𝑟
)𝑧−2

1 + 𝛽
𝑟
𝑧−1 + 𝜌

𝑟
𝑧−2

, (2.10) 

 
where 𝜌𝑟 is the squared pole radius of 𝐻𝑟(𝑧), and 𝛽𝑟(𝑛) is the tap coefficient related to an 

estimated respiration frequency 𝑓𝑟̂(𝑛). The output 𝑒𝑟(𝑛) of 𝐻𝑟(𝑧) is represented as 

 

𝑒𝑟(𝑛) =
1

2
{𝑠𝑟(𝑛) + 𝑦𝑟(𝑛)}, (2.11) 

 
where 𝑦𝑟(𝑛) is an output signal of the 2nd order IIR filter in 𝐻𝑟(𝑧) and expressed as 
 

𝑦𝑟(𝑛) = 𝜌𝑟𝑢𝑟(𝑛) + 𝛽𝑟𝑢𝑟(𝑛 − 1) + 𝑢𝑟(𝑛 − 2), (2.12) 
 
where 𝑢𝑟(𝑛) is a tap input signal of the 2nd order IIR filter.
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𝛽𝑟(𝑛) controls the notch frequency at which the magnitude response 𝐻𝑟(𝑧) becomes zero 

as follows [24]. 

 

𝛽𝑟(𝑛) = −(1 + 𝜌𝑟)𝑐𝑜𝑠2𝜋 (
𝑓𝑟(𝑛)

𝐹𝑠
) , (2.13) 

 
where 𝐹𝑠 is the sampling frequency. Since 𝑠𝑟(𝑛) is occupied by the fundamental wave of 

respiration, the respiration frequency is estimated as the notch frequency. Using (2.13), the 

estimated respiration frequency 𝑓𝑟̂(𝑛) is given by 

 

𝑓𝑟̂(𝑛) =
𝐹𝑠

2𝜋
𝑐𝑜𝑠−1 {

𝛽𝑟(𝑛)

1 + 𝜌𝑟
} , (2.14) 

 
The tap coefficient 𝛽𝑟(𝑛) is updated using the following complex normalized least mean 

square (NLMS) algorithm [25]. 
 

𝛽𝑟(𝑛 + 1) = 𝛽𝑟(𝑛) − 𝜇𝑟

𝑒𝑟(𝑛)𝑢𝑟
∗(𝑛 − 1)

𝑢𝑟
2(𝑛 − 1)

, (2.15) 

 
where 𝜇𝑟 represents the step size. ∗ denotes the complex conjugate. 

 
 

2.2.3  Respiration Harmonic Elimination 
 

RHEF 𝐻(𝑧)  consists of cascaded notch filters. Moreover, notch frequencies are 

determined by the estimated respiration frequency 𝑓𝑟̂(𝑛), and its transfer function is given by 

 

𝐻(𝑧) = ∏
1

2

𝑀

𝑚=1

 ∙
(1 + 𝜌) + 2𝛽𝑚(𝑛)𝑧−1 + (1 + 𝜌)𝑧−2

1 + 𝛽𝑚(𝑛)𝑧−1 + 𝜌𝑧−2
, (2.16) 

 
where 𝑀 represents the number of stages of a notch filter, 𝜌 represents the squared pole 

radius, and 𝛽𝑚 represents the tap coefficient corresponding to the (𝑚 + 1) − 𝑡ℎ harmonic 

frequency of respiration. 𝛽𝑚(𝑛) is expressed as [24]



Chapter 2 
 

12 

𝛽𝑚(𝑛) = −(1 + 𝜌)cos {2𝜋
(𝑚 + 1)𝑓𝑟̂(𝑛)

𝐹𝑠
}, (2.17) 

 
The notch frequencies of 𝐻(𝑧) change according to the estimated respiration frequency 

𝑓𝑟̂(𝑛). Thus, the proposed system can obtain a signal that attenuates the respiration harmonics 

interfering with heartbeat components as the output signal of 𝐻(𝑧). The notch band of notch 

filters is substantially narrow, and the RHEF minimizes the loss of heartbeat components. 
 
 

2.2.4  Heart Rate Frequency Estimation 
 
The transfer function 𝐻ℎ(𝑧) is expressed as [24] 

 

𝐻ℎ(𝑧) =  
1

2
∙

1 + 𝜌
ℎ

+ 2𝛽
ℎ

(𝑛)𝑧−1 + (1 + 𝜌
ℎ
)𝑧−2

1 + 𝛽
ℎ

(𝑛)𝑧−1 + 𝜌
ℎ

𝑧−2
, (2.18) 

 
where 𝜌ℎ is the squared pole radius of 𝐻ℎ(𝑧), and 𝛽ℎ(𝑛) is the tap coefficient related to 

heart rate. The output of this filter 𝑒ℎ(𝑛) is represented as 

 

𝑒ℎ(𝑛) =
1

2
{𝑠𝑅𝐻𝐸𝐹(𝑛) + 𝑦ℎ(𝑛)}, (2.19) 

 
where 𝑦ℎ(𝑛) is an output signal of the 2nd order IIR filter in 𝐻ℎ(𝑧) and expressed by 

 
𝑦ℎ(𝑛) = 𝜌ℎ𝑢ℎ(𝑛) + 𝛽ℎ𝑢ℎ(𝑛 − 1) + 𝑢ℎ(𝑛 − 2), (2.20) 

 
where 𝑢ℎ(𝑛) is a tap input signal of the 2nd order IIR filter in 𝐻ℎ(𝑧). 

The estimated heartbeat frequency 𝑓ℎ̂(𝑛) is defined from the notch frequency and tap 

coefficient 𝛽ℎ(𝑛), as follows: 

𝑓ℎ̂(𝑛) =
𝐹𝑠

2𝜋
𝑐𝑜𝑠−1 {

𝛽ℎ(𝑛)

1 + 𝜌ℎ
} , (2.21) 

 
using the relationship between a notch frequency of an ANF and tap coefficient [24]. The tap 

coefficient 𝛽ℎ(𝑛), is updated using the following complex NLMS algorithm [25].
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𝛽ℎ(𝑛 + 1) = 𝛽ℎ(𝑛) − 𝜇ℎ

𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1)

𝑢ℎ
2(𝑛 − 1)

, (2.22) 

 
where 𝜇ℎ represents the step size for 𝐻ℎ(𝑧). 

Let us consider the influence of moving artifacts and noise on an ANF with NLMS algorithm. 

