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Abstract: In actual systems, the physical parameters of plants are uncertain and are accompanied by
nonlinearity. The transfer function and the characteristic polynomial should, therefore, be expressed by in-
terval polynomials whether the input-output signals are continuous or discrete time. This paper examines
the robust performance of that type of control system, based on the existing area of characteristic roots. In
particular, in this paper, a sufficient condition for the roots area which is enclosed by a specified circle on
an s-plane will be given by applying the classic Sturm’s theorem (division algorithm) to the four corners of
a segment polynomial. The result that is obtained by finite calculations in regard to the coefficients of the
segment polynomial, can be extended to general interval polynomials with multiple uncertain parameters.
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1. INTRODUCTION

The physical parameters of controlled systems
(plants) are uncertain and are accompanied by non-
linearity. The transfer function and the charac-
teristic polynomial should be expressed by interval
(polytopic) polynomials whether the input-output
signals are continuous or discrete time (Ackermann
(1], Barmish [2], Bhattacharyya et al. [3]). With
respect to the stability of continuous-time linear
system, there is a famous theorem presented by
Kharitonov [4].

However, in our previous paper, we applied the
classic Sturm’s theorem directly to interval polyno-
mials in regard to the existing area of characteristic
roots, and derived theorems which correspond to a
weak-Kharitonov’s theorem based on an assumption
for the uncertain systems{Okuyama et al. [5, 6]).

In this paper, by applying Sturm’s theorem (a di-
vision algorithm) to the four corners of a segment
polynomial, we will give a sufficient condition for the

characteristic roots area which is enclosed by a speci-
fied circle on the s-plane. The concept of finite calcu-
lations based on the division algorithm in regard to
the coefficients of the segment polynomial will be ex-
tended to general interval polynomials with multiple
uncertain parameters.

2. INTERVAL POLYNOMIALS

The transfer function of a control system with un-
certainty (and nonlinearity) is expressed by interval
polynomials. Generally, an interval polynomial of a
dynamical system with uncertainties can be written
as follows:

F(S) = &os” +&1Sn_1 + .- +&n_18+d’n,(1)
a € la,af], £=0,1,2,---,n.

In general, coefficients of the interval polynomial (1)
are not always independent of each other. It can also
be written affinely by the following general form with
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interval coefficients [9, 10]:

where coefficients cg  are real constants.

The discrimination of the roots area based on the
above system with multiple uncertainties becomes a
considerably complicated problem. Thus, in this pa-
per, we will analyze the problem by using a set of
segment polynomials.

3. SEGMENT POLYNOMIAL

First, the following segment polynomial (i.e., a poly-
nomial with only one interval set coeflicient) is con-
sidered:
F(S) = ags” + &1Sn_1 + o4 Ap_15 + an,
an € lay, , af],
Then, the following more general form as to Eq. (3)
is defined:

m n
= Zfie (Z Ce,ksn_k) ,
£= k=0
dn € lay, »
Here, ax and g, (without a mark) indicate fixed coef-
ficients.
In either case, these segment polynomials can be

written as the following form:
F(s) = F(s,\) = AFT(s) + (1 = A)F~(s), (6)
Ae (o, 1). ’

The polynomials at both ends of Eq. (5) are ex-

pressed as follows:

Qh:(I}:7 q@quv f#h

As for Eq. (2), the following expression can be given:

n

=Y afs"k, (9)

k=0

Gk = ak, k#ha h7k2071727"'5

atl, Ge=qe, £#h, ht=1.2,...

Fig. 1 Sectorial and circular contours and areas.

Za_ n—k, (10)

m

+
Gy = Z
¢=1,0+£h

m

Z Ce,kqe + Ch,kqy, - (12)
0=1,6£h

coxqe + Chkqy (11)

Here, without loss of generality, we assume cp x > 0.

In these segment polynomials, when considering
the algebraic equation F'(s) = 0, segments of the
characteristic root locus can be drawn on the s-plane.
On the other hand, when considering mapping F’(s)
for a contour s € O as shown in Fig. 1, a set of
line segments will be drawn on a complex F-plane as
shown in Fig. 2.

4. CIRCULAR CONTOUR

In this paper, we examine a sufficient condition for
the number of characteristic roots in a specified area
on the s-plane. As a specified area, we consider a
contour 8T" (boundary of area I') on the s-plane, e.g.,
a circular contour

s = pe?® + ag + jwo, (13)
0:—-n— .
as shown in Fig. 1. Here, p, (0o,wo) and 8 are the.

radius the center and the angle of rotation for the
specified circle, respectively.
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Fig. 2 Locus of line segments.

Any point s on circular contour (13) can also be
written by the following rational function of real vari-

able a:

u + jua
= — 14
e (14)

where

u=p+ 0o+ jwo,

v=p—09— jwo
Here, o can be considered correspondingly as follows:
o = tan(6/2). (15)

Obviously, the relationship between variable 8 and
variable o is expressed as:

0=—-m =00,
=20 a =0,
6 =4m «a=+o0.

