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Abstract: The robust stability condition for sampled-data control systems with a sector nonlinearity
was presented in our previous paper. Although it is applicable only to the sampled-data control system of
a certain class, a usual discrete-time control system can belong to this type of class. This paper analyzes
the amplitude dependent behavior of nonlinear sampled-data (i.e., discrete-time) control systems in a
frequency domain. First, the robust stability condition which was derived in our previous papers is applied
to a sampled-data control system containing a single time-invariant nonlinear element in the forward
path. Then, an instability condition for that type of nonlinear feedback system is derived. By considering
restricted areas (two sectors) in the nonlinear characterisitic, the amplitude of a sustained oscillation is
estimated (whether it is periodic or not), and the relationship between the stable/unstable conditions and
the result which is derived from the classic describing function is compared. Numerical examples will be

presented to illustrate the theory.
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1. INTRODUCTION

This paper analyzes the amplitude dependent be-
havior of nonlinear sampled-data control systems in
a frequency domain. In actuality, a sustained os-
cillation (whether it is periodic or not) cannot be
avoided in the response of nonlinear dynamical sys-
tems. Nonetheless, the practical analysis and design
method is only a graphical and approximated version
for a periodic oscillation in respect to continuous-
time systems, that is, describing function, in other
words, the harmonic balance method(Atherton[1],
Vidyasagar|[2], Gordillo et al.[3]). As for discrete-time
system, there is no method in particular to analyze
and design such a control system.

In this paper, first, the robust stability condition
for nonlinear discrete-time feedback systems (which
was derived in our previous paper) is applied to

a sampled-data control system containing a single
time-invariant nonlinear element in the forward path.
Then, an instability condition for that type of nonlin-
ear feedback system is derived as an inverse problem
of the robust stability. By considering restricted ar-
eas (two sectors) in the nonlinear characteristic, the
amplitude of a sustained oscillation is estimated, and
the relationship between the stable/unstable condi-
tions and the result which is derived from the classic
describing function is compared.

2. EQUIVALENT TRANSFORMATION

In our previous papers (Okuyama and Takemori[4,
5, 6], the robust stability for nonlinear sampled-data
control systems was analyzed in the frequency do-
main as a natural expansion of Popov’s criterion for
continuous-time systems.
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The control system in question is a sampled-data
control system with time-invariant nonlinear char-
acteristic N(-) as shown in Fig. 1. Here, H is
the zero-order-hold which is usually performed in
AD(DA) conversion and G(s) is the transfer function
of the system to be controlled, which is expressed by
continuous-time.
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Fig. 1 Nonlinear sampled-data control system.

Fig. 2 Equivalent nonlinear discrete-time system.

In addition, nonlinear characteristic N(-) is time-
invariant and can be written as

N(e) = K(e+n(e) +v(e)), 0<K <oo(l)
[w] =In(e)] <ale], O0<a<l )
lw'| = [v(e)] < oo, 3)

where n(e) and v(e) are nonlinear terms relative to
nominal linearized gain K. The nonlinear term n(:)
need not be specially memoryless, but the summa-
tion of trapezoidal areas determined by the path of
sampling points should be non-negative(Okuyama et
al.[6]).

By rearranging the nonlinear sampled-data control
system, Fig. 2 can be obtained, where G(z) is the
z-transform of G(s) together with zero-order-hold H.
In the stability analysis, it is sufficient to consider
only nonlinear term n(e), because nonlinear term v(e)
can be treated as a disturbance signal as shown in this
figure.

Consider new sequences e} (k) and w}, (k) (k =

Fig. 3 Nonlinear subsystem.

1,2+, N) which satisfy the following equation:

en(k) = em(k) + - 228 (@)

h
Ae(k) %)
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*

wm(k) = w‘m(k) —aq-

where ¢ is a non-negative number, e, (k) and wy, (k)
are neutral points of sequences e(k) and w(k), i.e.,

w(k) +w(k —1)

(6)
and Ae(k) = e(k)—e(k—1) is the backward difference
of error. The relationship between these equations is
shown by the block diagram in Fig. 3. In this figure,
d is defined as

e(k) +e(k—1)

5 ,  wnlk)=

em(k) =

2 1—271

B =5 1T

(7)
Eq. (7) corresponds to the bilinear transformation
approximation between z and § when relating 6 to
Laplace transform variable s for a continuous-time
system. Then, the loop transfer function from w* to
e* can be given by F(«, ¢, z) as shown in Fig. 4. Here,

_ (1444(2))KG(2)
T 14+ (14 ags(2))KG(z)’

F(a, g, 2) (8)

and ', d’ are transformed exogenous inputs.