The numerator of the updating term 𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1) represents instantaneous estimates of 

𝐸[𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1)]  in a steepest-descent algorithm. Moreover, the least mean square 

algorithm, which is recursive, effectively estimates 𝐸[𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1)]  using time 

averaging [25]. When the input signal of the ANF is white, 𝐸[𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1)] is zero 

because of the orthogonality associated with an all-pass filter [22]. Thus, assuming that noise 

and moving artifacts are white in nature, they do not influence heart rate estimation. Even if 

noise and moving artifacts are colored (no-white) in nature, an ANF with the NLMS 

algorithm is expected to eliminate their influence in the case that their frequency 

characteristics are close to white. Moreover, in case where an animal suddenly moves, e.g., 

sitting and then standing posture, moving artifacts occur suddenly and their probability 

characteristics drastically change in a short time duration. As the adaptive algorithm neglects 

the moving artifact components in 𝐸[𝑒ℎ(𝑛)𝑢ℎ
∗ (𝑛 − 1)] due to the time-variance of a moving 

artifact, an ANF with the NLMS algorithm is robust against moving artifacts. 
 
 

2.3 Measurement Experiment 

2.3.1 Doppler Radar Setup and Evaluation 
 
A computer simulation is conducted to evaluate the performance of the proposed system. 

The Doppler radar module used in this experiment is the SHARP DC6M4JN3000 with one 

transmitter antenna and one receiver antenna. Its carrier frequency is 24 GHz with a 

maximum output power of 10 dBm. The 𝐻 plane and 𝐸 plane beam widths are 25° and 20° 

respectively. The gain of the horn antennas is 20 dBi. The module comprises the LPF and 

BPF. It outputs discrete-time 𝐼/𝑄 signals (𝐼𝑟(𝑛), 𝑄𝑟(𝑛), 𝐼ℎ(𝑛), and 𝑄ℎ(𝑛), with a 50-𝐻𝑧 

sampling frequency.
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To evaluate the estimated heart rate, used the mean absolute percentage error (MAPE), mean 

absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE) 

which were defined as 
 

𝑀𝐴𝑃𝐸 =  
1

𝐾
∑

|𝐻𝑅𝑟𝑒𝑓(𝑖) − 𝐻𝑅𝑒𝑠𝑡(𝑖)|

𝐻𝑅𝑟𝑒𝑓(𝑖)

𝐾

𝑖=1

 × 100[%], (2.23) 

 

𝑀𝐴𝐸 =  
1

𝐾
∑|𝐻𝑅𝑟𝑒𝑓(𝑖) − 𝐻𝑅𝑒𝑠𝑡(𝑖)|

𝐾

𝑖=1

 , (2.24) 

 

𝑀𝑆𝐸 =  
1

𝐾
∑{𝐻𝑅𝑟𝑒𝑓(𝑖) − 𝐻𝑅𝑒𝑠𝑡(𝑖)}

2
𝐾

𝑖=1

, (2.25) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝐾
∑{𝐻𝑅𝑟𝑒𝑓(𝑖) − 𝐻𝑅𝑒𝑠𝑡(𝑖)}

2
𝐾

𝑖=1

, (2.26) 

 
where |∙|  represents the absolute value, 𝐾  is the number of samples, 𝐻𝑅𝑒𝑠𝑡(𝑖)  is the 

estimated heart rate at the 𝑖 − 𝑡ℎ  sample, and 𝐻𝑅𝑟𝑒𝑓(𝑖) is the heart rate measured by a 

contact-type device. 
 
 

2.4 Measurement Experiments for Human Subjects  
 
 2.4.1 Measurement Conditions for human subjects 
 

This section provides details of the experiments conducted on humans who can remain 

stationary to evaluate only the reduction performance of the respiration harmonics of the 

proposed method. Table 2.1 lists the parameters of the proposed system used in this 

experiment. The NLMS algorithm converges if and only if  0 < 𝜇 < 2 [25]. When 𝜇 is 1, the 

convergence speed of the NLMS algorithm is fastest [26]. If tap input signals include 

disturbance and optimal tap coefficients are nonstationary, the optimum step size is given by 

the signal to noise ratio (SNR) of the tap input signal and the power of optimal tap coefficient 

fluctuation [27]. As the SNR and power of the optimal tap coefficient fluctuations are unknown, the step size is
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generally set to 0 < 𝜇 < 1. The pole radius with 0 < √𝜌 < 2 is set to be slightly less than 1. 

The notch band, the area removed by the adaptive notch filter narrows as the radius approaches 

1 [21]. 

The distance between a subject's chest and the Doppler radar was set as 1 m, and the subjects 

were kept in a seated posture. The subjects wore a T-shirt during the experiment. The true 

heartbeat and respiration rates were measured by a contact-type vital sensor (Equivital Ltd. 

EQ02) simultaneously with the measurements by the Doppler radar. Each recording is 

measured for 200 seconds. As the contact-type sensor detects heart rate every 5 seconds, the 

estimated values are also obtained every 5 seconds for comparison. 

A dataset is created for each person for the experiments, comprising eight people as subjects 

with ages ranging from 21 to 25 years. This experiment on human subjects was approved by 

the research ethics review committee of the Faculty of Engineering, Tottori University (No. 

R4-5). Table 2.2 shows each human subject's average value, maximum deviation, and standard 

deviation of heart rate data, which is detected by the contact-type vital sensor. The maximum 

deviation is given by 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = max{|𝐻𝑅𝑟𝑒𝑓(𝑖) − 𝐻𝑅𝑟𝑒𝑓(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|}, 

 

where 𝐻𝑅𝑟𝑒𝑓(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the time-average of 𝐻𝑅𝑟𝑒𝑓(𝑖). max {∙} represents the maximum 

value of {∙} . 

 
TABLE 2.1: SIMULATION PARAMETERS FOR HUMAN SUBJECTS. 

Pole radius 𝜌ℎ for 𝐻ℎ(𝑧) 0.95 
Step size 𝜇ℎ for 𝐻ℎ(𝑧) 0.1 

Initial value of estimated heart rate for 𝛽ℎ(0) 120[bpm] 
Pole radius 𝜌𝑟 for 𝐻𝑟(𝑧) 0.99 

Initial value of estimated respiration rate for 𝛽𝑟(0) 20[bpm] 
Step size 𝜇𝑟 for 𝐻𝑟(𝑧) 0.05 
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TABLE 2.2: AVERAGE AND DEVIATION OF TRUE HEART RATE FOR HUMAN SUBJECTS. 

Subject No Average Maximum Deviation Standard Deviation 
1 86.15 3.85 1.98 
2 72.17 10.83 2.75 
3 77.24 12.76 4.06 
4 82.12 6.88 3.19 
5 69.32 11.68 5.12 
6 85.22 6.78 3.64 
7 64.78 38.22 7.71 
8 74.88 15.12 4.03 

 
 
2.4.2 Number of stages and pole radius of RHEF for 
human subjects 

 
The RHEF 𝐻(𝑧)  used in the proposed system comprises notch filters connected in a 

cascade. The number of removed respiration harmonics depends on the number of notch-filter 

stages. Moreover, the pole radius determines the notch bandwidth. Therefore, the accuracy of 

heart rate estimation depends on the number of stages and the pole radius of the RHEF 𝐻(𝑧). 

