On the Hausdorff-Young inequality for Riemannian symmetric spaces

KEISAKU KUMAHARA
(Accepted 17 June 1994)

1 Introduction

Hausdorff-Young theorem is an extension of the Plancherel formula to L^p space. This theorem has been extended to various cases. For example, it holds for separable locally compact type I group ([L3] Theorem 2.2) on unitary dual. On the other hand, the Fourier transform of L^p function on a semisimple Lie group has a holomorphic extension to some domain T_p which depends on p and a Hausdorff-Young theorem holds on T_p . R.A.Kunze and E.M.Stein [K-S] obtained the first results for $SL(2, \mathbb{R})$ and R.L.Lipsman proved it for $SL(n, \mathbb{C})$ ([L1],[L2]). In [E-K] the theorem was proved for the spherical Fourier transform on Riemannian symmetric spaces. In [E-K-T] it was proved for the Fourier transforms of K-finite functions on Riemannian symmetric spaces.

The purpose of the present paper is to prove an analogue of the Housdorff-Young inequality on G/K: If $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left(\int_{\mathfrak{a}^*} \left(\int_{K/M} |\tilde{f}(\lambda, kM)|^2 dk_M\right)^{q/2} |c(\lambda)|^{-2} d\lambda\right)^{1/q} \leq C_p \|f\|_p$$

(Theorem 1). This inequality is the same as Theorem 1 of [E-K-T], however, in which it was assumed that functions f are K-finite. And if $1 and <math>\xi + \sqrt{-1}\eta \in T_p$, then

$$\left\{ \int_{\mathfrak{a}^{*}} \left| \int_{K/M} \overline{\tilde{f}(\xi - \sqrt{-1}\eta, kM)} \, \tilde{f}(\xi + \sqrt{-1}\eta, kM) \, dk_{M} \right|^{q/2} \left| c(\xi) \right|^{-2} d\xi \right\}^{1/q} \leq C_{p, \eta} \|f\|_{p}$$

(Theorem 2).

2 Notations and Preliminaries

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K, respectively. Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g} with Cartan involution θ and $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ an Iwasawa decomposition of \mathfrak{g} such that \mathfrak{a} is a maximal abelian subspace of \mathfrak{p} . We denote by G = KAN the corresponding decomposition of G. For $x \in G$, $\kappa(x) \in K$ and $H(x) \in \mathfrak{a}$ denote the elements uniquely determined by $x \in \kappa(x) \exp(H(x)) N$. For $a \in A$, we write $\log a$ for H(a). Let \mathfrak{a}^* be the dual space of \mathfrak{a} and \mathfrak{a}_C^* its complexification. Let M and M be the normalizer and the centralizer of \mathfrak{a} in K, respectively, and we denote by W = M'/M be the Weyl group of G/K and [W] its order. Let $\overline{\mathfrak{n}} = \theta$ (\mathfrak{n}) and \overline{N} denote the corresponding analytic subgroup of G. We fix an ordering on \mathfrak{a}^* which is compatible with the above Iwasawa decomposition. Let P be the half of the sum of all positive roots of $(\mathfrak{g},\mathfrak{a})$. Let \mathfrak{a}_+^* be the positive Weyl chamber of \mathfrak{a}^* and put

$$\mathfrak{a}_{+} = \{ H \in \mathfrak{a}; \alpha(H) > 0 \text{ for all } \alpha \in \mathfrak{a}_{+}^{*} \}$$
.

For any $\varepsilon > 0$ we put

$$C_{\varepsilon,\rho} = \{\lambda \in \mathfrak{a}^*; |(s\lambda)(H)| \le \varepsilon \rho(H) \text{ for all } H \in \mathfrak{a}_+ \text{ and } s \in W\}$$
.

We define the tube domain T_p by $T_p = \mathfrak{a}^* + \sqrt{-1} C_{(2/p-1) \rho}$.

We denote by $C_c^\infty(G)$ the space of all compactly supported C^∞ -functions on G and $C_c^\infty(G/K)$ and $C_c^\infty(K/G/K)$ be the subspaces of $C_c^\infty(G)$ of right K-invariant and K-biinvariant functions, respectively. The Killing form of ${\bf g}$ induces euclidean measures on A and ${\bf a}^*$. We normalize them by multiplying the factor $(2\pi)^{-\dim {\bf a}^*/2}$ and denote them by da and d^ν , respectively. Let dk be the normalized Haar measure on K so that the total measure is one. The Haar measures on K and K are normalized so that

$$\theta(dn) = d\bar{n}, \qquad \int_{\widetilde{N}} e^{-2\rho(H(\bar{n}))} d\bar{n} = 1.$$

And we normalize the Haar measure dx on G so that

$$\int_{G} f(x) dx = \int_{KAN} f(kan) e^{2\rho(\log \alpha)} dk dadn, \qquad f \in C_{c}^{\infty}(G).$$

Let dk_M be the K invariant measure on K/M of the total measure one.

