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Abstract

We obtain a lower bound for the discrepancy of the sequence (an + Blogn),
where « is an irrational number and f is a non-zero real number. In order to
show the result, we estimate the exponential sums by the saddle-point method.
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1 Introduction and the main results

Throughout this paper, {2} = z — [z] denotes the fractional part of the real number
z, where [z] is the integral part of z, and C(a,b,c,...) denotes a constant that
depends only on a,b,c,..... We write ||z]| = mingez |z — k| and e(z) = ™=,

For functions f(z) and g(z) defined on z > zo for some zo, the notation f(z) =
O(g(z)) means that there exists a positive constant C such that |f(z)] < Clg(z)|
for all z > o, and the notation f(z) < g(z) means f(z) = O(g(z)). The notation
f(z) < g(z) means that f(z) < g(z) and ¢g(z) < f(z) and the notation f(z) ~ g(z)
means that f(z)/g(z) — 1 as ¢ — oo.

Let (z,)52; be a sequence of real numbers. The discrepancy of (z,) is defined
by

1 N

Dn(zn) = sup |— ZX[a, 5)(zn) — (b —a)],

N
0<a<b<1 n=1
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where N is a positive integer and X, b)(z) is the characteristic function mod 1 of
[a,b), that is, X[q)(z) = 1 for {z} € [a, b) and X[4,4)(z) = O otherwise (see [6]).

Let o be an irrational number. Let ¢ be a non-decreasing positive function that
is defined at least for all positive integers. We shall say that « is of type < ¢ if
h|lah|| > 1/(h) holds for each positive integer h. If 1 is a constant function, then
a of type < 9 is called of constant type (see [6, p.121, Definition 3.3]). Let n be a
positive real number. The irrational number « is said to be of finite type n if 5 is
infimum of all real numbers 7 for which there exists a positive constant C = C(7, o)
such that o is of type < v, where 9¥(q) = Cq"~! (see [6, p.121,Definition 3.4 and
Lemma 3.1}).

Tichy and Turnwald [10] obtained an upper estimate of Dy (an + Blogn), but
Ohkubo improved the result, that is, Ohkubo [8] obtained an upper estimate of
Dn(an + Blogn) as follows: '

If o is an irrational number of finite type # and B is a non-zero real number, then
for any € > 0 and for all positive integer N

Dy(an + Blogn) < C(ﬂ,s)N~ﬁ5+s.
If « is of constant type and § is non-zero real, then for all positive integer N
(1.1) | Dy(an + Blogn) < C(B)N~5log N.
See also [2] and [3].

The purpose of this paper is to obtain the lower bounds for the discrepancies of
the sequence (an+ flogn) (see [4] for a generalized version). We use a lower bound
for the discrepancy that contains an exponential sums (see Lemma 2.6, below). We
need the detailed estimates of the exponential sums.

Theorem 1.1. Let o be an irrational number, § be a non-zero real number, and h
be a positive integer. Then

1/2p1/2 h

1<n<2c
|ﬂ11/3h1/3 1 1
o ( —ar) 0 (=am) 0 (=)

+O(|B|h) + 0 ((|5[1/2h1/2+ 1) log (Iﬁ[h+ %>>

+0 (1812h7) + 0 (1),

h
where k= [ak] + }(sgn(6) + 1), ¢ = T2 and sgn(B) = 1 if 6 > 0, sgn(6) = ~1
if B < 0 and the constants implied by the O’s are absolute.
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Theorem 1.2. Let o be an irrational number, 3 be a non-zero real number, and oo =

[ag, a1, ag, . ..] be the continued fraction exzpansion of o with Pn _ [ao, a1,.-. ,an].
n
For any positive integer m, let

j— 92m+1, lf/B > Oa - Pam+1, zfﬂ > Oa
" qam, zfﬂ < 01 Pom, Zfﬂ < 0;

2Bk,
and let Nm = [ m} .

Then for any £ > 0 and sufficiently large integer m,
1/4
Dy, (an+ Blogn) > (ﬂs—— - E) N,;g’/fl.