0 n*()

F(o,q,2)

Fig. 4 Equivalent closed loop system.

3. PRELIMINARIES

Let us define a new nonlinear function for n(-) of Eq.
(2) such as f(e) := n(e)+ae. This function belongs to
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the first and third quadrants. Considering the equiv-
alent linear characteristic which varies with discrete-

time k =1,2,--- , it can be written as
fle(k))
< < 2a.
0< =y S (9)
Here, y(k) := f(e(k))/e(k) can be defined. When this

type of (k) is used, sector inequality (2) is expressed
as w(k) = n(e(k)) = (v(k) — a)e(k).

The following assumption will be provided in re-
gard to the nonlinear characteristics to avoid the diffi-
cult problems that are peculiar to nonlinear sampled-
data control systems (Kalman[7]).

[Assumption-1] Error sequence e(k) passes the
origin. Specifically, the relationship y(k — 1) = (k)
is maintained whenever e(k — 1)e(k) < 0. Therefore,
the line between coordinates (e(k—1), f(e(k—1)) and
(e(k), f(e(k))) by linear interpolation also passes the
origin. O

This assumption is not too inaccessible. If the sam-
pling period is shorter than the transient response
of the system, variations of error Ae(k) are also ex-
pected to be small when the sequence passes the ori-
gin. Hence, Assumption-1 will be satisfied. Even if
the sampling period is relatively long, it will be satis-
fied when nonlinear characteristics are gentle around
the origin. Therefore, the above covers a considerably
wide range of problems.

Based on the above premise, the following proper-
ties can be shown.

[Lemma-1] For a positive integer N (the number
of steps), the following inequality holds:

lwm(B)llv < allem (k)| (10)

(Proof) The proof is omitted (See e.g., [5]). O

[Lemma-2] If the following inequality is satisfied in
regard to the inner product of the neutral points of
f(e) and the backward difference sequence of error:

( wm (k) + aem(k), Ae(k) v >0, (11)
the following inequality holds:
lwm ()l < alley, (k)| (12)

for any g > 0. Here, the norm and the inner product
are defined as:

N 1/2
lz(k)llw = (}: |x(k>|2> :
k=1

N
(21(k),22(k) )y =Y z1(k)za(k)
k=1

(Proof) Based on Eq. (4) and (5),

oleq, (k)3 = llwy, ()1

= o?|lem(B)[% — llwm (k)%
2aq 2 (wn (k) + aem(k), Ae(k)) N

2 em(k) +q

N

Therefore, from inequalities (10) and (11), inequality
(12) is obtained. O

The left side of Eq. (11) can be expressed in terms
of nonlinear function f(-).
[Lemma-3] For any step N, the following equation
is valid:

(wm (k) +

N
-1 3 () + 7ok = 1) e(i)- (19

aen(k), Ae(k) )n

(Proof) The proof is obvious from definition (6). O

If we use o(NN) for the right side of Eq. (13), we
can show that o(IV) is the total area of the trapezoid
formed by sampling point (f(e(k — 1)), f(e(k))) on
nonlinear curve f(e) and error step width Ae(k). The
total area of trapezoid o(IV) can be rewritten by the
following.

[Lemma-4] For any step N,
o(N) = %(f(e(N))e(N) — f(e(0))e(0)) + €(N),  (14)

where

N
e(N) = 5 D7 (elh = )ek) ~ Selh)eh ~1)

t\':h—l

N
=5 2 folk) - ) (15)

Here, fo(k) is an intercept at which the straight line
passing sample points py and pg_1 on the nonlinear
function f(e) intersects the vertical axis.

(Proof) The proof is omitted (See e.g., [5]). O

4. CLASSES OF SAMPLED-DATA CON-
TROL SYSTEMS

[Assumption-2] The total area of a trapezoid, al-
lowing for signs of coordinate (e(k), f(e(k))), (k =
0,1,2,---,N) which traces a nonlinear curve is al-
ways non-negative, i.e.,

o(N) >0, (16)

regardless of the transient response. [
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Although this Assumption seems to be too inacces-
sible, some of the following sampled-data systems can
satisfy it.