Let

$$\varphi_{\lambda}(x) = \int_{K} e^{(\sqrt{-1}\lambda - \rho)(H(xk))} dk, \quad x \in G,$$

be the elementary spherical function. We denote the Harish-Chandra c-function by

$$c(\lambda) = \int_{\overline{H}} e^{(-\sqrt{-1}\lambda + P)(H(\overline{n}))} d\overline{n}.$$

3 Fourier transforms

Let \mathcal{H} be a complex separable Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the Banach space of all bounded linear operators on \mathcal{H} . The operator norm of $\mathcal{B}(\mathcal{H})$ is denoted by $\|B\|_{\infty}$ and the p-norm $\|B\|_{p}$ of B is defined by $\|B\|_{p} = (\operatorname{tr}((B^{*}B)^{p/2}))^{1/p}$ for $1 \leq p < \infty$, where tr is the trace.

Let $L^2(K/M)$ be the subspace of right M-invariant functions in $L^2(K)$ and denote by (\cdot, \cdot) the inner product in $L^2(K/M)$. Let $L^p(\mathfrak{a}^*, \mathcal{B}(L^2(G/K)))^W$ be the Banach space of all $\mathcal{B}(L^2(G/K))$ -valued W-invariant functions F on \mathfrak{a}^* such that

(1) if $1 \le p < \infty$,

$$||F||_{p} = \left(\int_{\mathfrak{a}^{*}} ||F(\lambda)||_{p}^{p} |c(\lambda)|^{-2} d\lambda\right)^{1/p} < \infty,$$

(2) if $p = \infty$,

$$||F||_{\infty} = \operatorname{ess sup}_{\lambda \in \mathfrak{g}} ||F(\lambda)||_{\infty} < \infty$$

where we identify two functions if they differ only on null sets.

For each $\lambda \in \mathfrak{a}_{\mathcal{C}}^*$ the induced representation π_{λ} of G on $L^2(K/M)$ is defined by

$$\left(\ \pi_{\lambda}(\mathbf{x}) \ \Phi \right) \ (\mathbf{k}) = e^{\left(\sqrt{-1} \ \lambda \ - \ \rho \right) \ (H(\mathbf{x}^{-1}\mathbf{k}))} \ \Phi \left(\ \kappa \left(\mathbf{x}^{-1}\mathbf{k} \right) \right), \ \left(\ \Phi \in L^2(K/M), \ \mathbf{x} \in \mathbf{G}, \ \mathbf{k} \in \mathbf{K} \right).$$

Then if $\lambda \in \mathfrak{a}^*$, then π_{λ} is a unitary representation. For $f \in C_c^{\infty}(G/K)$ and $\lambda \in \mathfrak{a}_C^*$ we put

$$\pi_{\lambda}(f) = \int_{G} f(x) \, \pi_{\lambda}(x) dx.$$

Then

$$(\pi_{\lambda}(f)\Phi)(k) = \int_{K} K_{f}(\lambda; k, k_{1}) \Phi(k_{1}) dk_{1},$$

where

$$K_{f}(\lambda; k, k_{1}) = \int_{AN} f(kank_{1}) e^{(-\sqrt{-1}\lambda + f^{\rho}) (loga)} dadn$$
$$= \int_{AN} f(kan_{1}) e^{(-\sqrt{-1}\lambda + f^{\rho}) (loga)} dadn$$

We define the Fourier transform \tilde{f} of $f \in C_c^{\infty}(G/K)$ by

$$\tilde{f}(\ \lambda\ ,\ kM) = \int_{AN} f(kan)\ e^{(-\sqrt{-1}\lambda\ +\ \rho\)\ (loga)}\ dadn \quad (\ \lambda\ \in \mathfrak{a}^{\textstyle *}\ ,\ k\in K)\ .$$