Remark 1.1. The smallest order of upper bounds for the discrepancy of the se-
quence (an + Blogn) which we know is N—23log N for the irrational number o of
constant type (see (1.1)). On the other hand, as mentioned above, the order of the
lower bound is N=3/%. A reason why there exists the gap between the orders of the
lower bound and the upper bound is that (logn) is not uniformly distributed mod 1

(see [6]).

Throughout this paper, the constants implied by the O’s and <’s are absolute.

2 Preliminary lemmas

The following lemma is a result that is got by combining Lemma 4.6 and Notes for
Chapter 4 in [9].

Lemma 2.1 ([9, Lemma 4.6 and Notes]). Let g(z) be a real-valued function on
the interval [a,b] and suppose that g(z) satisfies the following conditions:
(i) ¢ is continuous on [a, bl;
(ii) either g > 0 on [a,b] or g’ < 0 on [a,b];
(iii) there exists positive number my such that
g"(z) < mz on [a,b];
(iv) there exists positive number mg such that
¢"(z) < m3 on [a,b];
(v) ¢'(c) = 0 for some c € [a, b].
Then

/ab e(g(z))de = e <g(c) + % Sgn(g"(c))) Ig"(c)rl/z L0 (m;lmé/?’)

+0 (e (gzgar ")) +0 (e (™))
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The following lemma is essentially in [11, p.198, Lemma 4.4]. Since we need the
more detailed error term, we modify the result and give precisely the proof which
runs along the same lines as that of [11, Lemma 4.4].

Lemma 2.2 ([11, Lemma 4.4]). Let f(z) be a real-valued function and f'(z) be
monotone on the interval [a,b] such that |f'(z)] < A on [a,b] for some 0 < A < 1.

Then
1
=o(i23):

Proof. We set W(z) = [z] + 1/2 and x(z) = z — ¥(z). Then

b b b
LdﬂWM—§:4mm=Ldﬂmm~ldmmww

a<n<b

b
 elf(@))dz - > elf(n))

a<n<b

=Aﬂvwmw—W@)
(.) = [ cti@)ixt)
= U ENXEE - [ x@) (/@) s
:—L%uwmw@M+R@w
where R(a,5) = e(f0)x(8) - e(/(a))x(@)

The Fourie expansion of x is

o0
Z sm 27rnm

n=1

if z is not an integer, and the series is boundedly convergent, so that we may multiply
by an integrable function and integrate term-by-term. Thus

_/ab(e(f(w))),X(z)dm =— i %/b sin(2rnz)(e(f(z))) dz
(2.2) == i :L (/ ) + nz) f'(z)de — /abe(f(x) - nx)f'(w)dz> _

1

We have
~[:U(>—nx dx—/’ﬂfm)li (f(z) - na).

z)—n



Tottori University, University Education Center, BULLETIN Number 1 (2004) 129

!

f (fv)
fi(@) —n

by the second mean value theorem, for some £ € (a,b), we have

/ab f,g:gm_)nd(e(f(w)—nz = f,f, —n/ d(e(f(z) — nz))

= f,(b € —no) —¢€ — N
= 5y = U 0) = nb) = ((€) = n6)).

Without loss of generality, we may assume that ———— is non-decreasing. Then,

Therefore, for n > 1, we have

A1) 2
SHCIEEESY

b
(2.3) / e(f(z) — nz) f'(2)da| <

Similarly, we have

(%) . 2x _ 2A
ST e b

Thus, by (2.1), (2.2), (2.3), and (2.4), we have

b
(2.4) [ el @)+ o) (o)de| <

b
L e(f@)dz— 3 e(f(n))

a<n<b

b
- [ @) xtede + R(a,b>|
1 b
/(e(f( )x(e)da| +2

<

0 0 1 b

32_:; / o)+ o) (el + 30 | elite) = no)f (@)

1
< 4A 2
s n; CESYR
> 1
=4 (—1_/\+7;2n(n_)\)> +2
1

=0 (m)

which completes the proof. | |

We quote Lemma 10.5 in [11, p.226].
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Lemma 2.3 ([11, Lemma 10.5]). Let p(z) be a positive decreasing and differ-
entiable function defined on the interval [a,b]. If ¢"(z) is of constant sign and

¢'(z)/g"(z) is monotone on [a,b], then
¢'(z) )

/abw) (9(z))dz| < 8 max, (ﬁ%) T2, ( 7(z)

The following lemma, is a saddle-point theorem, which is proved by combining
Lemma 2.1 and a part of proof of [5, p.71, Lemma 2.

