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1. INTRODUCTION

In the paper [IW], we exploited a minor summation formula which include Pfaffians. In this paper we
consider applications of this formula to the Schur function identities. First we give a new proof on the
Schur function identities called Littlewood identities by the minor summation formula, and then we
exploit some new identities on Schur functions, which is obtained by a deformation of the proof given
above. The main result of this paper is Theorem 5.4. We are now studying this subject intensively and
our survey is continuing. So the results described here might be a part of our results and it is probable
that more fantastic results might be discovered later. The detailed proof will be omitted and described in

another place.

2. SUMMATION FORMULA OF PFAFFIANS

In the paper [IW] we exploited a minor summation formula of Pfaffians. Now we briefly review this
formula in this section. First of all we fix some basic notation here. In Section 2 of [I[W] we treated the
general quantum situation, but here we only need ¢=1 case so that we assume this condition from the

beginning and only treat this ecase in this paper.

The auther would like to express his thanks to Professor H.Kimura, Professor S.Okada and Professor M. Wakayama for
their valuable comments.
! Partially supported by Inoue Foundation for Science and partially supported by Grant-in Aid for Scientific Research

No. 06740027, the Ministry of Education, Science and Culture of Japan.



108 Masao ISHIKAWA

Let #, m, n be positive integers such that v < m, n. Let T be an arbitrary m by » matrix. For two
sequences = (41, ..., 4,) and k= (ky, ..., k), let T{=T% % denote the sub-matrix of T obtained by
picking up the rows and columns indexed by i and k, respectively.

Assume m < nand let Bbe an arbitrary # by » antisymmetric matrix, that is, B= (b;) satisfies b=
-bj. Aslong as Bis a square antisymmetric matrix, we write B; =B ., for Bf =B 7 in abbreviation.

One of the main result in [IW] is the following theorem. (See p.6, Theorem 1 of [IW].)

Theorem 2.1. Let m < n and T=(ty) be an arbitvary m by n matrix.

(1} Let m be even and B=(by) be any n by n antisymmelvic malvix with entvies by Then

2.1) >, pf(By ) det(Th ) =pi(Q),

L<h< - - < by <n

where Q 1s the m by m antisymmetric matvix defined by Q= TB'T, i.e.

2.2) Qu= >, bu det(TH), (1<, j<m),

1<R<I<n

(2) Let m be odd and B= (by)o<i sen be any(nt1) by(n+1) antisymmetric matrix. Then

2.3) S pf(Bow w)det(Th%) =pi(Q),

LR <<

where
0 if i=7=0,
%=1 bortse if 1=0 and 1<<m,
(2.4) &y = ’
Z =1 bwotj if 1=0 and 1<i<m,
2 i<ucicn by det(7#) if 1<4, j<m.

We regard the Pfaffian pf (By . 4,) as certain “weights” of the sub-determinants det(T 4% ). By
changing this antisymmetric matrix we obtain a considerably wide variation of the minor summation

formula. The prototype of this formula appeared in [Ok] and [Ste].
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3. LirTLEwooD’s FORMULAS

In this section we prove several identities on the Schur functions, known as Littlewood’s formula. (See
Section 5, Ex. 7,8,9 of [Mc].)

We define the Schur function here. A partition is a weakly decreasing sequence of nonnegative integers
A:=(Ay, -+ A, with A;>-++> 2,.>0. The number of nonzero parts of A is denoted by ¢ () and
called the length of A. And the sum of the parts |A|= A=+ A, is called the weight of 4. For
example, A = (5441) is the partition of 14 with length ¢ ( A)=4, and denoted by the Ferrers graph

Let A5=1# {j: A,>4i}. Then the partition A’= (A%, A%, ...) is called the conjugate of A.Suppose that
the main diagonal of the Ferrers graph of A consists of #nodes. This 7is denoted by p(A). Let a;= A,—
i be the number of nodes in the i-th row to the right of (3, 1), for 1<4<p( A1), and let #;= 271 be the
number of nodes in the i-th column of A below (4, %) for 15_¢g;»( A).Wehave @;>--+> a,>0and By
>-++> 3,20, and we denote the partition A by

A=(ay, oo alBy, o, B)=(alB).

This is called the Frobenius notation. For example the above partition A = (5441) is denoted by A =
(421]310) in the Frobenius notation. For a tuple @ = (@&, .. ., @) such that @, >---> a,>0, we
denote the tuple (a1, .. ., a,41) by @-1. Further, if a is a nonnegative integer which doesn't
coincide with any of @/’s, then let g( @, a) denote the number of @/s which is bigger than a. So (a|a-
1) denote the partition (@i, ..., @,|@41,..., @,41) for some . For exsample, if @ = (310) then g( @,
2)=1 and (& +1}a)=(421]310).

