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Abstract:

The physical parameters of controlled systems are uncertain and are accompanied with

nonlinearity. The transfer function of the controlled system should, therefore, be expressed by interval
polynomials. This paper describes the realization of robust performance for that type of control systems
(interval systems) via model reference feedback. First, we will analyze an invariance problem of dynamic
characteristics such that the dominant roots do not break away from a specified circular area, and will
present a discrimination algorithm (i.e., a division algorithm) for the extreme points of the uncertain coef-
ficients. Then, we will present a design method of control systems which have a robust performance such
that the location of the dominant roots does not vary excessively.
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1. INTRODUCTION

Since the physical parameters of controlled systems
are uncertain and are accompanied with nonlinearity.
the transfer function should be expressed by interval
polynomials (Barmish [1], Ackermann {2]). This pa-
per describes the existing area of characteristic roots
for control systems which are expressed by that type
of transfer function. A discrimination method of the
number of characteristic roots in a specified area on
an s-plane was developed in our paper (Okuyama et
al. [3]). when a characteristic equation was expressed
as an interval polynomial. The criterion is based on
the classic Sturm's theorem. The discrimination al-
gorithm was expressed so that it can be easily pro-
grammed on a computer.

This paper examines an invariance problem of dy-
namic characteristics such that the dominant roots
do not hreak away from a specified circular area (a

disc), and presents a discrimination algorithm (i.e., a
division algorithm) for the extreme points of the un-
certain coefficients. Designing examples of a control
system with robust performance via model feedback
are presented.

2, INTERVAL POLYNOMIALS

The transfer function of a control system with un-
certainty (and nonlinearity) is expressed by interval
polynomials. Therefore, the characteristic polyno-
mial of a control system with uncertainties can be
written by an interval polynomial as follows:

dos™ + @18" o @y s + @y, (1)
a; € fa;; ‘1'-1‘+]’ (i=0,1,2,---,n).

F(s) =

When expressing interval polynomials in terms of
nominal coefficient ¢; and maximum error A@;, the
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Fig. 1 Circular area (g = —0.75 and wy = 1.0,
p=103or p=0.6).
following can be obtained:
+ - +_
a +a; A= _ O —a;
0= A% = S
Ifl, - a..,-] = lAa,l S A—dl (2)

By using free parameter v; interval coefficient a,
can be expressed as follows:

a; = a; + Aa; = a; + ;- AT, (3)
In Eq. (3). non-negative free parameter ¥ which is
written by

v € [-1; 1.

il <7 €0 1), Vi ()
can be found.
Based on the expression of Eq. (3) for interval co-

efficients @;, IEq. (1) can be rewritten as follows:

F(s) = F(s) + AF(s), (5)

where I'(s) and AF(s) are the nominal and the uncer-

tain parts of interval polynomial F (s), respectively,
and written as

F(s) =aos" +a1s" '+ + an-15+ an,

AF(s) = Aaps™ + Aars" ™ 4+ + Aan_15 + Aa,,

= ¥ ATps™ + v Amy " +
R PY-n.—lAﬁn—l s+ n Ag,.
Moreover, the following inequality can be given:

|AF(s)]| <7+ rr;;}-X!AF(S, ), (6)

where

AT (s, ;) = voATps™ + v AT 8" +
s Uy 1 Al 18 + VAT,
N ={vo v vy, v € {=1; 1},
(j=1,2,3,---, 201,
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When analyzing a given transformation (i.e., the
mapping of circular contour dT" as is shown in Fig. 1)
in an s-plane, i.e.,

(7)

the following chracteristic polynomial with complex
coefficients can be obtained :

O(jo) = P(e) +jQ(e),

s = pe’® + oo + jwo,

(8)

Pla) =
Qo) =

aO,'i € [ao_,p a‘(_)*:i]a 50,1' € [b(-)_,u bg_,i]i (2 = 09 1,2, 71)-

~ ~ 1 - ~
Qo0 + ag 10"+ 8o 10+ g0,

l;o,oan + i?o,ﬂvn—l +o+ BO,n—la' + i?o,-n,,

Here, o corresponds to the following variable:

« =tan(6/2). (9)

3. DISCRIMINATION OF THE NUMBER
OF ROOTS

If the p pieces of the characteristic roots are present
in specified circle 9", the argument change in the
mapping of characteristic polynomial (1) should be
2um, regardless of its interval coefficients.

