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Abstract

Froberg [2] said that he believes f(z) = Z W) e being non-differentiable everywhere by com-
n
n=1
puter computation, where i = +/—1 and p(n) is the Mébius function.
In this paper, we show in Theorem 1.1 that for any interval in [0,27n] there exists a positive

Lebesgue measurable (L'-measurable) set such that f'(x) is not L*-measurable on its interval.

1 Theorems

(n) ¢, Then f(z) has a
n

( )e””” is continuous. By
n

Let p(n) be the Mobius function. We define f(z) =

[M]8

n=1

NE

period 27. Bateman and Chowla [1] show that f(z) =
n=1

numerical computations, Froberg [2, p.210] said that it is perfect clear that the function is

not differentiable. But he does not give the proof.

Lemma 1.1 ([3, Theorem 68]). If both g(z) and g'(x) belong to L*(—o00, ), then both G(x)

and xG(z) belong to L? ; and vice versa, where

Gla) = \/% /_ T et
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(n zna:

Lemma 1.2 ([1, Lemma 2]). The series Z

n=1

converges uniformly in z € R.
n

Theorem 1.1. Let f(z) = Z un) €™, Then for any [a, 3] C [0,2n], f'(z) does not

belong to L?|a, (] ,i.e., f'(x) & L?[, 3.

Proof. It was proved by Bateman and Chowla [BC] that f(z) converges uniformly in « for

real z. This implies that f(x) is continuous. We define

fl@) if a<z<p,
g(zx) =
0, otherwise.

By f(z) being continuous, g(z) is L?(—00, 0o)-measurable. Since f(x) converges uniformly

in x, the Fourier transform of g(x) is

a0 ! = i 1 - n s inT i
> n=1 o

Thus

1 .
) MG — ity if y o,
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G(y) =

\_/

B—a)=0 if y=—n.
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Suppose ¢'(x) € L?|a, 8] on some [a, 3], that is, ¢'(z) € L?(—o0, 00). Both g and ¢’ belong
to L?(—o0, c0), then ¢'(y) = (—i)yG(y) € L*(—00,00) by Lemma 1.1. Since, for y # —n,

Y p(n i(n+y)p i(n+y)o
= e — € )
g = (—i)yG Z e y){ }
we have
2
0o > / Yy {ei(n-iry)ﬁ_ei(nﬂ;)a} dy
n n+y)
2 2
0o |itB _ ita|2 o
_ — N B ita _ et e’ t—n
= / — (e — ") dt_/ioo 2 ; - wu(n)| dt
2
oo 481112 (B O‘)t > % 4gin? @t
I >t of [Ty,
t2
n—1 —o0

by i pn) _

3
,U.
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2

Thus < 00, which contradicts to [4, Theorem 14.26(B)], that is,

> u(n)

1
limsup—m Zu(n) > 0.

T—00
n<z

Thus we obtain ¢'(x) € L?[a, (], i.e., f'(z) & L?[a, 3], which completes the proof.

Theorem 1.2. Let f(x Z pin m‘”. If f'(z) emists for some x, then f'(z) = 0.

Moreover, if f' (x) or f’_( ) e:z:zsts for some x, then f! (x) =0 or f’ (x) = 0, respectively.

Proof. Since

oo

§Z%<oo,

n=1

0o
Z ‘ zna: . einh)

the function

i N(Z znz . einh)

n
n=1

absolutely converges.

For ¢ > 0, we set the function
:u znm mn
g9(z,t) = E —e'™). (1)

By Lemma 1.2, the function f(x) converges uniformly in x.

Thus

f(l‘ + h) Z N’Eln znm znh _ 1)

n=1

converges uniformly in h. Therefore

t oo o0 t
/ Z /j‘(n) eina: (einh _ 1) dh = Z /J(’I”L) / ein:v (einh _ 1) dh
0 n - Jo
n=1 n=1
_ = M( zn;c M inx _ int
= t; - +1 Z em).

= —tf(z)+iy %anm(l — e, (2)

n=1



Thus

9(z,t)

M\H‘
—_

znw o eint) }

—1)dh

n

zn;r znh
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Applying Cauchy’s mean value theorem, we have, for some h with 0 < h <t
Z (n znT 7nh _ 1)
n=1 n 1
olrt) = . = (Fa+h) — f(@))
1— eint )

Since

= —ine"™ + o(1) as t — 0, where o is the Landau’s small o
we have for fixed N,

n=1 t

N i N
: [L(Tl) ine 1—em . (n) in(x+t)
}g% 2 e i E " e ,

and for fixed ¢ # 0,

:U/(2)€inx 1—em . (—i = :U’(n> ein(a;-‘rt)) ’
n=N " t n=N n
00

in(et)| . 2 i 1.
|t] = n2 ’
oo
for any positive € > 0 as N — oo, because f(x +t) = Zu(nn) (@) oxists.
Therefore from (4), we have "

. |

& pln) gl

1 inz = t).

2 S e = e
n=

Thus from (1), we have

g, 1) = g 20 1)

if f'(r) exists for some x. Therefore, by (3) and (5), we have 2f'(z)
f'(z) =0.

If f'(x) or f’ (x) exists for some x, then we replace t — 0 with ¢t — +0 or ¢ — —0 in the

above proof . Thus we have f) () =0 or f’ ()

= 0, respectively.

= f'(x), that is,
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By Theorem 1.1 and Theorem 1.2, we have

o
an’

Corollary 1.1. f(x

is non-differential except for {x| fi(z) = 0}.

Theorem 1.3. We have for T = {x| f\ (x) or f' (x) does not exist }

N

Z M(n)emw

n=1

—o0 as N-—oocoimxel.

1",
Proof. By the fact lim f/ e dt = 1, we have
h—0 h J,

i l _ M 7n(z+h) inx
fim 5 (fle+h) = f ;lfi%hz e™)
1
— 1 znm 1nt _ 7.nx 1 . .
hli%g ip(n /o dt = ZE wu(n (I4+0(1)) as h—0

In the above equations, if we replace h — 0 with o — +0 or h — —0 , we have the same
equations. By Theorem 1.1 and 1.2, if f} (z) is exists, then f) (x) = 0.
Thus we have

as N -ooinzxel,

N
E znﬂc

which completes the proof.
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