Circular contours (13) and (14) includes the follow-
ing extreme case.

(a) In Egs. (13) and (14), when we consider

p=R, co=—R (or 6g=R), wog=c¢

and R — 0o, € — 0, the specified area becomes
a left half (or right half) s-plane (9T'3 as shown
in Fig. 1). In this case, a part of the circular
contour approaches the imaginary axis on the s-
plane, provided that variable w is considered in
a certain limited range w, < w < w,, where w, is

a cutoff frequency. Thus, variable o becomes a
small number, i.e.,

= — 1.
o 2R<<

(b) Similarly, when the parameters are chosen as

p=R, 0o =—-R, wo= Rtangy, R — o0,
the specified area becomes a problem of a secto-
rial area in the left half s-plane

(83 as shown in Fig. 1).

As mentioned above, since Egs. (13) and (14) can
include most of the problems, the following shows the
discrimination of the number of roots in a circular

area.

When applying the above transformation (14) to
Eq. (5), the following numerator polynomials for real
variable & can be obtained:

= Z(jg (Z ce,k(u+jva)n‘k(1 ——ja)k>(16)

k=0

Here, in the case of segment polynomials, these coef-
ficients are related from Egs. (11) and (12) as follows:

Z cerge + cnrlay» ai]- (17)
e=1,0h

ar = [ay, ak
Since Eq. (16) are polynomials with complex coef-
ficients, they can be written by the following form:

®(ja) = (1 - ja)"F(s) = P(a) +jQ(a),  (18)

where

P(a) = doyoan + -
Qo) = booo™ + -+

+ &O,n—la + afO,'rn (19)
+ 50,n—104 + EO,n- (20)

The coeflicients in Eqs. (19) and (2
mined as follows:

0) can be deter-

dOu+j60u
- k !l n—-v v—k+l n—v—1
=35 a (8 ) () e,
k=0l=k—v
V_0a17 7n7
where

(1)

denotes the combination sign.



4 Yoshifumi OKUYAMA + Fumiaki

TAKEMORI : Kharitonov-like Condition

for Characteristic Roots Area of Interval Systems

JQ
(P~,Q%) (P*,Q%)
(P—’Q_).‘,’ ‘(,P+,Q_)
0 P
®-plane

Fig. 3 Four corner points and rectangle.

5. FOUR CORNER POINTS PROBLEM

In case of segment polynomials, by using expression
(6) Eq. (18) is rewritten as follows:

®(ja) = B(ja, \) =
=(AP*+(1-

The real and imaginary parts of Eq. (21) correspond
to those of Eq. (18), i.e.,

P(a) = APt (a) 4+ (1 — NP (a),
Q(a) = 2Q* (a) + (1 = NQ™ (a).

Here, the extreme polynomials are expressed as fol-
lows:

+ +
+ Qg 10+ Qg g,

+ b(_;n—la + bg—,n) (22)

P*(a) :a&oan+~~-

= b;oan + P
and

P_(a) :aaoan+
Q_(a) = baoa" 4+ ...

+ a(;.n—la + aO,n7

+bg,_1a+by,. (23)

Thus, the following four corner points (vertices) can
be given, and a rectangle together with a line segment
(edge) can be drawn in the ®-plane as shown in Fig.
3:

Vi = (P, QF),
Va=(P7, Q)
Vi= (P, Q%)
Vi=(P*, Q7),

where the latter two points are additional ones.

(1= )" (AFT(s) + (1 = N F(s))
NPT +iAQT +(1-2Q7).  (21)

Then, we can define the following four pairs of poly-
nomials:

P (q) = ag%a" +oo4ad)_atad),(24)

4 b 1a b (25)

i=1,2,3,4,
where
PW(a) = P*(a), QW(a) = Q™ (a),
PO>a)=P (o), QP (a)=Q (),
POa) =P (a), Q¥(a)=Q"(a),
PY(a) =P (), QW(a)=Q (a)

As an expression of polynomials with complex coeffi-
cients, they can be given as follows:

39 (ja) = PD(a) +jQ"(a),  (26)
i=1,2,3,4,

(Note that as for the edges in the F-plane, two addi-
tional polynomials with constant coeflicients cannot
be determined in general.)

Here, we can see that the following lemma holds by
using Sturm’s theorem.

[Lemma-1] When coefficient ratios

b(l) bgl’)l o bf':)—l,n—-l (27)
o af) ald,

are calculated for an extreme polynomial & (a) (i =
1,2) (e.g., ®V(a)), the number of ratios (27) to be
negative y is equal to the number of characteristic
roots for the polynomial in the specified circle. In
these ratios (27), afﬁ], bffll’q_l (g=1,2,---,n) are
caluculated by using a division algorithm .