Then it can be extended to a holomorphic function on \mathfrak{a}_C^* Let Φ_0 be the identity function on K. Then we have

$$(\pi_{\lambda}(f)\Phi)(k) = \tilde{f}(\lambda, kM) \int_{K} \Phi(k_{1}) dk_{1} = \tilde{f}(\lambda, kM) (\Phi, \Phi_{0}).$$

On the other hand,

$$\begin{split} (\pi_{\lambda}(f) * \pi_{\lambda}(f) \Phi) (k) = & \int_{K} \left(\overline{K_{f}(\lambda; k_{1}, k)} K_{f}(\lambda; k_{1}, k_{2}) dk_{1} \right) \Phi (k_{2}) dk_{2} \\ = & \int_{K/M} |\tilde{f}(\lambda, k_{1}, k_{1})|^{2} dk_{1} \int_{K} \Phi (x_{2}) dk_{2} \\ = & \int_{K/M} |\tilde{f}(\lambda, k_{1}, k_{1})|^{2} dk_{1} (\Phi, \Phi_{0}). \end{split}$$

Hence

$$\|\pi_{\lambda}(f)\|_{p} = \left(\int_{K} |\tilde{f}(\lambda, kM)|^{2} dk_{M}\right)^{1/2}, \qquad (1 \leq p \leq \infty).$$

We put $\mathcal{F}(f)$ (λ) = π_{λ} (f). If $\lambda \in \mathfrak{a}^*$, then $\|\pi_{\lambda}(x)\|_{\infty} = 1$ and

$$\|\mathcal{F}(f)\|_{\infty} \le \|f\|_{1}.$$

Therefore, the Fourier transform can be extended to $L^1(G/K)$ satisfying (3.1).

The following is the Plancherel formula ([H] Theorem 2.6): If $f \in C_c^{\infty}(G/K)$, then we have

$$\int_{G} |f(x)|^{2} dx = [W]^{-1} \int_{\mathbf{q}^{*} \times K/M} |\tilde{f}(\lambda, kM)|^{2} |c(\lambda)|^{-2} d\lambda dk_{M}$$
$$= [W]^{-1} \int_{\mathbf{q}^{*}} ||\pi_{\lambda}(f)||_{2}^{2} |c(\lambda)|^{-2} d\lambda.$$

Hence

$$[W]^{-1/2} \| \mathcal{F}(f) \|_{2} = \| f \|_{2}$$

and it is known that the mapping $\mathcal{F}: f \to \mathcal{F}(f)$ can be extended to an isometry of $L^2(G/K)$ onto $L^2(\mathfrak{a}^*, \mathcal{B}(L^2(G/K)))^W$.

4 Hausdorff-Young inequality in the real case

To prove the Hausdorff-Young inequality on \mathfrak{a}^* , we use the Riesz-Thorin interpolation theorem for operator valued functions which can easily be led from the Kunze-Stein interpolation theorem in the general case([K-S] Theorem 3). Let (X, μ) and (X', μ') be two σ -finite measure spaces. A complex valued function on X is called simple if it can be expressed as a finite linear combination of characteristic functions of measurable sets of finite measure. Let $\mathcal{B}(\mathcal{H})$ be, as above, the Banach space of all bounded operators on a Hilbert space \mathcal{H} .

LEMMA 1. Let T be a linear map of the space of all compactly supported simple functions on X to the space of all measurable $\mathcal{B}(\mathcal{H})$ -valued functions on X'. Let p_i , q_i (i=1,2) be $1 \leq p_i$, $q_i \leq \infty$ and $q_0 \neq \infty$ or $q_1 \neq \infty$. Suppose that there exists $k_i > 0$ such that

$$||T(f)||_{q_i} \le k_i ||f||_{p_i}$$

for any compactly supported simple functions on X. For each 0 < t < 1 we define p_t and q_t by

$$\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}$$
 and $\frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}$.

Then there exits a constant k_t such that $k_t \leq k_0^{1-t}k_1^t$ and

$$||T(f)||_{q_t} \leq k_t ||f||_{p_t}$$

for any compactly supported simple function f on X. And if $p_t < \infty$, then T can be extended to an operator of $L^{p_t}(X)$.

