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Abstract: This paper describes a geometrical evaluation of the robust stability in a frequency domain
based on the results from our previous papers in which Popov’s criterion was expressed in an explicit
form. The control system described herein is a feedback system with one time-invariant nonlinear element
(a sector noulinearity) in the forward path. By applying a small gain theorem that concerns L gain in
regard to a nonlinear subsystem with a free parameter, a robust stability condition for control systems with
time-invariant nonlinearity is presented. Using this concept, we will show a representation of an off-axis
circle criterion on a Nyquist diagram, and propose an evaluation method of the stability from the relative
position with the vector locus of the open loop frequency response characteristic. This type of a diagram
will be available to the design of robust control systems.
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1. INTRODUCTION

A small gain theorem with a Ly norm is generally ap-
plied for the robust stability condition in a frequency
domain for control systems with uncertainty and non-
linearity. It can also be applied to time-varying non-
linearity or frequency dependent uncertainty and has
been widely used as a design technique for H,, ro-
bust control systems (Vidyasagar [1], Francis [2]).
This concept has been extended in order to solve de-
sign problems associated with several uncertainties
and/or nonlinearities (Packerd [3]). However, the
stability theory in regard to Ly norm which was pro-
posed by Sandberg [4], consequently, imposes more
conservative restrictions on the frequency response
characteristics of the linear parts of a control system
(Zames [5]. Desoer and Vidyasagar [6],Harris and Va-
lenca [7]).

In our previous paper. a robust stahility condition
for control systems with a time-invariant nonlinearity

was given (Okuyama et al. (8, 9, 10]) by applying the
small gain theorem to a nonlinear subsystem with a
free parameter. It can be considered as an explicit
expression of Popov’s criterion.

This paper describes the relationship between the
robust stability condition and Popov’s criterion, and
presents a geometrical evaluation of the robust stabil-
ity in a frequency domain. As a geometrical evalua-
tion method, an off-axis circle criterion on a Nyquist
diagram which corresponds to the Hall diagram (M,
N circles) will be presented in this paper. Numerical
examples show that the diagram will be available to
the design of robust control systems.

2. CONTROL SYSTEMS WITH A SEC-
TOR NONLINEARITY

Consider a nonlinear feedback system as shown in
Fig. 1. Here, G(s) indicates the time-invariant linear
characteristic, the frequency response characteristic
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Fig. 2 FEquivalent nonlinear control system.

of which is known. Even if G(s) is uncertain, when
the band of both the real and imaginary parts of the
frequency response characteristics (or the character-
istic locus in a worst case) is taken into account, the
following discussion is still applicable.

Assume that N(e) is the time-invariant zero-
memory-type nonlinearity characteristic, which can

be written as follows:

—

N(e) = N(e+n(e)), (1)
|w| = |n(e)] < ele]. (2)

where n(e) is a nonlinear term relative to nominal
linear gain /. in other words, a multiplicative per-
turbation expression. Without loss of generality, we
also assume 0 < o < 1.

By rearranging the nonlinear control system, Fig, 2
can be obtained. For this nonlinear term n(e), we will
suppose a subsystem as shown in Fig. 3 (Okuyama et
al. [9. 10]). Tere, ¢ is a nonnegative free parameter.
As is obvious from the figure. the following equation

is obtained:

de
* = —, 3
e =etqr (3)
w* = w— oq de (4)

E.

Hence. the following lemma can be given.

[Lemma-1] If the following inequality is satisfied:

de =(T)
<'u.~ + o, —> = / (n(e) + ae)de > 0, (H)
df T £ (0)

faha §
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Fig. 3 Nonlinear subsystem.
for any ¢ > 0,
wzll < afler] (6)

is obtained. Here, the inner product and the norm is
defined as

T T

(x1,22) 1 :/ ry(t)yza(t)dt, |lz|lr = / |z ()2 dE.
0 0

When written as (-,-) or || - ||, it denotes the case

when T — oco. Moreover, wi(t) and e%(t) denote the
truncation functions of w*(t) and e*(¢) at ¢t = T, re-

spectively.
(Proof) From Eqs. {3) and (4), the following equa-
tion holds:

21 e . del|? de|?
e = ol = o2 e+ o ||~ -

‘ de
= o?|le|& = Jwo|3 + 20q { w + e, =
dt /
Based on sector nonlinear characteristics in Eq. (2)
and the premise of this Lemma Eq. (5), i.e.,

lwllz < o®llellz.

de
w+ oe,— ) >0,
dt [+

as for ¢ > 0 and o > 0 the following inequaliy:
[w |7 < &®lle* |17 ie. [lwill® < o?flep]®

can be obtained for any truncation time 7. Here, we
assume e(0) = 0. O

Incidentally, Eq. (6) may be appropriate for 7' —
oo. The details of this Lemma were described in our
previous papers for a continuous-time system(8, 9, 10]
and for a discrete time system[11, 13, 14].