Fig. 2.3 illustrates the MAPE of heart rate versus the number of stages of RHEF 𝐻(𝑧). The 

MAPE in Fig. 2.3 are obtained by averaging the results of eight subjects. The number of stages 

in the filter cascade 𝑀 = 0 represents the proposed system without the RHEF. The simulation 

results show that the error for 𝑀 = 2 is smaller than that for 𝑀 = 0, and the introduction of 

the RHEF improves the accuracy of heart rate estimation. Unfortunately, the error increases 

when the number of stages is greater than or equal to three and when the pole radius is reduced. 

This is because the number of stages is too many and the notch bandwidth is too wide to reduce 

respiration harmonics; thus, the RHEF distorts a heartbeat component. When 𝜌 = 0.95 at the 

second stage of the cascaded notch filters, the proposed system sufficiently reduces the error. 

Therefore, 𝜌 = 0.95 and 𝑀 = 2  are adopted for the filter cascade.
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FIGURE 2.3: Average MAPE vs. the number of stages of the RHEF for human subjects. 

 
 2.4.3 Experiment results for human subjects 

Table 2.3 illustrates the simulation results in heart rate estimation to compare the proposed 

method with the conventional methods. Each value of the evaluation index is obtained from 

eight subjects, and the average value represents averaging the results of eight subjects. The 

proposed method's average MAPE, MAE, MSE, and RMSE are 5.24%, 4.00, 28.38, and 5.26, 

respectively, and the proposed method obtains the highest accuracy. In addition, all evaluation 

indexes of the proposed method are lower than any other conventional method in each trial. 

Fig. 2.4 shows the estimated heart rate for human subject trial No.1. Fig. 2.4 (a), (b), (c), 

(d), (e), (f), and (g) illustrate the heart rate estimated using the aforementioned conventional 

methods. Fig. 2.4 (h) illustrates the estimated heart rate using the proposed system. Fig. 2.5 

shows the power spectrums of the input and output signals of the RHEF 𝐻(𝑧). Fig. 2.5 (a) and 

(b) illustrate the power spectrum at 100 and 180 seconds, respectively. Considering Fig. 2.5, 

the input signal of the RHEF includes a 3rd order respiration harmonic. The frequencies of the 

3rd  order harmonics are respectively 1.074 Hz (64.44 bpm) at 100 seconds and 1.07 Hz (64.2 bpm) at
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180 seconds. Moreover, the contact-type vital sensor indicates heart rates of 1.51 Hz (90.6 

bpm) at 100 seconds and 1.46 Hz (87.6 bpm) at 180 seconds. 

Fig. 2.4 (a), (b), and (c) show that autocorrelation, FFT, and CWT sometimes can be detect 

the heart rate accurately; however, they are not always usable. Fig. 2.5 (b) shows that they are 

not influenced by the 3rd order respiration harmonic, whose power is lower than the heartbeat 

component. Moreover, the 3rd order respiration harmonic, whose power is higher than the 

heartbeat component, degrades the estimation accuracy from Fig. 2.5 (a). Fig. 2.4 (d) shows 

that the time-window-variation method detects the heart rate with a slight error. Fig. 2.4 (e) 

shows that the spectrogram method degrades estimation performance owing to respiration 

harmonics and noise. Fig. 2.4 (f) shows that the heart rate estimated by BPFB is off the 

reference because BPFB traces the 3rd order respiration harmonic in the band of a selected 

bandpass filter. As indicated by Fig. 2.4 (g), N-DCT cannot reliably capture the true heart rate 

due to 3rd order respiration harmonics and noise. Fig. 2.4 (h) shows that the proposed method 

can trace the reference. Fig. 2.5 shows that the RHEF 𝐻(𝑧) with cascaded notch filters reduces 

the 3rd order respiration harmonic, allowing the proposed system to estimate heart rate 

accurately. In addition, Fig. 2.4 (h) shows that the proposed method using the ANF with an 

adaptive algorithm is more robust against noise than the time-window-variation method. 



Chapter 2 
 

19 

 

FIGURE 2.4: Estimated heart rate for human subject Trial No 1. 
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(a) 100 Seconds 

 
(b) 180 Seconds 

FIGURE 2.5: Input and output power spectrums of the RHEF for human subject Trial No. 1. 
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TABLE 2.3: SIMULATION RESULTS FOR HUMAN SUBJECTS.  
Evaluation 

Index 
Subject 

No 
Auto-

correlation 
FFT CWT TWV Spectrogram BPFB N-

DCT 
Proposed 
Method 

          
MAPE 1 17.13 16.01 18.71 6.56 25.10 39.48 20.30 2.67 

2 8.20 10.40 9.69 24.53 39.58 30.37 23.70 6.32 
3 11.61 18.12 14.67 15.86 27.56 37.32 18.05 5.28 
4 15.30 20.92 17.40 11.69 32.03 38.31 21.14 6.10 
5 8.13 13.18 9.91 29.65 42.62 17.38 23.74 5.36 
6 21.02 26.93 24.71 5.38 22.81 36.80 24.66 4.26 
7 8.25 8.47 8.48 35.70 39.83 21.49 28.72 7.65 
8 12.58 14.07 14.39 19.93 29.00 29.95 19.24 4.29 

Average 12.78 16.01 14.75 18.66 32.32 31.39 22.44 5.24 
          

MAE 1 14.81 13.92 16.14 5.64 21.67 34.12 17.53 2.28 
2 5.94 7.51 7.01 17.62 28.57 21.89 17.04 4.52 
3 9.06 13.99 11.44 12.06 21.39 28.69 13.80 4.21 
4 12.73 17.41 14.53 9.51 26.41 31.72 17.40 5.09 
5 5.67 9.38 6.90 20.02 29.32 12.29 16.26 3.63 
6 18.04 23.11 21.09 4.55 19.59 31.54 21.12 3.70 
7 5.72 5.80 5.81 22.55 25.55 14.64 18.69 5.29 
8 9.41 10.55 10.76 14.74 21.43 22.26 14.28 3.28 

Average 10.17 12.71 11.71 13.34 24.24 24.64 17.01 4.00 
          

MSE 1 366.14 377.14 412.55 39.79 737.44 1187.30 472.05 14.71 
2 54.27 89.78 73.22 335.23 1552.80 493.24 369.41 34.23 
3 129.41 234.45 181.76 160.25 750.95 834.92 247.97 36.10 
4 221.58 387.35 292.11 115.03 1279.60 1024.70 415.72 37.22 
5 50.62 128.96 64.10 441.55 1400.50 175.57 356.50 18.55 
6 410.01 622.51 520.24 30.69 611.34 1026.10 592.51 26.70 
7 71.10 67.47 62.75 542.85 1156.30 292.92 541.29 37.06 
8 114.82 149.18 148.73 229.65 891.33 539.98 275.95 22.52 