(Proof) This lemma is a necessary and sufficient
condition in regard to the existing area of character-
isitic roots for the fixed polynomial. In our previous
paper (Okuyama et al. [6, 7]), the proof will be given
systematically by using Sturm’s theorem. O

Based on the above premise, the following theorem
is obtained as to the above four pairs of polynomials:

[Theorem-1] If the number of ratios (27) to be neg-
ative is not changed for the four corner polynomials,
the control system that is characterized by segment
polynomial Eq. (4) (or (5)) has a robust performance
in regard to the invariance of the number of charac-
teristic roots in the specified circle. When considering
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Fig. 4 Parallelotope and rectangles.

only one root (i.e., 4 = 1), for instance, a dominant
root, the circle 0I" (i.e., disc I') gives a sufficient con-
dition for the characterisic root area of the control
system with an uncertain (interval set) parameter.

(Proof) This theorem is a sufficient condition in
regard to the existing area of characterisitic roots for
the segment polynomial. The proof is obvious from
the zero exclusion of the Kalitonov-like rectangle that
is composed of the four corner points (24) and (25).
That is, any edge of the rectangle does not pierce the
origin. As a natural consequence, the line segment in
the ®-plane and also in the F-plane does not pierce
the origin. O

6. MULTIPLE UNCERTAINTIES

Theorem-1 can also be applied to control systems
with multiple uncertainties, the characteristic poly-
nomials of which are written as shown in Egs (1) and
(2), in general. When complex variable s is fixed
(frozen), a view of (hyper)polyhedron (a parallelo-
tope) is drawn on the s-plane in regard to the poly-
nomial, e.g., (2) as shown in Fig 4.

As for polynomials expressed by Egs. (2) and (3)
the number of vertices is 2™, and the number of edges
becomes m - 2™~1. Obviously, the number of addi-
tional vertces is given by 2 x m - 2™~1. Thus, the
number of total vertices which should be checked for
interval polynomials (2) and (3) is given by

2m+m-2" = (m+1)-2™. (28)

Based on the above premise, the following theorem
is derived as to the above number (28) of corner poly-
nomials:

[Theorem-2] If the number of ratios (27) to be
negative is not changed for all the corner polynomi-
als (28), the control system that is characterized by
interval polynomial Eq. (2) (consequently, Eq. (1))
has a robust performance in regard to the invariance
of the number of characteristic roots in the specified
circle. When considering only one root (i.e., pt = 1),
for instance, a dominant root, the circle OI" (i.e., disc
I') gives a suflicient condition for the characterisic
root area of the control system with uncertain (inter-
val set) parameters.

(Proof)  This theorem is a sufficient condition in
regard to the existing area of characterisitic roots for
the interval polynomial. The proof is obvious from
the result in Theorem-1 in which any edge of the
rectangles does not pierce the origin. Consequently,
as mentioned in the proof of Theorem-1, any edge of
the parallelotope (a set of line segments) in the ®-
plane and in the F-plane does not pierce the origin
(Bartlett et al. [8]). O

Although the above results (Theorem-1,2) are only
a sufficient condition (i.e., sufficient for edge theo-
rems), the discrimination method proposed in this
paper will be useful in the design of robust control sys-
tems. The realization robust performance via model
reference feedback was presented in our previous pa-
per (Takemori and Okuyama [9], Okuyama and Take-
mori [10]).

7. NUMERICAL EXAMPLE

[Example] Consider the following characteristic

equation expressed by interval polynomial:

F(s) = s® 4+ 25 + 25+ 1 +[-0.1,0.1](s® + 25%)
+[~0.2,0.2]s + [~0.1,0.1] = 0. (29)

When a circle with a center of (—0.5,0.95) and a ra-
dius of r = 0.3 was specified as shown in Fig. 5, the
parallelotopes and rectangles with (m + 1) - 2™ = 32
corners are drawn in the ®-plane as shown in Fig.
6. The series of corner 32 points (sets of rectangles)
slightly excludes the origin. The number of roots in
the specified circle did not change. That is, the robust
performance was guaranteed in regard to the existing
area of dominant root for the interval system.

When considering a sectorial area as shown in Fig.
9, 4 = 3 was obtained as to the 32 corner polynomials.
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Fig. 5 Circles and root areas.

It could be shown that the robust stability of the
system characterized by Eq. (29) is guaranteed.

8. CONCLUSIONS

In this paper, by applying Sturm’s theorem (division
algorithm) to the four corners of a segment polyno-
mial, we gave a sufficient condition for the character-
istic roots area which is enclosed by a specified cir-
cle on the s-plane. The concept of finite calculations
based on the division algorithm in regard to the co-
efficients of the segment polynomial was extended to
general interval polynomials with multiple uncertain
parameters. This four points (Kharitonov-like rect-
angle) condition proposed in this paper will be useful
for Computer Aided Control Systems Design.
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