3. ROBUST STABILITY CONDITION

By placing nonlinear subsystem n(e) of Fig. 3 inside
nonlinear part n(e) of the control system in IFig. 2,
the loop transfer function from w* to e* can be ex-
pressed as follows:

(14 gs)NG(s)
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Hence. by applying the small gain theorem in regard
to Ls gains. the following robust stability condition

can be obtained:

(1+ jgw) N G(jw) <L ()
1+ (1 + joquw) K G(jw) o ‘

It the open loop transfer function KG(jw) is ex-

pressed as
KG(jw) = Uw) + 5V (w), (9)
B5q. (8) is also written as

(I +7qw) (U (w) + 5V (w))
L+ (1 + jogo) (U (w) + jV (w))

<L (10)
o

The robust stability condition for (10) can be
rewritten as the following theorem.
[Theorem-1] For any ¢ > 0, if nonlinear sector «
satisfies the following inequality, the control system
of Fig. 1 is robust stable:

r2 r2
Ty
Elg.w) = - = = > =
—wlV + /21 + (2 + V{1 + V) + 17}
1
<=, VY. (11)
.

(Proof) From the square of both sides of inequality
(10),

o’ (1+ 2T +17?) < (14U — aqwV)’ +(V + agul’)?,
The following quadratic inequality is obtained:
(24 172) + 2000V — {1+ ) + 17} <0 (12)

Consequently, as a solution of inequality (12)

=qwV 4+ /22 V2 (U2 + VE){(1 + U)? + V2}
@ < {72 + 172

is given. O

It can be shown that Eq. (11) in Theorem-1 is
equivalent to Popov’s criterion and contains the cir-
cle criterion for nonlinear time-varying systems in a
special case.

Obviously, inequality (8) is rewritten as follows:

all (o, q, jw)

. - <1, (13)
1+ oH(e, q,jw)

where

v (14w KG(jw)
H{w. q. jw) = L+ (1 - a)KG(Gw)'

From this inequality. we can obtain

20 R{H (. q, jw)} +1> 0. (14)

Thus, we can give the following robust stability con-
dition:

p ) 1+ 0+ o) KG(Gw) + 2jaquKG(iw)
'R{ 1+ (1 - a)KG(w) >0, (15)

which is equivalent to (11).
If we can determine o = 1 in regard to the system
and the nonlinear characteristic is expressed as

0< N(e)e < Kpe?, K, = 2K, (16)
inequalities (14) and (15) can be written simply as

9%{}{1—+(1+jqw)6'(jw)} > 0. (17)
Inequality (17) corresponds to a well known expres-
sion of Popov’s criterion.

As is obvious when ¢ = 0, the left side of Eq. (11)
becomes the absolute value of complementary sensi-
tivity function 7'(jw). Therefore, the condition can
be written as

VU2 4172

A+0)2+v?

£(0,) = = [TGe)l <~ (19)

On the other hand, from Eq. (15)

14+ (14 o) KG(5w)
® { T+(1= a/)Ix"G(jw)} >0 (19)

is obtained. Egs. (18) and (19) correspond to the
circle criterion for nonlinear time-varying systems.
Theorem-1 is an explicit expression of Popov’s cri-
terion, and can be interpreted as follows.
Eq. (11) in Theorem-1 is for all w considered and a
certain g. Therefore, if a min-max of £(¢, w) is obtain-
able, then Eq. (11) in Theorem-1 can be rewritten as

1
My = E(qo,wo) = min max £(q,w) < - (20)
q w

that is, if Eq. (20) is satisfied, the nonlinear control
system as shown in Fig. 1 is robust stable (When the
nominal linear control system with gain K as shown
in Eq. (1) is stable, the nonlinear control system with
a sector nonlinearity is also Lo stable).

4. OFF-AXIS CIRCLES
As is obvious, the following curve on the complex

plane (-V plane):

E(0,w) =M, M = const. (21)



4 Yoshifumi OKUYAMA - Fumiaki TAKEMORI : An Off-Axis Circle Criterion for the Stability

of Feedback Systems with a Sector Nonlinearity

in Eq. (18), corresponds to a M-circle in the Hall
diagram. Therefore, the following curve based on Eq.
(11):

flqw) =M (22)

becomes the modified contour of the M-circle. Here-
after, we will assume M > 1, because o < 1 in Egs.
(11) and (20).

The modified contours are given by the following
lemma (Okuyama and Takemori [14]).
[Lemma-2] When M > 1, the modified contours of
the M-circle are written as

AN, M? .
((' tIEC 1) V- =gEpoyp T 3
e qwM . ——
where v = 1 > 0. When M =1,
W=V, k=25 (24)
AT ER RERr =T -

In these equations (23) and (24), we will assume that

~ and k are constant parameters.