Average 177.24 257.11 219.43 236.88 1047.53 696.84 408.93 28.38 
          

RMSE 1 19.13 19.42 20.31 6.31 27.16 34.46 21.73 3.84 
2 7.37 9.48 8.56 18.31 39.41 22.21 19.22 5.85 
3 11.38 15.31 13.48 12.66 27.40 28.90 15.75 6.01 
4 14.89 19.68 17.09 10.73 35.77 32.01 20.39 6.10 
5 7.12 11.36 8.01 21.01 37.42 13.25 18.88 4.31 
6 20.25 24.95 22.81 5.54 24.73 32.03 24.34 5.17 
7 8.43 8.21 7.92 23.30 34.00 17.12 23.27 6.09 
8 10.72 12.21 12.20 15.15 29.86 23.24 16.61 4.75 

Average 12.41 15.08 13.80 14.13 31.97 25.40 20.02 5.26 
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2.5 Measurement Experiments for Dog Subjects 

 2.5.1 Measurement Conditions for dog subject 
 

TABLE 2.4: SIMULATION PARAMETERS FOR DOG SUBJECTS. 
Pole radius 𝜌ℎ for 𝐻ℎ(𝑧) 0.95 
Step size 𝜇ℎ for 𝐻ℎ(𝑧) 0.1 

Initial value of estimated heart rate for 𝛽ℎ(0) 120[bpm] 
Pole radius 𝜌𝑟 for 𝐻𝑟(𝑧) 0.99 

Initial value of estimated respiration rate for 𝛽𝑟(0) 20[bpm] 
Step size 𝜇𝑟 for 𝐻𝑟(𝑧) 0.05 

 
The performance of the proposed system is evaluated with a beagle dog as a subject. The 

aim of dog experiments is to evaluate the estimation accuracy of the proposed method under 

the influence of respiration harmonics and body movement. The dog moves, sits, or lies down 

in a cage, as well as slightly and rapidly trembles. Table 2.4 lists the parameters of the proposed 

system used in this experiment. 

 

 
 

FIGURE 2.6: Scene of data collection for the dog subject. 
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TABLE 2.5: AVERAGE AND DEVIATION OF TRUE HEART RATE FOR DOG SUBJECTS. 
Subject No Average Maximum Deviation Standard Deviation 

1 136.93 61.07 14.36 

2 161.43 56.57 13.50 

3 140.58 58.42 15.60 

4 152.07 58.93 16.16 

5 135.65 67.35 18.83 

6 156.50 63.50 14.24 

7 148.96 48.04 13.91 

8 136.93 61.07 14.36 

 
A dataset is created that contains seven recordings of a 13-year-old female dog at the 

Veterinary Medical Center, Tottori University. This experiment on the dog was approved by 

the Institutional Animal Care and USE Committee, Tottori University (Approval No. 19-T-4). 

The dog's condition in the experiment differs from that in a daily life environment, and the 

dog's mood changes from day to day. The Doppler radar is attached vertically downward at the 

center position of the ceiling of a wire pet cage as shown in Fig. 2.6. The dog is constantly 

below the radar; however, the distance between the radar and the body surface changes 

depending on the dog's body posture. When the dog sits, the distance is approximately 5 cm 

above the head, whereas when the dog lies down, it becomes 30 cm above the abdomen. Each 

recording is measured for 40 minutes. Simultaneously, the ground truth heart rate is recorded 

using an electrocardiography-type (ECG) vital sign monitor (Nihon Koden Corp. BSM-3592). 

Table 2.5 shows each trial's average, maximum, and standard deviation of heart rate data, which 

are detected by the contact-type vital sensor. 

MAPE, MAE, MSE, and RMSE were used for evaluating the estimated heart rate. As the 

vital sensor detects heart rate every 1 second, an estimated heart rate is set to output every 1 

second for comparison. Because a received signal for a dog includes many artifacts due to the 

misalignment of electrodes, 𝐻𝑅𝑟𝑒𝑓(𝑖) is obtained using a moving average for 30 seconds to 

reduce artifacts. 
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  2.5.2 Number of stages and pole radius of the 
RHEF for dog subject 
 

The effects of respiratory harmonics are different because of the difference in body 

structures between humans and dogs, and the required number of RHEF stages also differs. 

Therefore, conduct experiments on the number of RHEF stages for a dog. Fig. 2.7 illustrates 

the MAPE of heart rate versus the number of stages of the RHEF 𝐻(𝑧). The MAPE in Fig. 2.7 

are obtained by averaging the results of seven trials. The stage of zero represents the proposed 

system without the RHEF 𝐻(𝑧) . The simulation results indicate that the RHEF 𝐻(𝑧) 

effectively improves estimation accuracy. Unfortunately, the error increases when the number 

of stages is greater than or equal to five for 𝜌 = 0.93, 0.95, 𝑎𝑛𝑑 0.97. This is because the notch 

bandwidth is too wide to reduce respiration harmonics; thus, the RHEF distorts heartbeat 

components. 

When 𝜌 = 0.99 , the proposed system slightly reduces the error because the notch 

bandwidth is too narrow. Notably, respiration harmonics may remain when the estimated 

respiration frequency is slightly different from the true respiration frequency. When 𝜌 = 0.95 

with 𝑀 = 4, the proposed system sufficiently reduces error. Therefore, 𝜌 = 0.95 and 𝑀 = 4 

are adopted for the RHEF. 

 
FIGURE 2.7: Average MAPE vs. the number of stages of the RHEF for the dog subject.
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 2.5.3 Heart rate estimation performance for Dog 
 

The proposed system is compared with conventional systems based on autocorrelation [1], 

FFT [1], CWT [12], TWV [14], spectrogram method [15], BPFB [16], and N-DCT [18]. The 

MAPE, MAE, MSE, and RMSE are shown in Table 2.6. The proposed method's MAPE, 

MAE, MSE, and RMSE are 7.04%, 10.28, 165.31, and 12.58 on average, respectively, and 

the proposed method obtains higher accuracy than any other method. The proposed method 

improves the estimation accuracy for all evaluation indexes in each trial. 

Fig. 2.8 illustrates the estimated heart rate of trial #7. Fig. 2.8 (a) shows the heart rate 

obtained from an ECG signal before and after the moving average. Fig. 2.8 (b), (c), (d), (e), 

(f), (g), and (h) show the heart rate estimated using autocorrelation, FFT, CWT, time-

window-variation technique, spectrogram, BPFB, and N-DCT, respectively. Fig. 2.8 (i) 

illustrates the estimated heart rate using the proposed system. Fig. 2.9 shows the power 

spectrum of the input and output signals of the RHEF 𝐻(𝑧) at 2,230 seconds into trial #7. 

The RHEF input signal contains components at 1.48 𝐻𝑧 , 1.85 𝐻𝑧 , and 2.3 𝐻𝑧 . As the 

respiration frequency estimated by the proposed method is 0.37 𝐻𝑧 at 2,230 seconds, the 1.48 

𝐻𝑧 and 1.85 𝐻𝑧 components are the fourth and fifth respiratory harmonics. Because the true 

heart rate measured using the ECG vital sign monitor is 138 bpm (2.3 𝐻𝑧) at 2,230 seconds, 

the 2.3 𝐻𝑧 component in Fig. 2.9 is the heart-rate component. 