Lemma 2.4. Suppose that g(z) and ¢(z) are real-valued functions on the interval
[a,b] which satisfy the following conditions:

(i) ¢""(z) is continuous and ¢"(z) exists on [a,b];

(ii) either ¢ > 0 on [a,b] or ¢" < 0 on [a,b] ;

(iii) there exists a number mgy > 0 such that

g"(z) < my on [a,b];

(iv) there exists a number mgz such that g"'(z) < mas;
(v) there exist numbers Ho, Hy, and Ha such that

p(z) < Ho, ¢'(z) < Hi, ¢"(z) < Ha;

(vi) ¢'(c) = 0 for some c € [a,b].
Then

[ otertoenas = (g(c) + Legnlg' (@) ¢(Ol" O
O(Homy my/*) + O(Hym3") + O(Hamz ™" (b — 0))
(2:5) O(Hymz?m3(b — a)) + O(Hamy *ma(b — a)?)
O(Ho mln(mgl/ g (@)|™1) + O(Ho min(m2_1/2, lg'(®)|™1)).
Proof. See [4, Lemma 2.5] on the detailed proof. O
The following lemma is Koksma’s inequality (see [6, p.143, Theorem 5.1]).

Lemma 2.5 (Koksma’s inequality, [6]). Let f be a periodic function on [0, 1] of
bounded variation V (f), and let (z,) be a sequence of real numbers of [0,1). Then

N 1
ORI

Applying Lemma 2.5, we obtain the following lemma by the same reasoning as
in the proof of [6, p.143, Corollary 5.1] (see also [1, p.95]).




Tottori University, University Education Center, BULLETIN Number 1 (2004) 131

Lemma 2.6 ([6], [1]). Let (z,) be a sequence of real numbers. Then, for any pos-
itive integer h,

N

%Ze(hxn)

=1

1
— < .
4h < Dy (an)

3 Proof of Theorem 1.1

To prove Theorem 1.1, we need two lemmas.

Lemma 3.1. Let o be an irrational number, § be a non-zero real number, and h be
a positive integer. Then

1/2h1/2 A
3" e(h(an+ Blogn)) =|—ﬁ€|—:—me (ﬁhlog (Ef—ah) — Bh - _Sgrg(m)

cf2<n<2c
o Wl/Shl/s o 1 o 1
N <|k—ah1>+ (1—|k—ah|)’

Bh

-

where k = [ah] + L(sgn(B) + 1) and ¢ = ?

O’s are absolute.

- and the constants implied by the

Proof. We note that ¢ > 0. We set a = ¢/2, b = 2c and f(z) = h(oz + Blogz).
Then

D elfm) = 3 e(f(n)—kn)
a<n<b a<n<b

(3.1) = Z e((ah — k)n + Bhlogn)

a<n<b

= Y e(g(n),

a<n<b

where g(z) = (ah — k)z + fhlogz.
Now, we suppose that § > 0. For z € [a,b], we have

g'(:v):cneh—k:-{—%ti
<2 (ko)
= 28K F 2"

Bh
=k — ah.
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On the other hand, since
g (z) = (ah— k) + ﬂw—h > —(k—ah) forz >0,

we have

ld'(z)] <k—ah fora<az<b.
Similarly, in the case § < 0, we also have

lg'(z)] < ah—k fora<z <b.
Anyway we have

lg'(z)] < |k — ah| fora <z <b.