(Proof) From Egs. (11) and (22),

(ME=V)U? 42M°U +(M* = 1)V + M? — 2MqwV = 0.
(25)

Obviously, when M =1,

is obtained.
On the other hand, when M > 1, from Eq. (25),

: 2013 9 2Mqw M2
er U V2 - 7 : =0,
+ M? -1 + M2 -1 M2 1 ;
then
r a . qwM NP
<(" A 1) + (1 T - 1)
— M? +< quw M )2
TS0 TA\MEZ1)
, . _ qw M .
I we use v = o1 Eq. (23) can be ob-

tained. That is, off-axis circles with their center at

M M?
Mz—1" !

(7 — 1)
are obtained. O
The following theorem is given based on the above-

and with radius of + +?

mentioned premise.
[Theorem-2] If vector locus KG(jw) = U(w) +
jV(w) exists in the following area determined by ¢ =
qo:

1

£(0:w) € Mo < —, Y, (26)

the nonlinear control system as shown in Fig. 1 is
robust stable.

(Proof)  Obviously, as for a certain vector locus
U (w)-V (w) of open loop system K G (jw),

é(%w) S E(qin)! vw (27)

is valid in general, because the right side of this in-
equality is a peak value for angular frequency w. Fur-
thermore, wq is a peak frequency. Here, we should
note that wy i3 not always determined as only one
frequency, and may be only a smooth (differentiable)
point of the frequency range depending on the ¢-value
(Okuyama and Takemori [12]).

Nonetheless, inequality (27) holds in regard to ¢ =
qo by which £(¢, wp) is minimized. Thus the following
is satisfied:

E(go,w) < &(go, wo) = My,  Vw. (28)

It can be shown that inequality (26) in Theorem-2 is
equivalent to (20). D

5. NUMERICAL EXAMPLES

[Example-1] Consider the following controller and

controlled system:

1

G(s) =
Figure 4 shows calculation results for £(¢,wo). When
nominal linear gain K = 1.2,

My = rrzinf(q,wo) =&(qo,wo0) = 1.5

is obtained. Figure 5 shows calculation results of cir-
cle array as to ¢ > 0 for M = 1.5, i.e.,o0 = 0.667 and
vector locus Gy for the controlled system.

In this example, ¢ by which £(q,wo) is minimized
is go = 2.0 and the vector locus contacts with an off-
axis circle C on the real axis. Here, the gain margin
is g1 = 4.44 dB and equals

—-20 lOglO %——1 = 4.44 dB,

which is determined by the point where the argu-
ment of contour C is —180 degrees. It corresponds to
the size of a sector in which nonlinear characteristics
are permitted. That is, it is an example that shows
Alzerman’s conjecture to be valid.

On the other hand, Gy is a vector locus for K =
0.57 by which the peak value becomes M = 1.5. It
corresponds to a limit of the robust stability condi-
tion which can be applied to a time-varying nonlinear
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Fig. 4 &(q.wp) curves for Example-1.

Fig. 5 Off-axis circles and vector loci for Example-1
(M =15, 0<w<10).

control system. Although the robust control system
is usually designed based on this concept, the robust
stability condition is more conservative. Here, the
gain matgin becomes go = 10.8 dB.

[Example-2] Consider the following controller and
controlled system:

Gls) = 2(1 + s)(1 - 0.5s)

Figure 6 shows calculation results for £(q,wp). When
nominal linear gain K" = 2.0,

Mo = miné(q,wo) = E(qo,wo) = 2.1
9

is obtained. Figure 7 shows calculation results of cir-
cle array as to ¢ > 0 for M = 2.1, i.e., &« = 0.476 and
vector locus G, for the controlled system.

In this example, ¢ by which £(q,wp) is minimized
is o = 0.5. Obviously, the vector locus contacts with
off-axis circles C; and Cy except on the real axis.
The gain margin is g; = 5.15 dB, which is different

ds2 !
3BT

i 0 05 'R

Fig. 6 &(g,wo) curves for Example-2,

Fig. 7 Off-axis circles and vector loci for Example-2
(M =21, 0 <w < 30).

from Iy
—201og,, Wil = 3.36 dB,

which is determined by the point where the argu-

ments of contours C; and Cy become —180 degrees.
On the other hand, G, is a vector locus for K = 0.67
by which the peak value becomes M = 2.1. It is
a limit for a robust stability condition which can be
applied to a nonlinear time-varying system. The gain
margin in this case is go = 14.6 dB.

Figure 8 is an example of broken (polygonal) line
nonlinear characteristic N(e). Figure 9 shows the
time response for the control system. Because the
stability region for a linear characteristicis 0 < K <
3.63, the response in Fig. 9 is a counter example to
Aizerman’s conjecture.

6. CONCLUSIONS

In this paper, by applying a small gain theorem about
the Ly gain to the nonlinear subsystem with a free
parameter, the stability criterion in the frequency
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Fig. 9 Time response for Example-2.

domain of the control system with a time-invariant
nonlinearity was given. By drawing an off-axis circle
array on the Nyquist diagram a robust stability con-
dition in relation to the vector locus of the open loop
frequency response was presented. The evaluation of
robust performance concerning the off-axis circle di-
agram will be used in the design of robust control
systems.
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