Assume that fo(o) = P(w), fi(e) = Q(«). As for
P(a)/Q(a) (or —Q(@)/P(e)), the following division
algorithm can be used (Takagi [4]):

fo(e) = fi(e)qi(e) — falw),

fi(e) = fa(a)ga(e) — fa(a), (10)

fon—2 = fQ-n—l(a')qQ-n—l(a’) - fzn,(a‘)-

If fo(«) and fi(a@) are of the n-th order in regard to
« and coprime,

fQ(a)a f3((’¥), BRI f?-n

are all present and

f?h(a’)a f2h+1(05), (h - 0: 15 N — 1)
become the (n—h)-th order polynomial, and
fon becomes a non-zero constant. That is,
fa(e), fa(e), -+, fon can be expressed as follows:
fole) = a1 1™ 4t ay,
fa(@) = b0 4 by
(11)

fQ-n.—Q(a) =dldp—1,n—-1¢ + Ap—1,n

f‘Zn.——l(a) - bn——l,-n,—la' + bn—l,n
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In order to simplify the notation, interval coefficients

@;,; (which are obtained by the division algorithm)

simply denote a; ;.
Here, each coefficient can be given by the following
sequential operations:

A 0,0
HI-,P - 0,p m - aoyp’

bo,o
bl,p = Aip4 (—— _bO,pa
a1

L

(p=1,2,++,n) (12)

aq—l,q—'l
tgp = bq—lm( — OQg—1,p,

bq—l,q—l

b
— g—1.g—1
byp = g+ ( = by—1.p,

q.q
(p=gq.,n)
_ b a-n.—l,vn.—l
Appn = n—1an \ 77—} — Qpn—-1,n
) b-n-—l,»n.wl
((lq,-n-+1 = 0)

When a characteristic equation is expressed as an in-
terval polynomial, these sequential operations should
be based on interval arithmetic. Interval arithmetic,
however, can only be used where each variable (co-
efficient) is independent. Because the calculation in
Eq. (12) was advanced sequentially by using the pre-
ceding results, each variable (coefficient) is not inde-
pendent; therefore, the use of interval arithmetic in
the above sequential operation may give a more con-
servative result. The number of characteristic roots,
however, can be discriminated by the extreme point
in each coefficient of Eq. (12). (Note that the denom-
inator of Eq. (12) must not become zero, although
this is only a problem in certain singular points. )
Since the extreme points of the interval sets of se-
ries (array) agp and by, (0= 1,2,- -, n,p=¢q,- -, n)
are given in order according to the extreme points of
the uncertain coefficients in interval polynomial (1)
and (8), these extreme points can be determined by
using all the combinations of the extreme points of
the coefficients in the interval polynomial. Therefore,
the following theorem in regard to the robustness of
control systems can be obtained (Okuyama [3]):
[Theorem] A necessary condition for the yi pieces of
the roots of characteristic equation F(s‘) = 0 (which
are present in specified circle dT") is shown below.

The following coefficient ratios should be calculated

(they were present in division algorithm (12)):

boo bt ba-ia (13)

1 )
a as o Ap,n

2,2

for all the combinations of the extreme points of the
uncertain coeflicients in the family of characteristic
equations,

F(s) =[ag;ad]s" +[ar;af)s" - +[a ;a]] = 0.
(14)
If the number of ratios that is to be negative is not
changed, a control system that is characterized by Eq.
(14) has robust performance in regard to the invari-
ance of the number of characteristic roots in specified
circle . Moreover, when the above also holds for
7 € [0;1] in Egs. (2), (3) and (4), it becomes the
necessary and sufficient condition.
(Proof) The necessity is obvious from Sturm’s the-
orem (i.e., the results of Egs. (11) and (12)). The
sufficiency can be proven by using Rouché’s theorem.
If the number of roots of characteristic equation

F(s)+ - AF(S, n;) =0, Vyel0;7], Yy (15)

is invariant inside the specified contour, the following
must holds as to s € 9I;

F(s) # =y AF(s,n3), Yye[0; 7], Vo
Thus, the following inequality can be given:

|F(s)] > 7 - max |AF(s,n;)|, Vs € or. (16)
7;

As a result, we can obtain
|F'(s)| > |AF(s)], ¥seol (17

from Eq. (6).
By using Rouché’s theorem we may conclude that
the number of roots of characteristic equation

F(s) = F(s) + AF(s) =0 (18)

is invariant inside the specified contour, regardiess of
uncertainty AF(s), i.e., free parameters v, € [-1; 1]
in Eq. (3). O

[Example 4.1] Consider the family of character-
istic equations with low frequency uncertainty (e.g.,
sector nonlinearities (Okuyama & Takemori [5, 6]) as
follows:

0.005s" + 0.255° +[0.9; 1.1)s* + [1.1;1.4]s + [0.8; 1.2] = 0.
(19)

When a circle with center (—0.75,7) and radius
r = 0.6 is specified, the number of the characteristic
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Fig. 2 Polyhedral mapping of 9I' (p = 0.6) for
Example 4.1,

ReF

Fig. 3 Polyhedral mapping of 0T (p = 0.6) for
Example 4.2.

roots in the circle is y = 1 for all 2% = 8 combinations
in the extreme points of the uncertain coefficients. A
graphical interpretation of the discrimination theo-
rem, i.e., a polyhedral mapping is shown in Fig. 2.
In this figure, 23 vertices of the polyhedra indicate ex-
treme points of the interval sets(Bhattacharyya [7]).

The calculated results show that the number of
roots in the specified circle did not change. Moreover,
the number of the dominant roots was maintained for
all 7 € [0; 1].

On the other hand, when a circle with radius r =
0.3 is specified, the calculated results show that there

are some cases where the dominant root does not exist
in the specified area.