(1) Nonlinear sampled-data systems of which point
(e(k), f(e(k))) traces the same points on the non-
linear curve (depending on if error e(k) tends to
increase or decrease) belongs to Class S..

The response of sampled-data systems of which
point (e(k), f(e(k))) exactly traces the same
point on the nonlinear curve seldom occurs. In
general, the fulfillment of (1) can be expected
from systems that are similar to continuous-time
ones, which are characterized by a very short
sampling period h or a very slow response which
is regarded as Ae(k) — 0.

(2) Nonlinear sampled-data systems (which satisfy
¢(N) = 0 at any step N, ie., fo(k) =0 (k =
1,2,---,N)) are classified into Class S;.

The condition fo(k) = 0 is established when
v(k) of Eq. (3.) becomes a positive constant ~.
In other words, nonlinear sampled-data systems
which belong to S; refer to linear sampled-data
systems.

(3) Nonlinear sampled-data systems (which satisfy
¢(N) > 0, at any step N, i.e., fo(k) Ae(k) >0
(k=1,2,---,N)) are classified into Class S,.

The fulfillment of (3) is expected from sys-
tems where response (e(k), f(e(k))) on a nonlin-
ear curve turns in a clockwise direction. The
systems in Class S, naturally contain the above-
mentioned systems of Class S; which satisfies
e(N)=0.

5. ROBUST STABILITY FOR DISCRETE-
TIME SYSTEMS

As was described in our previous paper (e.g.,
Okuyama and Takemori [5, 8]), (when using the sub-
system in Fig. 3 instead of nonlinear element n(-) in
Fig. 2), the robust stability condition for the above
system can be given by using a small gain theorem in
regard to the closed loop system as shown in Fig. 4.

[Theorem-1] If there exists a ¢ > 0 in which the
sector parameter « in regard to nonlinear term n(-)
satisfies the following inequality, then the nonlinear
sampled-data control system shown in Fig. 1 (equiv-
alent to Fig. 2) is robust stable in the £ sense:
U+v?
—gQV +/@Q2V2 + (U2 + V2){(Q +U)? +V?}

= €(g,w) < %, Vw € [0, we]. (17)

Here, Q(w) is the distorted frequency of w, and is
given as

5(eh) = jQ(w) = j%tan (‘“’7”)

from Eq. (7), and w. is a cut-off frequency which
is the range satisfying Shannon’s sampling theorem.
Moreover, U and V are the real and the imaginary
parts of KG(e?“h), respectively.
(Proof) The proof is obtained from inequality
(1+jgQ(w))KG(e™") 1
1+ (1 + jagQ(w)) KG(eiwh) <( a)'
18

|F(a,q,6™™)| =

based on Eq. (8). O

Theorem-1 corresponds to a discrete-time version
of Popov’s criterion (Netushil ed.[9], Desoer and
Vidyasagar[10]). Since inequality (17) in Theorem-
1 is for all w considered and a certain g, the condition
results in the following min-max problem:

E(g0,w0) = min max E(gw) < —. (19

That is, if inequality (19) is satisfied, the nonlinear
sampled-data system as shown in Fig. 1 is stable
when the nominal linear sampled-data system with
gain K is stable.

6. INSTABILITY CONDITION

On the contrary, in this section, the instability prob-
lem of the nonlinear discrete-time system is exam-
ined, when the nominal system with gain K is
unstable(Desoer and Vidyasagar [10], Harris and
Valenca[11]). Consider the frequency transfer func-
tion F(a,q,e’") to be a linear causal operator F
in an ¢, space, i.e., F : €3 — £3. In addition, F is
assumed to be unstable in the sense that

U = {ul, €Ly | vh, = Fuy, € €2} (20)

is not all of ¢5. Obviously, U is a set of stabilizable
inputs u/, (which is a subspace of £3). Here, uy,, and
v/ are neutral points of sequences u'(k) and v'(k),
respectively. (In order to avoid complicated expres-
sions, step k will be abbreviated hereafter.)