Fig. 2.8 (b), (c), (e), (f), and (h) show that the heart rates estimated with autocorrelation, 

FFT, time-window-variation, spectrogram, and N-DCT significantly vary because of moving 

artifacts. Although the heart rates estimated with CWT and BPFB have low dispersion as 

shown in Fig. 2.8 (d), and (g), respectively, these methods capture the 4th and 5th respiration 

harmonics. Fig. 2.8 (i) shows that the proposed method tracks true heart rate accurately. As 

the RHEF 𝐻(𝑧) with 𝑀 =  4 reduces the 4th and 5th respiration harmonics as shown in Fig. 

2.9, the proposed method improves the estimation accuracy by eliminating respiration 

harmonics. Moreover, the proposed method is robust against moving artifacts and noise 

because the heart rates estimated with the proposed method have low dispersion as 

demonstrated in Fig. 2.8 (i). Simulation results show that the proposed method, which uses 

ANF and an adaptive algorithm, demonstrably improves the accuracy of heart rate estimation.
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FIGURE 2.8: Estimated heart rate for the dog subject Trial No. 7.  
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FIGURE 2.9: Input and output power spectrums of the RHEF for the dog subject Trial No. 7 
at 2,230 s. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 
 

28 

TABLE 2.6: SIMULATION RESULTS FOR DOG SUBJECT. 
Evaluation 

Index 
Subject 

No 
Auto-

correlation 
FFT CWT TWV Spectrogram BPFB N-

DCT 
Proposed 
Method 

          
MAPE 1 27.08 19.14 39.26 21.54 28.66 43.82 50.27 11.42 

2 16.21 30.77 50.27 15.37 36.45 53.04 48.19 6.10 
3 23.16 18.83 35.63 20.85 29.91 45.14 48.76 6.00 
4 21.16 26.35 45.87 17.66 32.93 49.47 48.20 6.08 
5 26.78 19.89 36.87 23.16 29.91 44.38 49.89 8.43 
6 18.93 28.81 47.46 16.75 35.05 50.96 48.08 5.92 
7 21.74 26.09 44.82 18.53 31.91 48.25 49.17 5.34 

Average 22.15 24.27 42.88 19.13 32.12 47.86 48.94 7.04 
          

MAE 1 36.46 26.53 54.14 29.25 39.67 60.41 68.84 15.17 
2 26.06 49.61 81.37 24.79 59.31 85.96 77.70 10.03 
3 32.34 26.82 50.41 28.98 42.38 63.70 68.57 8.44 
4 31.48 40.22 69.99 26.43 50.99 75.77 73.19 9.36 
5 35.56 27.41 50.34 30.81 41.02 60.81 67.54 11.58 
6 29.45 45.17 74.28 26.02 55.33 80.11 75.27 9.48 
7 31.85 39.07 67.16 27.19 48.13 72.35 73.14 7.89 

Average 31.89 36.40 63.96 27.64 48.12 71.30 72.04 10.28 
          

MSE 1 2E+03 1E+03 3E+03 1E+03 2E+03 4E+03 5E+03 331.06 
2 1E+03 3E+03 7E+03 1E+03 4E+03 8E+03 7E+03 147.96 
3 1E+03 1E+03 3E+03 1E+03 2E+03 4E+03 5E+03 106.56 
4 1E+03 2E+03 5E+03 1E+03 3E+03 6E+03 6E+03 131.47 
5 2E+03 1E+03 3E+03 1E+03 2E+03 4E+03 5E+03 200.57 
6 1E+03 3E+03 6E+03 1E+03 4E+03 7E+03 6E+03 143.41 
7 1E+03 2E+03 5E+03 1E+03 3E+03 5E+03 6E+03 96.11 

Average 1E+03 2E+03 4E+03 1E+03 3E+03 5E+03 6E+03 165.31 
          

RMSE 1 39.04 31.86 56.26 34.99 46.41 61.49 70.65 18.20 
 2 32.65 55.84 82.40 36.11 66.42 86.67 82.43 12.16 
 3 35.45 32.59 53.95 34.26 49.27 64.48 70.99 10.32 
 4 35.73 45.37 71.83 35.33 59.00 77.02 76.87 11.47 
 5 39.20 32.56 52.78 35.18 47.87 62.22 69.84 14.16 
 6 33.94 50.28 75.59 35.73 62.47 80.80 79.24 11.98 
 7 35.62 44.28 69.06 34.96 55.68 73.44 76.00 9.80 
 Average 35.95 41.83 65.98 35.22 55.30 72.30 75.15 12.58 
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 2.6 Conclusion 
In this chapter, a novel heart rate estimation method is proposed using an ANF and RHEF. 

Conventional heart rate estimation systems degrade estimation accuracy because of 

respiration harmonics, moving artifacts, and noise. To this end, the proposed system 

eliminates respiration harmonics using cascaded notch filters with notch frequencies that are 

controlled by an estimated fundamental respiration frequency. In addition, an ANF with an 

adaptive algorithm is adopted to attain robust estimation against moving artifacts and noise. 

Considering the experimental results for human and dog subjects, the proposed method 

achieves the best performance in comparison with multiple conventional methods. This 

indicates that the proposed method demonstrably estimates heart rate accurately without the 

influence of respiration harmonics, moving artifacts, and noise. 

In the future, I will investigate automatically setting hyperparameters and improvement 

of estimation accuracy for a received signal with intermodulation of respiration and heart 

rate. 
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 Chapter 3 

Non-Contact Heart Rate Measurement Based 
on Bispectrum Estimation 

3.1 Interference Reduction using Bispectrum Estimation  

Doppler radar has been acquired as a non-contact heart rate measurement method. There 

is the possibility to be another person around a subject in an actual environment. The 

disturbance influence due to another person is treated as a key problem on the estimation of 

HR. In this chapter, I investigate the suitability of the bispectrum in reducing the influence, 

to accurately reconstruct the heart-beat signal. The bispectrum is a signal processing 

technique based on high order statistics. The Bispectrum has two frequency spectra and 

describes the dependency between these spectra. Thus, I assume that the received signal, 

which is reflected in a subject, generates a strong phase coupling when the subject is in front 

of a Doppler radar. On the other hand, the phase coupling of the influence due to an 

obstructive person is assumed to be weak. Therefore, the bispectrum has the possibility to 

reduce the influence.  

 
3.2.1 Structure of Heart-Rate-Estimation Based on Two-
Dimension Bispectrum 

The bispectrum preserves phase information, which is useful for displaying quadratic 

nonlinear coupling between the different frequency components [35]. Therefore, in cases that 

the different frequency components are dependent and the phases of the different frequency 

components are coupled, the bispectrum at the corresponding frequency bin becomes large. 