Definition 3.1. Let A = (ay, ..., a,|f3,, ..., B,) be apartition expressde in the Frobenius notation. Let a

ans b be nonnegative integers such that e  «@,,..., ¢, and b F B1, ... B, There are some kand [ such
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that @,>a> @, and f,>b> £ 4. The partition A W (ald) is defined by
AWWo) =(ay, ..., @y a@q,..., B, ..., B, b, o, B,

For example, (421]310) W (0]2)= (4210(3210).
For a partition A:=(A;, ~~- A, put I=(4, ... L=A+8=( A Fm—1, Aptm—2, ... . A,).
where & = (m—1,m—2,...,0).Sowehave § > £>--->[,>0. Then we set ¢ (x1, . . . , %) =40 (2,...

, %w) to be

! 1,
PRI

Q= ar+5 =
Kmp T Ay
When A =0, g5 is Vendermonde’s determinant and equal to the product I <ic;<u (x;—x,) . For a partition

A:=(Ay, ++-, A,), the Schur function s; =s; (x1, . . . | %) corresponding to A is defined by

S :Ctx—f—g/aa.

(See Chap. 1, Sec. 3 of [Mc].)

Put

n—1
Xm T Xm 1

From now on, we suppose that the column of Tis indexed in the opposite direction, that is, they are n—1,
n=2, ..., 0 from left to right. Similary both the row and column indeces of B are in this way. Further
assume that both m and nare even. This makes our argument easy. Then it is easy to see that the Schur

function is equal to

sp=det ThH%  / det Thi"s.
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We consider several antisymmetric matrices B in this paper.

Bitirre=s't" (0<k, 1<n—2),

where s, t are indeterminates. Let ¢(A) = A;— Ay =4 A,,—1— A be the number of columns of odd
length in A and let ¢(A)= Ay A4+ -+ A, Then it is easy to see the following claim.
Praposition 3.1. For a partition A =(Ay, ..., Ay, put 1= A+ 8. Then

pf (Bll b l,,,) P sc( A) te( A)+n{n—2) /4.

We apply Theorem 2.1 (1) to this B and T and then we substitute o0 into # Then it is an easy

calculation to obtain @. The result is

Q o0 i It x£e+l+l x{(’ _ 1 X—%
- s —
Y k=0 1=0 xJ]'HFH_l Xf <1_Sx'i) (l_SJCj) 1=t %

The following lemma gives us a way to calculate the Pfaffian.

Lemma 3.1. Let n be even integer. Then

5% _ e )

1=t x].]lgi, A 1< < <n 1—tx; %

(3.1) pf[

(See Prop. 2.3 (e) of [Ste].)
Proposition 3.1 and Lemma 3.1 give the proof of the following theorem.

Theorem 3.1.

(A el 2) i g 1
(3.2) Zs ¢ salxy ooy &) Hl—sx H [

B i=1 i <igm

/)) — 2kt
2212 =1,

)
ﬁk+21+2,k'— st ,

B — 22k
2k2H220+1 =S L,
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for £1>0. Similarly, as before, let #( 1) be the number of rows of odd length in A and put A(1) =
[A/214 1 Ae/2] 4+ -+ [ A./2], where [x] stands for the greatest integer which does not exceed x. In
this situation we obtain the following claim.

Proposition 3.2. For a partition A =1{(Ay, . . ., A, put = A+38. Then

Df(Bll b l() :f(l)th(/l>+n(n‘2)/4.

It is also an easy calculation to find

0= (Fsw) (tss) s,
T 0—td) (1—d) 11—l

From Proposition 3.2 and Lemma 3.1 we obtain the following theorem.

Theorem 3.2.

n 1+S,‘C 1
7(A) h(A) __ i
(3,3) ES t, SA (xly»--yxm)_H 1—tx% iII 1_txixj-

> 1<1 <) <m
A 1< < <m

In the rest of this section we list up some antisymmetric matrices B. But, at this point, we can’t
calculate pf(Q) corresponding to these B's.

(1) Let B=(f,) be the antisymmetric matrix given by

8 1 if i=2k+1 and j=2k for k>0,
i

0 otherwise.
Then we have

1 if A and A’ are both even partitions,
pf(By . )=
0 otherwise.

and
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This leads to

(3.4) PR R e e A | ]

2 i< < e 1<i<<m
where the sum ranges all partitions A such that the both of A and A’ are even partitions.