Since U is not all of {3, the orthogonal subspace
of it, U+, is nontrivial in the £ space. If exogenous
input d’, exists in the orthogonal subspace (i.e., d;,, €

Uy, (ul,,d,)n = 0 must hold.
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In such a case, from the relation w* = v’ — d’, the
following holds:

lwml% = lumllyy = 2(upn, i) v + %,
= llumlif + ldmnll-
Hence,
lwm(B) N 2 lum (B) |- (21)
Furthermore, when considering e* as a stabilizable
input, the following set is given:
E={er, €ty | v, =F(w;,+d,)e€bl} (22)

Since £ is similarly not all of £, the orthogonal sub-
space of it, £, is nontrivial in the £3 space. If exoge-
nous input 7, exists in the orthogonal subspace (i.e.,
o€ &L, (vl e )n = 0 must hold.

From the relation v’ = 7/ — e*, the following holds:

loml ¥ = i — 2(rm, em)r + llemlI7
= [lrmll¥ + leml%-
Hence,
lom ) Iv 2 llem (k) n- (23)
By using inequalities (12), (21) and (23), the fol-
lowing relation can be obtained:
lum(B)lIn < affvr, (k)llw-. (24)
Then, inequality (24) can be rewritten as follows:
lum(E)lv < asup |[F(g, a, )| - [fup, (K)||n- (25)
However, if a small gain theorem, i.e.,

sup |F(q, a, ej“’h)[ < % (26)

is satisfied for any g > 0, the above inequality (25) is
contradicted for N — oo. Thus, the following should
be written:

ul, ¢4y and v, & Ls. (27)

It is obvious that the nonlinear discrete-time feedback
system is unstable.

With respect to such an instability problem, the
following theorem can be given.
[Theorem-2] If a small gain theorem (26) in re-
gard to the closed loop system as shown in Fig. 4 is
satisfied (i.e., inequalities (17), (19) are satisfied), the
nonlinear sampled-data control system shown in Fig.
1 is unstable when the nominal linear discrete-time
system with gain K is unstable.

(Proof) The proof would be obvious from the above
derivation process. O

7. DESCRIBING FUNCTION

A method of the amplitude dependent stability anal-
ysis for actual higher order nonlinear systems is har-
monic balance, i.e., describing function. Although the
analysis is based on an approximation in the Fourier
series expansion, it is still a useful method for design-
ing a nonlinear feedback system. In complex num-
bers, the describing function is defined as

N(A) = % e,

where A is the amplitude of input signal to the non-

linear function,
U = \/a% + b%

~1by
(11'

and
¢1 = —tan

When considering the above in a discrete-time do-
main, the following expression can be given:

D8
o= Z (u(0) cos 0 + u(6 + Af) cos(8 + A)),

f=—m

R . :
b= 5= > (u(6)sind +u(6 + A6)sin(6 + A0)).
Here, 8 = kwh and A@ = wh. By using these equa-
tions, describing function, e.g., a; can be calculated
numerically.

8. NUMERICAL EXAMPLES

[Example-1] Consider the following controlled sys-

tem: (s+6)
s+

G(s) = —————. 28

(s) s(s+1)(s+2) (28)

The stability region for linear gain K can be given

by 0 < K < 1.20 when the sampling period is h =

0.2. In this example, we suppose that the nonlinear

characteristic can be given by the following sigmoid

type function:
Ne) = % -tan"1(2e(t)). (29)

When choosing the nominal gain K = 0.8, we can
obtain miné(q,wp) = £€(qo,wo) = 1.98 and o < 0.505
q

from Egs. (17) and (19) in Theorem-1 (i.e., the upper
bound of stability region becomes K+ = 1.20). In
this case, the Aizerman conjecture for discrete-time
system(Okuyama and Takemori[12]) is valid.
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Fig. 5 Nonlinear characteristic and stable/unstable
sectors for Example-1 (h = 0.2, K = 0.8 and upper
bound K+ = 1.20, K = 2.0 and lower bound K~ =
1.64).

Fig. 6 Error sequence responses for Example-1 (r =
e(0) = 0.2, r = e(0) = 2.0).

On the other hand, when choosing the nominal gain
K = 2.0, unstable sector a < 0.179 can be obtained
(i.e., the lower bound of instability region becomes
K~ = 1.64). There is an area between stable and
unstable sectors, which cannot be defined. However,
we can predict and estimate a stable (pseudo)periodic
oscillation which corresponds to a stable limit cycle
for a continuous-time system in a state space.