If we choose that X=G/K, $X'=\mathfrak{a}^*$, $T=\mathcal{F}$, $p_0=1$, $q_0=\infty$ and $p_1=q_1=2$, then we have the following theorem since the inequalities (3.1) and (3.2) hold for compactly supported simple function f on G/K. THEOREM 1. If $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then there exists a positive constant C_p , $0 < C_p < [W]^{1/q}$ such that

$$\|\mathcal{F}(f)\|_{q} = \left\{ \int_{C} \left(\int_{K/M} |\tilde{f}(\lambda, kM)|^{2} dk_{M} \right)^{q/2} |c(\lambda)|^{-2} d\lambda \right\}^{1/q} \le C_{p} \|f\|_{p}$$

for any $f \in L^p(G/K)$.

In [E-K-T] this theorem was proved only for K-finite functions on G/K. If f is K-biinvariant, then

$$\tilde{f}(\lambda, kM) = \int_{AN} f(an) e^{(-\sqrt{-\lambda} + \rho) (\log a)} dadn$$

$$= \int_{G} f(x) \varphi_{\lambda}(x^{-1}) dx.$$

Hence $\tilde{f}(\lambda, kM)$ is the spherical transform of $f \in C_c^{\infty}(K \setminus G/K)$. We denote it by $\tilde{f}(\lambda)$. And the Plancherel formula and the inversion formula are as follows: If $f \in C_c^{\infty}(K \setminus G/K)$, then we have

$$\int_{G} |f(x)|^{2} dx = [W]^{-1} \int_{\mathfrak{a}^{\bullet}} |\tilde{f}(\lambda)|^{2} |c(\lambda)|^{-2} d\lambda$$

and

$$f(x) = [W]^{-1} \int_{\mathfrak{a}^*} \tilde{f}(\lambda) \varphi_{\lambda}(x) |c(\lambda)|^{-2} d\lambda.$$

Restricting ourseves to consider K-biinvariant functions in Theorem 1, we get the following corollary ([E-K] Lemma 8).

Corollary. If $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then there exists a positive constant C_p , $0 < C_p < [W]^{1/q}$ such

that

$$\left(\int_{\mathfrak{a}^{\bullet}} |\tilde{f}(\lambda)|^{q} |c(\lambda)|^{-2} d\lambda\right)^{1/q} \leq C_{p} ||f||_{p}$$

for any $f \in L^p(K \setminus G/K)$.

For the Hausdorff-Young inequality in $T_p = \mathfrak{a}^* + \sqrt{-1}C_{\epsilon\rho}$ it is necessary to have an inequality

$$\sup_{\lambda \in T_1} \| (\mathcal{F}f) (\lambda) \|_{\infty} \leq \|f\|_1$$

instead of (3.1). Kunze-Stein([K-S]) and Lipsman([L1],[L2]) constructed uniformly bounded representations to have an inequality of this type. In [E-K] the boundedness of φ_{λ} on T_1 due to Helgason-Johnson [H-J] was used. In [E-K-T] the authors proved that if $f \in C_c^{\infty}(G/K)$ is K-finite of type F, then there exists a constant $C_F > 0$ such that

$$\sup_{\lambda \in T_1} \| (\mathcal{F}f) (\lambda) \|_{\infty} \leq C_F \| f \|_1.$$

5 An inequality in T_p

Next is the Young inequality due to A. Weil([W], p.55)

LEMMA 2. Let G be a locally compact unimodular group. We denote by f * g the convolution of functions f and g on G. Let p and q be real numbers such that $1 , <math>1 < q < \infty$ and $\frac{1}{p} + \frac{1}{q} > 1$. Let $r = \frac{pq}{p+q-pq}$. If $f \in L^p(G)$ and $g \in L^q(G)$, then f * g is in $L^r(G)$ and the inequality

$$||f * g||_r \le ||f||_p ||g||_q$$

holds.

As a direct consequence of Lemma 1 we have the following lemma.

LEMMA 3. Let K be a compact subgroup of a locally compact unimodular group G. For a function f on G we put $f^*(x) = \overline{f(x^{-1})}$. Let $1 . If f is in <math>L^p(G/K)$, then $f^* * f$ is in $L^{p/2-1}$ $(K \setminus G/K)$.