Hence, by (3.1) and Lemma 2.2 with A = |k — ah|, we obtain

b
(3.2) Z e(f(n)) = Z e(g(n))z/ e(g(x))dm+0(fﬁ>.

a<n<b a<n<b a

Applying integration by parts to the integral in (3.2), we obtain

b b
L e(g(w))dw:/ e((ah — k)z + Shlogz)dz

b
:/a e((ah — k)z)e(Bhlog z)dz

:/ab <M>/e(ﬂhlog z)da

2mi(ah — k)
e((ah — k)z) be((ah — k)z)

b
1
= [me(ﬂhlog m)]a _l _E‘h—__‘k_ﬂh;e(ﬂhlogm)dx

(3.3) :m(e((ah — K)b+ Bhlogh) — e((ah — k)a + fhlog a))
b
_ ahﬁf . / %e((ah — k)o + fhlog)da
_ Bh 51 1
_k—ah/a ;6((Ozh—k)1?+ﬂh10g$)dl'+0 (m)

b
o [ et +o (=),

where p(z) = 1/z.
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We show that the conditions in Lemma 2.4 are satisfied:
g"(z) is continuous and ¢”(z) exists on [a, b]

by the definitions of g(z) and ¢(z) ;
if 8> 0, then for a < z < b,

2 2
Bhe™ < fh (-;;) < ~g¢"(z) = Bha™? < ph (%) < fhe™?

if <0, then fora <z <b,

2 2
~Bhe? < —fh (51-) < ¢'(2) = —pha™? < —ph (—2-) < —Bhe?

19"(2)] = 28lha™ < 201h (5) " < he

g (c)=0, cé¢la,b].

Hence, we can apply Lemma 2.4 with my = |B|hc™2, ms = |B|hc¢™3, Ho = ¢,
Hy=c2% and Hy=c3.
We compute each term on the right-hand side of (2.5) in Lemma 2.4 as follows:
1 _ 1 —gv— sgn(f
e (909 + goenls" (@) ) (N2 = (Blne) e (g10) - 2L

=lp e (gt - 20,

Hom:,"lm;/‘o’ — C—-l(]ﬂ,hc—2)—1(lﬂIhC—S)l/B — |,8|—2/3h—2/3,
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Hymy' = c2(|Blhc™®) "t = |87 'R,

Hzmz_l(b —a)= gc_s(lﬂlhc_z)_lc = giﬂ‘-lh—l’

Himy*ms(b—a) = 30_2(|5|hc_2)_2|ﬂ|hc—30 = glﬂl‘lh‘l,

_ 9 _ o _ 9 4 _
H2m22m3(b—(1)2: ZC 3(|ﬂ]hc 2) 2|[3|hc 3¢? = Z[[ﬂ 1p-t

Homin(my /%, |¢(a)|™Y) < Holg'(a)| ™
-1

=cllah—k+ ———-2'ih
= = h
Bh |k — ahl 141 '

and similarly,
Homin(m; "/, 1¢'(6)| ") < |8]7A 7"

Therefore, by Lemma 2.4, we obtain
b
/ p(2)e(g(z))dz =|6| 7/ h™H e (g(c) - %@)

(34) +0(817* ) + 0 (g1 7).

From (3.3) and (3.4), it follows that

[ ctotes
=2 (1o (1) - 220 4 o(iap-2ron29) 4 015 )

(35) +0 (M)

_|B|/2Rt/2 gn(6) 8|73/ 1
= (50 - %5 )+O< = o] ) +O(1k—ah1)'
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By (3.2) and (3.5), we obtain

Y elf(n) :%e (ﬂhlog (k f"ah) Bh_ ig_ng(_ﬂ_))

[ﬁll/3h1/3 1 ) 1 ) :
+O<]k—ah] +O<lk—ah[ +O(1—|k—ah| )

which completes the proof of Lemma 3.1. O

Lemma 3.2. Let o be an irrational number, § be a non-zero real number, and h be
a positive integer. Then

3 cltten+ flogn) <lh+ ([0 +1) o (1610 +3)
o 1
|k — ah|

+ 1BI2RH2 + +1,

Bh

i 8 4

where k = [ah]+ $(sgn(B) + 1) and ¢ = :

15 absolute.

. and the constant implied by the <

Proof. We may suppose that 8 > 0; otherwise, we replace @ by —« and 8 by —f.
We have the trivial equality:

(3.6) > e(h(an + Blogn)) = > elg(n)) +0(1),

1<n<c/2 1<n<c/2

where g(z) = ahz + fhlogz. Since ¢g’(z) is decreasing, we can define a, as follows:
/ 1 1
g(ap):p—§ for pEZ,p>ah—|—§.