In this chapter, a subject is placed in front of a Doppler radar. Therefore, the received signal, 

which is reflected in a subject, is assumed to generate a strong phase coupling. On the other 

hand, I assume that the phase coupling of the influence is due to an obstructive person 

becoming weaker when there is an obstructive person at a different angle from the subject.
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Figure. 3.1 Structure of proposed method 
 

 

Fig. 3.1 shows the structure of the proposed method. The band pass filter (BPF) is 

introduced to reduce the disturbance except for the heartbeat component. The BPF limits the 

pass band from 1.0 Hz to 3.0 Hz. 

 

Next, the third order cumulant of the output signal of BPF, which is given by the following 

equation, is calculated. 

 𝑐3
𝑆 (𝜏1, 𝜏2) = 

   𝑚3
𝑆 (𝜏1, 𝜏2) − 𝑚1

𝑆 [𝑚2
𝑆 (𝜏1) + 𝑚2

𝑆(𝜏2) + 𝑚2
𝑆(𝜏1 − 𝜏2)] + 2(𝑚1

𝑆)3, (3.1) 

 

where 𝑚3
𝑥 (𝜏1, 𝜏2) is the third-order moment of 𝑥(𝑛). 𝑚2

𝑥(𝜏2) and 𝑚1
𝑥 represent the 2nd order 

moment and 1st order moment. 𝜏1, 𝜏2 are delay. These moments are given by
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 𝑚3
𝑆 (𝜏1, 𝜏2) = 𝐸[𝑆(𝑛) ∙ 𝑆(𝑛 − 𝜏1) ∙ 𝑆(𝑛 − 𝜏2)] , 

 𝑚2
𝑆 (𝜏1) = 𝐸[𝑆(𝑛) ∙ 𝑆(𝑛 − 𝜏1)] , 

 𝑚1
𝑆 = 𝐸[𝑆(𝑛)], (3.2) 

  
where 𝐸[∙] is an expected value. 

Bispectrum is given by the Fourier transform of 3rd order moment 𝑐3
𝑆 (𝜏1, 𝜏2). The 

bispectrum 𝐶3
𝑆  (𝑘1, 𝑘2) is represented as 

 
 𝐶3

𝑆 (𝑘1, 𝑘2) 

  = ∑ ∑ 𝑐3
𝑆 (𝜏1, 𝜏2)

𝑁 2⁄ −1

𝜏2=−𝑁 2⁄

𝑁 2⁄ −1

𝜏1=−𝑁 2⁄

∙ 𝑒𝑥𝑝{−𝑗(2𝜋𝑘1𝜏1 𝑁⁄ + 2𝜋𝑘2𝜏2 𝑁⁄ )}, (3.3) 

 
where 𝑘1, 𝑘2 are frequency indexes. 

The Bispectrum method uses frequency, which is the bispectrum calculated in the heart 

rate range has a peak as the estimated value. The bispectrum to be obtained becomes a two-

dimensional complex array 𝑁 × 𝑁. It is necessary to decide whether to select the frequency 

𝑘1, 𝑘2 peak detected on the plan. Therefore, assuming that the heartbeat component has a 

strong coupling between the same frequencies, the value of the diagonal component is treated 

 𝑘1 𝑎𝑛𝑑 𝑘2 is 𝑘. The estimated heart rate in the frequency domain is 

 
𝑘̂ = {𝐶3(𝑘)}𝑘

𝑎𝑟𝑔𝑚𝑎𝑥
, (3.4) 

 
And the sampling frequency 𝑓𝑠 and the desired frequency 𝑓𝐻𝑅 is expressed by  
 

𝑓𝐻𝑅 =
𝑓𝑠

𝑁
× 𝑘̂ [𝐻𝑧], (3.5) 

 
The number of beats per minute is obtained by multiplying  𝑓𝐻𝑅 by 60. 
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3.2.2 Measurement Experiment 

(a) Experiment Conditions  
 

In this experiment, I evaluate estimation accuracy to verify the effectiveness of the 

proposed method. The Doppler radar device SHARP DC6M4JN3000, whose output 

frequency is 24 GHz, was used in this experiment. Table 3.1 shows the parameters that are 

used in this simulation. The number of subjects was 1. An obstructive person was placed in 

7 positions, as shown in Fig. 3.2. The place of subject is at a 0° azimuth angle and 2m from 

a radar device. The place of disturbance is represented (A to G), ones at a time. The 

disturbance is sitting at 10°, 30°, 60° angle and 0.5m, 1m, 2m distances. At the time of 

measurement by the doppler radar, the true heart rate was measured by a contact type vital 

sensor. 

 

TABLE 3.1: PARAMETERS OF THE PROPOSED METHOD 

Modulation type Unmodulated continuous wave 
Initial value of heart rate 60[bpm] 

Carrier frequency 24 [GHz] 
Measured distance 0.5[m], 1[m] and 2 [m] 
Measurement time 180 [s] 
Number of subjects 1 
Sampling frequency 50 [Hz] 

 



Chapter 3 
 

34 

 

 
 

Figure. 3.2 Experimental Setup. 
 
 

To evaluate the estimated heart rate, use the following root mean square error (RMSE) 

formula. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑|𝐻𝑅𝑟(𝑡) − 𝐻𝑅(𝑡)|2

𝑇

𝑡=1

 [𝑏𝑝𝑚], (3.6) 

  
where 𝐻𝑅𝑟(𝑡) is the estimated heart rate. 𝐻𝑅(𝑡) is the heart rate measured by a non-contact 

type of electrocardiography. T is the number of samples. Since the contact vital sensor detects 

the heart rate every 5s, the estimated values of the non-contact methods are set as the average 

value every 5s for comparison. 
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(b) Experiment Result  
 

In this experiment, I compared the proposed method with the conventional method using 

a spectrogram [15] and the conventional method using an adaptive notch filter [30]. Fig. 3.3 

shows the RMSE. The RMSE obtained by ANF is about 6.0 bpm on average. The 

conventional method using a spectrogram indicates about 15.2 bpm on average. The RMSE 

obtained by the proposed method is about 4.2 bpm on average. The proposed method 

improves the estimation accuracy irrespective of the obstructive person’s place. 

Fig. 3.4 shows the estimated heart rate. The proposed method and ANF can track the true 

heart rate. However, the conventional method using a spectrogram comes off as the true 

value. Fig. 3.5 shows the power spectrum of an output signal of the BPF at 70 seconds. The 

frequency corresponding to the true heart rate is about 1.0 Hz, which is about 60 bpm. 

However, the conventional method using a spectrogram has the peak at about 1.4 Hz. Thus, 

the conventional method using a spectrogram degrades the estimation accuracy. The 

bispectrum of the output signal of the BPF is shown in Fig. 3.6. The bispectrum has the peak 

at about 1.0 Hz. From the experimental results, the bispectrum has the potential to reduce the 

influence component.
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Figure. 3.3 RMSE performance

 
 

Figure. 3.4 Heart rate measurement by Bi-spectrum and PSD (Position: C). 
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Figure. 3.5 Power Spectrum at 70 sec.  (Position: C). 