Figure 6 shows time responses of the nonlinear
discrete-time control system. The amplitude of sus-
tained oscillation can approximately be estimated
from stable/unstable sectors shown in Fig. 5 and
from describing function shown in Fig. 7.

[Example-2] Figure 8 shows the following nonlin-

nN(A)

Fig. 7 Describing function for Example-1.

ear characteristic and stable/unstable sectors:
4 —104,3
N(e) = p - tan™ " (4e’(t)). (30)

In this case, the nominal gains were chosen as K = 0.7
and K =1.7.

When considering the same controlled system as
shown in Example-1, a stable sector is given as
o < 0.72 (i.e., the upper bound of stability region
Kt = 1.20). On the other hand, an unstable sec-
tor is given as a < 0.125 (i.e., the lower bound of
instability region K~ = 1.49).

Figure 9 shows time responses of the nonlinear
discrete-time control system. In this example, un-
stable and stable (pseudo)periodic behaviors will be
seen in the responses, which corresponds to unstable
and stable limit cycles for a continuous-time system
in a state space. The describing function of nonlinear
characteristic (30) is drawn as shown in Fig. 10. The
amplitude of sustained oscillations can be compared
with those in Fig. 8 and Fig. 10.

[Example-3] Consider the following controlled sys-

tem:
2.5(5 + 0.5)

MR )

(31)
In this example, the stability region can be given by
K > 1.91 when the sampling period is h = 0.05.
When choosing the nominal gain K = 3.0, we can
obtain min (g, wp) = &(go,wo) = 2.75 and a < 0.36
q

from Eqs. (17) and (19) (i.e., the lower bound of
stability region becomes K~ = 1.91). On the other
hand, when choosing the nominal gain K = 1.0, un-
stable sector & < 0.21 can be obtained (i.e., the upper
bound of instability region becomes K+ = 1.21). The
Aizerman conjecture for discrete-time system is valid



REPORTS OF THE FACULTY ENGINEERING, TOTTORI UNIVERSITY Vol.32 7

Fig. 8 Nonlinear characteristic and stable/unstable
sectors for Example-2 (h = 0.2, K = 0.7 and upper
bound K+ = 1.20, K = 1.7 and lower bound K~ =
1.49).

Fig. 9 Error sequence responses for Example-2 (r =
0.6, r = 0.7, r = 2.5).

also in this case. (Counter examples for the Aizerman
conjecture were shown our previous papers[4, 12]).

Here, we suppose that the nonlinear characteristic
can be given by the following function:

N(e) = 0.5¢(t) + tan~*(10e(2)). (32)

Figure 11 shows a nonlinear characteristic and sta-
ble/unstable sectors. As is obvious from the figure,
there is a considerable size of undefined area between
the stable/unstable sectors. However, we can also
predict and estimate a stable (pseudo)periodic oscil-
lation which corresponds to a stable limit cycle for a
continuous-time system in a state space.

Figure 13 shows the describing function of nonlin-
ear characteristic (32). In this case, describing func-

nN(A)

1.4Gf === mem oo ,
1'm.mu~“...4.. - :

Fig. 10 Describing function for Example-2.

tion N(A) does not reach the lower bound of stabil-
ity region K~ = 1.91 (which corresponds to a nec-
essary and sufficient condition for linear system), be-
cause describing function is only an approximation.
Nonetheless, the amplitude of sustained oscillation
would be compared with those in Fig. 11 and Fig.
13.

9. CONCLUSIONS

This paper analyzed the amplitude dependent behav-
ior of nonlinear sampled-data (i.e., discrete-time) con-
trol systems in a frequency domain. First, the robust
stability condition which was derived in our previous
papers was applied to a sampled-data control system
containing a single time-invariant nonlinear element
in the forward path. Then, an instability condition
for that type of nonlinear feedback system was de-
rived. By considering restricted areas (two sectors) in
the nonlinear characteristic, we could predict and es-
timate the existence of a sustained oscillation whether
it is periodic or not. This concept will be extended to
the multi-loop nonlinear discrete-time feedback sys-
tems(Okuyama and Takemori[13]).
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