(2) Let B=(f,) be the antisymmetric matrix given by

s 1 if 4>;>0 and +=2k for some k>0,
=

0 otherwise.

Then we have

Xi— %5

_ 1
U T T (i—x) 1-22

This leads to

i %
(3.5) sa (x ,A..,xm)=pf[*i“*’*} /1] A—x) (= x).
Z P l—x%sz 1<ij<m .];]1: 15I<,Iim !
where the sum ranges all partitions A such that As, Ag4 .. ., A are all even.

(3) Let B=(f,) be the antisymmetric matrix given by

1 if ¢>;>0 and j=2k+1 for some &>0,

0 otherwise.

Then we have

0. = 1 (mi—x) 142 %1424 .
Y Q=x) (1-4) 1— 2242
This leads to
(3.6) 2 51 (o an)
—pi[lbn g )l L IT0- 11 6.
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where the sum ranges all partitions A such that A;, A3 ..., A,,—1 are all even,

(4) Let B=(fS,) be the antisymmetric matrix given by

1 if i>5>4i—2 and i=2k for # >0,

B =

0 otherwise.
Then we have

o — (e ) (frcta)

1 l—xfxf .
This leads to

2i—%;) (11212
(37) 23/1 (xly“-vxm):pf[ ( J)<;2+])] / H (xi_x/)’
& 1—x7 % 1<ij<m 1<i<j<m

where the sum ranges all partitions A such that As, A4, ..., Anare all even and (Azp—1= Agpor Agp_

1= Azt
(5) Let BZ(/?U) be the antisymmetric matrix given by

{1 if 72>1i>7>0 and j=2k+1 for k>0,
.]:

0 otherwise.

Then we have

0, = (xi_xj) {1+x1 xj(xi+xj)}
K 1-%2 '

This leads to

(3.8)
(«'\fi_ x]-) {l_i_xi X; <x1+xj) }
s o, ) ZDf[ } / (xi—x),
AZ 1 _x?sz 1<ij<m Jgggm ’
where the sum ranges all partitions A such that Ay, As, ..., A, areallevenand ( Agp 1= Agzo0r A

21= Azit1).
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(6) Let B=(f,) be the antisymmetric matrix given by

P {1 if 7=i—1>0 or (j=i—2 and i is even),
T

0 otherwise.

Then we have

) XX

Qy = (14x) (1+ 1—_‘9;22
This leads to

(3.9 Stotoxd = [[ 0t o 2225] /T ().

A i=1 TS Iii<m 1<i<j<m

where the sum ranges all partitions A such that Agz—1= Agp or (Age—1= Az 1 and Ag is even).

(7) Let B=(f,) be the antisymmetric matrix given by

1 if j=i—1>0 or (7=i—2 and i is odd),

0 otherwise.

Then we have

Q= (xi_xj) {1+xi x]'(1+xi+xj)}
i l_x?sz .

This leads to

(3.10)

7

S oG :pf[ (xij)%l—llfgi;%—xﬂ—xj)}} /I G,

where the sum ranges all partitions A such that Az,—1= Az or ( Agp—1= AzpF1 and Ag is odd).
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4 . ANOTHER TYPE OF LITTLEWOOD’'S FORMULAS

In this section we give a proof of another type of the Littlewood type formulas by using our minor
summation formula. These kinds of identities can be seen in Sectiton 5, Ex. 9 of [Mc]. The advantage of
our proof is that its deformation leads to other kinds of identities on Schur functions which are new. The

follong lemma play an important role in this section.

Lemma 4.1. Let m be a positive integer. Then

m my 2 w2
(=) (=]
(1.1) pi [ = 1 s (-s2.
i A Xi Xj I<ij<m  1<i<)<m
Fix
dm—2
" % 1
T=
Am—2
Xom T X2m 1

First let B=(f )i j=am—2. .., o be the antisymmetric matrix of size (4m—1) given by

1 for 0<k <m and 0<! <m—1,
Bom—1—ppret= § —1 for 0<k <m and m <! <2m—1,

0 otherwise.

It is an easy calculation to make it sure that

(xzz_ x1;_z) 2 (l - x?;} x1;_1) 2

X, xj 1 — X x]'

Qi =

The following proposition and Lemma 4.1 give us the following well-known formula which is found in

Sectiton 5, Ex. 9 of [Mc].

Proposition 4.1. For a partition A =(Ay, . .., Agmw), put I= A+ 6. Then
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(=)' 4 A=(ala41),

0 otherwise.

pf By b . ) = {

Theorem 4.1. Let m be a positive integer.