 

 

Figure. 3.6 Bispectrum average at 70 sec. (Position: C). 
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3.2.3 Measurement Experiment for Single Person 
 
 

TABLE 3.2: PARAMETER OF THE PROPOSED METHOD 
Modulation type Unmodulated continuous wave 
Carrier frequency 24 [GHz] 
Measured distance 1[m], 1.5[m] and 2 [m] 
Measurement time 180 [s] 
Number of subjects 1 
Sampling frequency 50 [Hz] 

 

(a) Condition 

 
 

Figure. 3.7 Experimental Setup 
 

I conducted a computer simulation to evaluate the performance of the proposed system 

for one person. The Doppler radar module used in this experiment was the SHARP 

DC6M4JN3000, the carrier frequency of which was 24 GHz. Table 3.2 shows the parameters 

that are used in this simulation. I created a dataset, and the subjects are 5 person whose ages 

range from 21 to 25 and, the subject wore a T-shirt during the experiment. Fig. 3.7 describes 

the position of the subject in front of Doppler radar and azimuth angle, also different 

distances from a radar device. The subject was sitting at 10°, 30°, 60° angle and 1m, 1.5m, 

2m distances. Also, I experimented with two persons. One person as a disturbance influence
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and sitting with subject ones at a time and sitting position on 10°, 30°, 60° azimuth angle and 

1m, 2m distance. The subject and disturbance influence distance was 1m. At that time of 

measurement, the true heart rate was measured by a contact type equivital sensor. Since the 

contact type sensor detected the heart rate every 5 seconds, the estimated values were set as 

the average value every 5 seconds for comparison. 

 

(b) Heart Rate estimation performance of single person 

 

 
Figure. 3.8 HR-estimation performance of single person front of Doppler Radar 

 
 

The RMSE results in Fig. 3.8 describe the subject sitting 1m distance from Doppler radar. 

The average RMSE results for ANF [30], Time-window-variation[14], N_DCT[18], 

BP_FB[16], PSD[1] and Spectrogram[15] are 7.33%, 33.36%, 12.43%, 17.92%, 15.08% and 

37.89% respectively. But our proposed method RMSE is 5.33%.  
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(c) Heart Rate estimation performance of single persona 
with and azimuth angle 
 
 

 
Figure. 3.9 HR-estimation performance of single person with & azimuth angle 

 
 
The RMSE results in Fig. 3.9 describe the positions 1, 2, 3 are 10° azimuth angle and 1m, 

1.5m, 2m distance, 4, 5, 6 are 30° azimuth angle and 1m, 1.5m, 2m distance, 7, 8, 9 are 60° 

azimuth angle and 1m, 1.5m, 2m distance from Doppler radar. The average RMSE results 

are 13.70%, 15.94%, 21.87%, 32.62%, 22.17% and 31.02% respectively. And our proposed 

method RMSE is 5.84%.  
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(d) Heart Rate estimation performance of two persons, 
subject with disturbance influence and azimuth angle 
 
 

 
Figure. 3.10 HR-estimation performance of two persons, subject with disturbance influence & 

azimuth angle 
 
 

Fig. 3.10 describes the RMSE results of two person’s experiments and position 1 is 1m 

distance from Doppler radar, 2 and 3 are 10° azimuth angles and 1m and 2m distance, 4 and 

5 are 30° azimuth angles and 1m, and 2m distance, 6 and 7 are 60° azimuth angles and 1m, 

and 2m distance from Doppler radar. The average RMSE results are 13.03%, 24.85%, 

20.20%, 27.65%, 22.54% and 43% respectively. And our proposed method RMSE is 5.05%.  

The heart rate result is shown in Fig. 3.11. In this research, I compared the proposed 

method with the conventional method. The reference heart rate is 1Hz (60bpm) on average. 

Fig. 3.11(g) shows the result of bispectrum average heart rate accuracy which is 1Hz. 

However, the conventional method detected the average heart rate in Fig. 3.11 (a), (b), (c), 

(d), (e) and (f) are 1.2Hz, 1.8Hz, 0.8Hz, 0.8Hz, 1.6Hz and 2.4Hz respectively. From the 

experimental results, the bispectrum has the capability to reduce the receiving noise 

component and detect the heart rate accurately.  
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Figure. 3.11 Heart rate Measurement 
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3.3 Non-Contact Heart Rate Measurement Based on One-

dimension Bispectrum Estimation 

 3.3.1 One-Dimension Estimation 

I investigated heart rate measurement based on the bispectrum to reduce the influence of 

the obstructive person around the subject [37]. Bispectrum has two recurrence spectra and 

portrays the reliance between these spectra. Therefore, assume that the bispectrum of the 

component due to an obstructive person is zero. In addition, the bispectrum of white Gaussian 

noise is zero. Therefore, the bispectrum can detect the heart rate precisely. However, 

bispectrum increases the computational complexity. Thus, this chapter introduces a one-

dimension bispectrum to a heart rate measurement for low computational complexity.  

Higher-order cumulants and spectra increase the computational complexity. Therefore, I 

use one-dimensional slices of multi-dimensional cumulants. One-dimension third-order 

cumulant is defined by 
 

𝑐3
𝑆 (𝜏1, 𝜏) = 

   𝑚3
𝑆 (𝜏1, 𝜏) − 𝑚1

𝑆 [𝑚2
𝑆 (𝜏1) + 𝑚2

𝑆(𝜏) + 𝑚2
𝑆(𝜏1 − 𝜏)] + 2(𝑚1

𝑆)
3

,                               (3.7) 
 
where 𝜏  is a constant. 

 
From equation (3.7), a one-dimension bispectrum is given by 
 

𝐶3
𝑆′

 (𝑘) = ∑ 𝑐3
𝑆 (𝜏1, 𝜏) ∙ 𝑒𝑥𝑝−𝑗(2𝜋𝑘𝜏 𝑁⁄ )

𝑁 2⁄ −1

𝜏=−𝑁 2⁄

 . (3.8) 
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3.3.2 Measurement Experiment   
  

(a) Condition 
 

TABLE 3.3: PARAMETER OF THE PROPOSED METHOD 
Modulation type Unmodulated continuous wave 
Carrier frequency 24 [GHz] 
Measured distance 1 [m] 
Measurement time 180 [s] 
Number of subjects 1 
Sampling frequency 50 [Hz] 

 
 

I executed a computer simulation to analyze the proposed system's performance. The 

SHARP DC6M4JN3000 Doppler radar module with a carrier frequency of 24 GHz was used 

in this experiment. Table 3.3 shows the parameters that were used in this simulation. A 

dataset was constructed, and the participants were five people aged 21 to 25. Each subject 

wore a T-shirt during the experiment. The person was seated 1 m away from the Doppler 

radar device. The research ethics approved this experiment on the human subjects’ review 

committee of the Faculty of Engineering, Tottori University (No. R4-5). A contact-type 

Equivital sensor was used to measure the true heart rate. The estimated values were set as the 

average value for every 5 seconds for comparison since the contact type sensor detected the 

heart rate every 5 seconds. 
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 (b) Measurement Results  
 
 

Fig. 3.12 shows the RMSE of heart rate measurement results. The average RMSEs for 

Time-window-variation, Spectrogram, BPFB, and N_DCT are 15.84, 28.96, 24.88, and 20.19 

respectively. The average RMSE of a two-dimension bispectrum is 3.73. On the other hand, 

our proposed one-dimension bispectrum indicates an RMSE of 5.30. Although the 

performance of the proposed one-dimension bispectrum is slightly lower than the two-

dimension bispectrum, it is significantly better than other conventional methods. 