Now we return to our Riemannian symmetric space case. Next lemma is the Hausdorff-Young theorem for $L^p(K \setminus G/K)$ ([E-K] Theorem 1). For a subset S of \mathfrak{a}_{C}^* we denote by IntS the interior of S. Lemma 4. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$ and $\mathfrak{e} = \frac{2}{p} - 1$. If $f \in L^p(K \setminus G/K)$, then the Fourier transform \tilde{f}

can be holomorphically extended to the tube domain $IntT_p$ and for any $\eta \in IntC_{\epsilon\rho}$, there exists a positive constant $C_{p,\eta}$ such that

$$(\int_{\mathfrak{a}^*} |\tilde{f}(\xi + \sqrt{-1}\eta)|^{1/q} \leq C_{p,\eta} \|f\|_p \quad (f \in L_p(K \setminus G/K)).$$

Let $f \in C_c^{\infty}(G/K)$ and $\lambda \in \mathfrak{a}_C^*$

$$\begin{split} &(f^* * f) \ (\lambda) = \int_{AN} (f^* * f) \ (an) \ e^{(-\sqrt{-1}\lambda + \rho) \ (loga)} \ dadn \\ &= \int_{AN} \left(\int_G f^* \ (x^{-1}) f(xan) \ dx \right) e^{(-\sqrt{-1}\lambda + \rho) \ (loga)} \ dadn \\ &= \int_{AN} \left(\int_{KAN} \overline{f(ka'n')} f(ka'a (a^{-1}n'a) n) \ e^{2\rho' (loga)} \ dkda' \ dn' \right) e^{(-\sqrt{-1}\lambda + \rho) \ (loga)} \ dadn \\ &= \int_{KAN} f \overline{(ka'n')} \left(\int_{AN} f(kan) \ e^{(-\sqrt{-1}\lambda + \rho) \ (loga-loga)} \ dadn \right) e^{2\rho' (loga)} \ dkda' \ dn' \\ &= \int_{K} \left(\int_{AN} \overline{f(ka'n')} \ e^{(\sqrt{-1}\lambda + \rho) \ (loga)} \ da' \ an' \right) \left(\int_{AN} f(kan) \ e^{(-\sqrt{-1}\lambda + \rho) \ (loga)} \ dadn \right) dk \\ &= \int_{K/M} \overline{f(\lambda, kM)} \ \overline{f}(\lambda, kM) \ dk_M. \end{split}$$

Thus we have the following lemma.

LEMMA 5. Let $f \in C_c^{\infty}(G/K)$. Then

$$(\widetilde{f}*f)(\lambda) = \int_{K/M} \overline{\widetilde{f}(\lambda, kM)} \widetilde{f}(\lambda, kM) dk_M, \quad (\lambda \in \mathfrak{a}_C^*).$$

From Lemmas 2, 3,4 and 5 we have the following theorem.

THEOREM 2. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. For any $\eta \in IntC_{(4/p-3)\rho}$, there exists a positive constant $C_{p,\eta}$ such that

$$\left(\int_{\mathbf{a}^{\star}}|\int_{K/M}\overline{\tilde{f}(kM,\hat{\xi}-\sqrt{-1}\eta)}\tilde{f}(kM,\hat{\xi}+\sqrt{-1}\eta)\,dk_{M}|^{q/2}|c(\hat{\xi})|^{-2}d\hat{\xi}\right)^{1/q}\leq C_{p,\eta}\|f\|_{p}$$

for any $f \in C_c^{\infty}(G/K)$.

REFERENCES

- [E-K] M. Eguchi and K. Kumahara, An L^p Fourier analysis on symmetric spaces, J. Func. Anal. 47 (1982), 230-246.
- [E-K-T] M. Eguchi, S. Koizumi and S.Tanaka, A Hausdorff-Young inequality for the Fourier transform on Riemannian symmetric spaces, Hiroshima Math. J. 17 (1987), 67-77.
- [H] S. Helgason, A duality for symmetric spaces with applications to group representations, Advan. Math. 5 (1970), 1-154.
- [H-J] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces, Advan. Math. 3 (1969), 568-593.
- [K-S] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmnoic analysis on the 2 times 2 real unimodular group, Amer. J. Math. 82 (1960), 1-62.
- [L1] R. L. Lipsman, Uniformly bounded representations of SL(2,R), Amer. J. Math. 91 (1969), 47-66.
- [L2] R. L. Lipsman, Harmonic analysis on SL(n, C), J. Funct. Anal. 3 (1969), 126-155.
- [L3] R. L. Lipsman, Non-abelian Fourier analysis, Bull. Sc. math. 2e série 98 (1974), 209-233.
- [W] A. Weil, "L'intégration dans les groupes topologiques et ses applications," Hermann et Cie, Paris, 1941, 1951.

Keisaku KUMAHARA
Department of Mathematics
Faculty of General Education
Tottori University
Tottori 680
JAPAN