(4.2) S DM G )= [T s w)

A= (a]e 1) 1<i<j<m

In the proof of the above theorem we have to take another B to prove it when m is odd. But we ommit

the detailed discussion here.

Lemma 4.2. Let m be a positive integer. Then

(=21 = (=xx)"|?
(1.3) pf [ ] =TT G ().
T 142 % 1< Sm xsx];Ism ’ ’
We give the symmetric matrix B= () of size (4m—1) which have the above antisymmetric matrix

as the Q=(Qy).

(—=1)° for 0<k <m and 0<! <m—1,
Bom—1— e = 1 — (—1)" for 0<b <m and m<l <2m—1,

0 otherwise.

A similar argument shows the following theorem. But the reader who is familiar with Schur functions
notice that the following identity is obtained immediately from Theorem 4.1 by substituting V-1 into %
But it's still worth mentioning the above B since there is a possibility that its deformation leads to other

identities which are unkown.

Theorem 4.2. Let m be a positive integer.

(4.4) E sila, o, w) = H (142 xj)-

A={(ala+1) 1< < <m’

Definition 4.1. Let m be a positive integer and let B= (/3 ij) 0<i j<m be an antisymmetric matrix. Bis said

to be symmetrically proportional if the (m— i) -th row is proportional to the i-th row for all 0<i <m.
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Further Bis called row-symmetric if the (m—14) -th row is equal to the i-th row for all 0<{{ <m, and Bis
called row antisymmetric if the (m—1)-th row is opposite in sign to the i-th row for all 0<i <m.

This notion has importance since it makes us easy to find the subpfaffians pf(By. . 1, for given B. At
this point it is not so easy for us to find pf(B,. . ) for not symmetrically proportional (diagonal-)
antisymmetric matrices. From now on we assume that B is always supposed to be (diagonal-)
antisymmetric matrix in ordinary means without mentioning it.

Now fix

4m—1
o R 1
T=
4m—1
2m Tt Xom 1

Let B=(f;,;(a)) be the matrix of size 4m defined by

(=) (A=wia)” 5%
. N » _ Z i 7
( +a’xl) ( +ax]) Xi— X l—xi X k> >oﬁl€l x]k xJI '

where a is a constant. Then it is easy to see that B= (S (a)) is symmetrically proportional if and only if
a==£1, and, further, if g=1, then B become row-symmetric, on the other hand, if a= —1, then Bhecome
row-antisymmetric. The result in the case of a=1 is easily derived from the a=—1 case, so here we
treat only this case.

Let B=(fw)s =tm—1, . ., o be the row-symmetric matrix defined by

1 it(k, )=02m—1—p, p) for 0<p <m—1,
Bu= { (=D*" 2 if kFi>2m 1—k<1 and 1<m,

0 otherwise.

Notice that these data determine all the entries of B since B is diagonal-antisymmetric and row-

antisymmetric. Then it is an easy calculation to show that

B - B (xT__ xi}l) 2 (l—“x7?x1}'l) 2
Qij = (1 xi) (l xj) Xi— 1 1—% %

It is not so hard to see the following proposition.
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Proposition 4.2. For a partition A =(Ay, . .., Aow), put 1= A+ 8. Then

(—1) (rlH-p(a))s2 if A=(ala)

pf(Biy . 4 =
0 otherwise.

This shows the following well-known formula.

Theorem 4.3. Let m be a positive integer.

(4.5) Z (—1) Gaket)rzg, (xl,..,,xm):H 1—x) H — % %)

d=(ala) i=1 1<i<i<m

Let us consider another case. Let B= (f;(a)) be the antisymmetric matrix defined by

k i

(=) L= (=xx)™?

o Xi Xi
(I+ax) (1+ax) Py 1Fx s, _k;ioﬁkl DR

where ais a constant. Then it is easy to see that there is no real number @ such that B= (8,,(a)) become

symmetrically proportional.

5. FURTHER IDENTITIES

In this section we extend the methods in the former section and find further identities on Schur
functions. We use the methods we exploited in the former section.

In this section we fix

4
5 m oo 1
T=
Am
2m 'Y X2m 1

Let B=(f;;(a, b)) be the matrix of size (4m--1) defined by

xn_z_ xn_z 2 xm xm 2 xk x[
(et be?) (asad) 20 U005 it 5]
4 1—x 5 p>130 )
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where a and b are constants.

Proposition 5.1. Then B= (S a, b)) is symmetricarry proportional if and only if B is vow-symmetric or rouw-
antisymmelric. Funther, in the case of b=1, B becomes row-symmetric, on the other hand, in the case of a=0
and b=—1, B becomes row-antisymmetric.