The heart rates estimated using Time-window-variation, Spectrogram, BPFB, and 

N_DCT are shown in Fig. 3.13 (a), (b), (c), and (d). The heart rates estimated by the two-

dimension bispectrum and proposed one-dimension bispectrum are shown in Fig. 3.13 (e) 

and (f). The time-window-variation approach, which utilizes that heart rate does not fluctuate 

during a short period, detects higher values than the reference values as shown in Fig. 3.13(a). 

The spectrogram method's estimation performance is degraded by white Gaussian noise, as 

shown in Fig. 3.13 (b). Since BPFB tracks the noise in the band of a selected band-pass filter, 

Fig. 3.13 (c) indicates that the heart rate estimated by BPFB is lower than the reference. From 

Fig. 3.13 (d), N-DCT cannot accurately capture the true heart rate due to respiration noise. 

The estimated values of the two-dimension and one-dimension bispectrum and reference are 

respectively 1.18Hz (71bpm) on average. The two-dimension and proposed one-dimension 

bispectrum can estimate the heart rate accurately as shown in Fig. 3.13 (e) and (f). According 

to the experimental findings, the one-dimension bispectrum have the ability to decrease the 

noise component and accurately estimate the heartbeat.
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Figure 3.12. Heart rate estimation performance.  
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Figure. 3.13 Heart rate Measurement One-dimension 
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 3.4 Conclusion 
I investigated the suitability of the bispectrum in reducing the influence and the receiving 

noise to accurately estimate the heart rate. The bispectrum preserves phase information for 

describing the quadratic nonlinear coupling between the different frequency components. I 

observed the suitability of the bispectrum. So, the proposed bispectrum method for detecting 

heart rate estimation system. Since bispectrum and high-order statistics have zero means for 

Gaussian noise, hence the bispectrum can improve the performance of the heart rate 

estimation. However, the bispectrum increases the computational complexity. Thus, here 

introduced the one-dimension sliced bispectrum. From the simulation results, although the 

performance of the proposed one-dimension bispectrum is slightly lower than the two-

dimension bispectrum. However, One-dimension and two-dimension estimation methods 

can reduce the noise and detect the heart rate accurately.  

In my future work, I will conduct research to improve the performance of the one-

dimension and two-dimension bispectrum. 
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Chapter 4 
Conclusion  

 
In recent years, with the onset of an aging society, monitoring biological information has 

attracted attention. In addition, there is growing interest in monitoring biological information 

not only in humans but also in animals to detect diseases and changes in physical condition 

and to check the physical condition after surgery. A common method to obtain biological 

information is to use contact sensors such as electrocardiograms. However, this contact-type 

measurement is burdensome because the body of the object to be measured is restrained. 

Therefore, heartbeat detection using Doppler radar, which can perform non-contact and non-

constraint measurements without putting any strain on the body, has been widely studied. 

This method detects heart rate by observing minute movements of the heart on the body 

surface. However, heartbeat detection using Doppler radar has the problem that the heartbeat 

signal is affected by respiratory harmonics and body movement noise, reducing detection 

accuracy. Therefore, separating the signals caused by the heartbeat from the signals caused 

by breathing and body movement noise is essential to improving accuracy. 

Based on chapter 2, the results of research aimed at improving the accuracy of estimating 

respiratory rate in subjects and improving the accuracy of estimating heart rate by taking into 

account the interference of respiratory harmonics. 

 

The results obtained in this research are as follows: 

[1] I proposed a method for estimating heart rate and respiration rate and removing 

respiratory harmonics using an adaptive notch filter for non-contact heart rate and respiration 

rate detection using Doppler radar. In this method, by using an adaptive notch filter that is 

effective for estimating narrowband signals, the fundamental frequency due to heartbeat and 

respiration can be estimated without the limitation of frequency resolution that was a problem 

with conventional methods. In addition, by using a respiratory harmonic removal filter 

consisting of cascaded notch filters, it is possible to remove respiratory harmonics that 

interfere with heartbeat components. The removal notch frequency of the respiratory
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 harmonic removal filter is determined based on the fundamental frequency of breathing 

estimated by the adaptive notch filter and is adaptively controlled. 

[2] The proposed ANF method was able to reduce the respiration harmonic. The average 

RMSE results with subjects in a resting state showed that the proposed ANF method was 

able to improve the heart rate estimation accuracy more than the conventional method.  

Based on chapter 3, focused on the difference between the probability distribution of the 

signal for chest movement. Since it is effective to separate these two signals using skewness, 

which is a third-order statistic, this is a summary of research conducted with the aim of 

developing a bispectral heart rate estimation method. 

The results obtained in this research are as follows: 

[1] The bispectrum in reducing the influence to accurately estimate the heart rate. The 

bispectrum preserves phase information for describing quadratic nonlinear coupling between 

the different frequency components. The bispectrum minimizes the interference component 

that comes from various angles, presuming that the received signal, which is reflected in a 

subject in front of a Doppler radar, has a significant phase coupling. From the experimental 

results, the proposed method has the potential to improve the estimation accuracy. 

[2] In the bispectrum, it was confirmed that the signal due to heartbeat is distributed in the 

diagonal component, and the receiving noise is less likely to be distributed in the diagonal 

component. The bispectrum was observed usefulness for lowering reception noise and 

precisely estimating heart rate. Therefore, suggest the bispectrum approach for heart rate 

estimation system detection. Bispectrum and high-order statistics have average values of 0 

for white Gaussian noise. Therefore, proposed a heart rate estimation method that is less 

affected by receiving noise by detecting peaks from the diagonal components of the 

bispectrum. 

[3] This one-dimensional bispectrum-based bispectrum approach measures heart rate without 

physical contact. Since high-order statistics and bispectrum have zero means for Gaussian 

noise, bispectrum can enhance the accuracy of heart rate estimates. But the computational 

complexity is increased by the bispectrum. As a result, the bispectrum was presented in one 

dimension and sliced.
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[4] Experimental results with subjects in a resting state showed that the proposed One-

dimension and two-dimension methods were able to reduce the average RMSE of the 

measured value of the non-contact sensor more than the conventional method, resulting in a 

heart rate closer to the measured value of the contact sensor. This method was able to improve 

the accuracy of heart rate estimation, confirming the effectiveness of this method. 

Future issues include the development of a method for determining the appropriate 

number and attenuation amount of respiratory harmonics that interfere with heartbeat 

components, and a method for removing them. Another challenge is the development of 

methods to reduce noise.   
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