We note that

L %ph
Po2(p—ah) -1’

and a, is decreasing.
Then

7)Y )= T e+ Y em)+ ¥ eloln),

1<n<c/2 P=r apt1<n<ap 1<n<as ar<n<c/2
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where r = min{p € Z: ¢'(¢/2) <p-— %} and s=max{p€Z: p— % <d (1)}
Since

(38 F=g(0)<d(e/) <r—5=ga) <
we have
(3.9) r>k+1,
and so
ar < Qk41.

Since g’(z) is decreasing and ¢’(c/2) < g’(a,) because of (3.8), we have
c

GTS'Q—.

Since
I 1 ’ 1 !
g(as):s“§<g(1)SS+§=9(%+1)

and ¢’(z) is decreasing, we obtain

as41 <1< as.
Hence it follows that
g1 1< s <+ < app1 < p < -+ < @y < gy, 0 < %’
and
k+1§r<r+1<-~-<p<p+1<---‘<s.
For r < p<s—1, we have
9@ ~pl<5 on [opnal
Then
(3.10) Yo oelgm) = > elgm)—p)= Y. epn),
ap+1<n<lap ap+1<n<ap ap+1<n<ap
1 .

where p(z) = g(z) — pz. Since |p'(z)] = |¢'(z) — p| < = on [apt1,a,], Lemma 2.2

[\

with A = % yields

(3.11) > )= [ ep@)dz+00).

apr1<n<ap tpti



Tottori University, University Education Center, BULLETIN Number 1 (2004) 137

We have

= /ap e((ah — p)z)e(Bhlog z)dz

(3.12) — /a‘” (M)' e(Bhlog z)de

api1 2mi(ah ~ p)

e(p(z)) 1™ __bh °r z)e(p(z))dz
m}%m Ozh—p/ap_H pla)e(p(z))de,

h h :
where ¢(z) = z7L. Since p'(z) = ah — p+ %; and p”(z) = ——% < 0, we obtain

¢'(z)] _ 1 an o(z) — -1/2

@~ M e = Y
Therefore, applying Lemma 2.3, we obtain
(319 |7 elaretplds = 08w +0((6) ™)
By (3.12) and (3.13), we obtain

ap B (ﬁh)l/z 1
(8.14) /apﬂe(p(x))dm_o (Iah—pl) +o (Iah—pI)
By (3.10), (3.11), and (3.14), we have
_ofBn L

(3.15) a +§S% e(g(n)) =0 (m ~ pl) +0 (m — p‘> +0(1)

for r < p < s — 1. Similarly, we obatin

Bh 1/2 1
(3.16) > elg(n) =0 (lEth)_ sl> +0 (}ah — sl) +0(1).

1<n<as
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Combining (3.15) and (3.16), we have

T o)+ S elo(n)

1<n<as P=r apt1<n<ap

s 1/2
(3.17) =y <O (If:)— pl) +0 (laTl——pT> +O(1)>

p=r

< (o) S
p=r

p=r

Since ah < k < r — 1, we have
(3.18) lah —p|=p—ah=r—ah+(p—r)>p-r+1 for r<p<s.
Since s < f'(1)+ 4 =ah+pBh+1%, r>k+1, and k— oh > 0, we obtain

1
(3.19) s—r<ah+ﬂh—|—%—k—I:ﬂh—%—(k—ah)<ﬁh—§.

From (3.17), (3.18), and (3.19), it follows that

Y o)+ Y elo(n)

1<n<as P=T apt1<n<ap
s—r+1 1
3.2 Y2 41 = —r+1
(3.20) < ((6n) +);n+(3 r+1)

<Bh+ (ﬂ1/2h1/2 + 1) log (ﬂh + %) + YR 41,

Next we will estimate Y, ... €(g(n)). In view of (3.9), we distinguish two
cases
(@)r=k+1and (ii) r > k+2.
Case (i): r =k + 1.
We have
(3.21) Yo oelgn)= D elgr)—ra)= D e(x(n)),

ar<n<c/2 ar<n<c/2 ar<n<c/2

where t(z) = g(z) — rz. Since f'(z) is decreasing, we obtain

for a. <z <c¢/2.