First we consider the classical well-known case that is ¢=0 and b= —1. In this case, define a row-

antisymmmetric matrix B= (3,) of size (4dm+1) by

1 ik 1)=0@m—1—p p for 0<p
—1 if(k 1)=Q2m—p pt+1) for 1<yq
Bu= 11 if (B 1)=(m+1, m),

2 itk 1) = (g+mtl, ¢tm) for 1<qg <m—2,

<m—1,
<m—2,

0 otherwise.

Then it is an easy calculation to find that

(xniz_ x;;_l)Z (l~x’§1x’}1)2

Xi— % 1—x %,

Qi; = (l~x,2-) (1“7@2'
We use our routine procedure to obtain the following theorem, but here we ommit the detailed proof.

Propesition 5.2. For a partition A=Ay, . .., Azm), put = A+ 3. Then

(=D if A= (a+1]a)
pf (Bll b .. zz,,.) = { 1

0 otherwise

Theorem 5.1. Let m be a positive integer.

m

(5.1) > (=D Gy = [ 0=2) T] xis)
i=lat|e) i=1 1<i<j<m
This is a classical result which is already known. Next we consider an unknown case which will give
us new indentities. Then we extend these results to more general case.

Let B=(f,,) be the row-symmetric matrix of size (4m-+1) which is given by
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1 if(k, 1)=@m—1—p, p) for 0<p <m—1,

-2 if(k, 1) =(2m, 0),

—4 if(k, 1)=0Q2m—p p) for 1<p <m—1,
Bu= 7 if(k, 1) = @m—p, pF+1) for 1<qg <m—2,

5 if (b, )= (m+1, m),

(=18 if k> 2mt-2, 1—E>2 and 1<m,

0 otherwise.

" Notice that these data determine all the entries of B since B is diagonal-antisymmetric and row-

symmetric. Again we calculate Q;; and we obtain .

1;1_ x¢;a) 2 (1 _ x?;’l x1]}_1) 2

Qij: (luxi)z(l_xﬂz (x

xi—%; 1—x;x;
We also obtain the following proposition.
Propesition 5.3. For a partition A = (A1, . . ., Azw), put i= A+3. Then
(_1)IM/2+1»(A) if A=(at1]a),

(—plvetrralas= ge 3= 1 (0lk—1) for some 1<k <m

pf (By . 5,) =
L and *=(a-+1]a) such that a pr—1,

0 otherwise.

Theorem 5.2. Let m be a positive integer.

5.2
( ) 2 (Al)l“/z_I_p(A)SA (x1y~-~axm)
i=(utife)
+2 E (—D)Ialbrrlte =Yg gy (o, )
”1::1 i:;(%‘r}eli)l
=] a-=?2 [ 0—xx
=1 1<G<j <m

Here we give another example. A similar argument shows us the following formula.
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Theorem 5.3. Let m be a positive integer.

(5.3)

(=D g (L )

A= (ot «)
/2]

+2 Z E (_l) LAl/2t ikl k_l)s/\ w (012k—1) (xl’ ceey xm)
k=1 A= ((%ﬂn)
H (1449 H — % %),

1<i<j<m

In the proof of Proposition 5.2 the symmetrical proportionality play a crucial role. At this point we
can't give the general form of such formula without assuming this condition. Now we are in the position
to consider the general row-symmetric case. Surprisingly this consideration gives us a remarkable
relation between Schur functions and Chebyshev polynomials.

Let B=(f4(a))o<s 1<am be the matrix of size 4m-1 defined by

k !

( nlz m)Z (l_xm m)z

, 2 _ X Xi
(1+ax4s7) (1+axj+xj) t— X 1—x;%; b;zoﬁkl(a) xJk le ,

The Chebyshev polynomials of the first kind Ty(x) are defined by

T.(x) =cos (n arccos x).

The first a few terms of this polynomials are

To(x) =1

Ty () =x

Ty (x) =241,
Ty (%) =45°—3x,

and satisfy the recurrence formula

Tie1 () =22 To (%) + T 1 (0) =0

We calculate B ., and obtain the following result.
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Theorem 5.4. Let m be a positive integer.

(5.4)
2 (—=D)I2tp g (g x)

A=lati]a)

+2 > la) D, (1Bl G )

k=1 A=(atla)
. azh—t

n

= [I O+2axtsd [ Q—xx),

i=1 1<i<j<m

wheve Ty(x) is the Chebyshev polynomial of the first kind.

The special values of Chebyshev polynomials give us the preceding identities. For example

T,(1)=1 T,(—1) =(—1)*
T2,(0) = (—1)* T2p—1(0) =0.
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