N =

P <F@ < fla)=r-
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Thus, for a, < z < ¢/2, we obtain

<—t@)=r—fg)<r—f'(c/2)=r—2k+ah=1—-k+ah <1,

NN

and so
()] <1-k+ah<l for a,<z<c/2

Hence, from (3.21) and Lemma 2.2 with A = 1 — k + ah, it follows that

(3.22) S e(g(n) = /;ﬂg(c(x))dmo <k flah>.

We have

c/2 c/2
/ e(t(z))dz =./ e((ah — r)z + fhlog z)dx

:/;/2 (%@%)?(ﬁhlog z)dz

2mi(ah — 1) ah—r z

:[Me(ﬁhlogm)]:i2— bh /c/zle(t(m))dx.

aQr

In a similar manner as that of (3.13), we obtain

c/2 1
/ —e(x(z))dz = O((Bh) /%) + O((BR) ™).

Hence we have

/;/Ze(t(x))d:c =0 (l—ah—_%:—l—l) +0 (Wgﬁ_h)kl_/jﬂ) :

Using |lah — k — 1| =2 — {a@h} > 1, we obtain

c/2
(3.23) / e(x(z))dz = O(8Y2hV/?) + O(1).

By (3.22) and (3.23), we have

(3.24) > e(g(n)) =0(B/*h) + O (k _1ah) +0(1).

ar<n<c/2

139
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Case (ii): r > k+ 2.
In a similar manner as that of (3.15), we obtain

1/2

ar<n<c/2
Since |ah—r+1|=r—-1-—ah > k+1— ah > 1, we have
(3:25) > elg(m) = O(8*hM%) +0(1).
ar<n<c/2

From (3.6), (3.7), (3.20), (3.24), and (3.25), it follows that

1 1
1<n<e/2

1
ah+’

which completes the proof of Lemma 3.2. |

Theorem 1.1 foliows immediately from Lemma 3.1 and Lemma 3.2.

4 Proof of Theorem 1.2

Proof of Theorem 1.2. The cases f > 0 and 8 < 0 are analogous, so only the former
is considered.

Let m be a positive integer. By our assumptions, we have h,, = gam+1 > 2 and
km = Pam+1 With pn/q, = [ao,a1,... ,as]. The sequence (h,) is strictly increasing.

= — < —, we have

Since 0 < &k, — @b = Pam+1 — QQ2m+1 <
92m+1 hm 2

km = [ahp]+1
and
(4.1) | 0 <k = O < 3
Bhm

(see [7, Theorem 5, p.8.]). We set ¢,, = —————, so that N,, = [2¢,,]. We also

km — ohp,
set z, = an + [logn.
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Applying Theorem 1.1 with N = Ny, h = hy,, k =k, and ¢ = ¢, we have

1 ™
N Z e(hmy)

n=1

= Y elhnan)

MM 1 <n<2em

_ g/ ( ( Bhm 1
RN, (o — athn) Phmlog\ ahm) = 8>

pH !
¢ (h;i{?’Nm(km - ahm)> e (h’“Nm (o~ ah’")>
(42)  +0 (thm(l = ahm))) O G\%) |
o) o)
+0 (%) +0 (hmi\fn) '

Since ShZ > 1 for sufficiently large m, we have

Bhm

el > BhZ > 1,
so that

Ny = [2¢m] > 2¢n — 1 > ¢
Hence
(4.3) N > cm = % > Bh2,,
and so
(4.4) hm < BY2NY2,

Since Ny (km — 0hm) > co(km — ahy) = Fhom and Now(km — @hm) < 26m (b —
ahy) = 2Bh,,, we have

(4.5) Bhm < Ny (km — cthm) < 28Rum.
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Let ¢ be any positive number. From (4.2), (4.3), (4.4), and (4.5), it follows that, for
€

5:;6—57:1‘,

Nm

N_lm Ze(hmwn)

n=1

1
4h,,

1
> -
- 8,61/2h?,{2

1 ‘ 1 1 1
0 (,@2/3h2{3) +0 (i) +0 (1) + (i)
1
o) v (1)
1 1
X (ﬂlﬂhfn/z) o <M>

1 —1/2p51/2) "2
>(8ﬁ1/2 5) (set?)

1/4
(ﬂ? - 5) Nl

for sufficiently large m.
By Lemma 2.6, we arrive at the desired inequality, which complets the proof. [
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