[Example 4.2] Consider the family of characteristic
equations with high frequency uncertainties as:

[0.001;0.009]s" +[0.1;0.4]s® +[0.8;1.2]s* +1.255+1.0 = 0.
(20)
When a circle with center (=0.75,7) and radius r =

: Realization of Robust Performance for Interval

r + u F(s) Y

= B(s)

Nm.(s) p
D (s) -0

Ny(s)
Df(ys)

Fig. 4 Realization of robust performace via model
feedback.

0.6 is specified, the number of the characteristic roots
did not change. A polyhedral mapping is as shown in
Fig. 3.

On the other hand, when a circle with radius r =
0.3 is specified, the calculated results show that there
are some cases where the dominant root does not. exist
in the specified area.

4. REALIZATION OF ROBUST PERFOR-
MANCE

Consider a model feedback system, as is shown in Fig.
. N(s) N, () Ny(s)

4. Here, G = ——, Gy = ——, Gy =
! D)™ Da(s) T Dyls)

uncertain(interval) plants, plant model and feedback

are

compensator, respectively. Here, we will assume that
N(s) and D(s) are expressed by interval polynomials
as shown in Eq. (1).

By using this type of feedback structure, a robust
performance for the uncertain control system can be
realized (Okuyama [8]). If feedback compensator (i

is chosen as
‘Nf(s) = Dy, (s), Df(S) = No(s, T)Niu(s),  (21)

modified control signal u is given by

- . I\TO(S,T) N _ D-m,(s) - ﬂ>
) = e -1 (”(S’ No(e, )N (55 )

(22)
where 4(s), #(s) and §(s) denote the Laplace trans-
form of u, r and y, respectively. Here, No(s, 7) is an
(n—m)-th order polynomial which should be designed
in the feedback system as is shown in Fig. 4. Tn this

paper, we will choose
A)’O(S’ T) = (TS + l)n—m! (23)

where 7 is an appropriate (small) positive number.
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Fig. 5 Polyhedral mapping of d' (p = 0.3) for
Txample 5.1.

From Eq. (22) the following can be obtained:

_ Duls)
A‘r.m_ ( S)

!

(No(s. 7)=1)ii(s) = (No(s. 7)#(s)

As is obvious from Eq. (24), when 75 — 0, $(s) —
A"Y-m(S)

D (8)
transfer characteristics from r to y becomes approxi-

A'rm (q)
Dy (s)

tainties (i.e., interval set parameters) in plant G. In

#(s). When operating in lower frequencies, the

mately and it is invariant regardless of uncer-

other words. it can be shown that the model reference
feedback system has a robust performance.

The characteristic equation of the closed loop sys-
tem can be expressed as

D-m (q)‘ﬁr(s)
N (s)D(s)

When uncertainties of plant ¢ exist only in the de-

(No(s.7) = 1) + = 0. (25)

o

nominator, that is, ¥(s) = N, (s), the characteristic
interval polynomial which corresponds to Eq. (1) can
be written as follows:

[:’(q) - ‘\70(3- T)Dm.(S) + ("VO(SS T) - I)AD(S)a (26)

where D(s) = D, (s) + AD(s). As for Eq. (26) the
invariance of the dominant roots is examined in the
following examples.

[Example 5.1] Assume that denominator polyno-
mial D(s) of an uncertain plant is expressed by an
interval polynomial as shown in Eq. (19) and numera-
tor polynomial ¥ (s) is written by V(s’) =N, (s)=1.
In addition, we choose

No(s,7) = (0.1s + 1) (27)

w(t)

o

Fig. 6 Step responses for Example 5.1, when model
reference feedback was not used.

Fig. 7 Step responses for Example 5.1, when model
reference feedback was used.

By using this type of model reference feedback, the
invariance of the number of characteristic roots can
be accomplished in regard to a smaller circle with
radius p = 0.3. A polyhedral mapping is as shown in
Tig. 5.

Step responses in regard to the extreme points for
uncertain control system G’(s) are as shown in Fig. 6
and Fig. 7, when the model reference feedback was
not used and was used, respectively. As is clear from
the figure, the robust performance according to the
above was realized.

[Example 5.2]

mial D(s) of an uncertain plant is expressed by an
interval polynomial as shown in Eq. (20) and numera-

Assume that denominator polyno-

tor polynomial N(s) is written by N (s) = Np(s) = 1.
Here, we choose the same Ny(s, 7) as in Eq. (27). The
invariance of the number of characteristic roots can
be accomplished in regard to a smaller circle with ra-
dius p = 0.3. A polyhedral mapping is as shown in
Iig. 8.

Step responses in regard to the extreme points for
uncertain control system (G/(s) are as shown in Fig. 9
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Fig. 8 Polyhedral mapping of dT' (p = 0.3) for
Example 5.2.
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Fig. 9 Step responses for Example 5.2, when model
reference feedbak was not used.

and Fig. 10, when the model reference feedback was
not used and was used, respectively.

5. CONCLUSION

This study described the existing area of character-
istic roots for control systems which are expressed
by transfer functions that are composed of interval
polynomials. A discrimination method of the num-
ber of characteristic roots in a specified circle on an
s-plane was presented, when a characteristic equation
was expressed as an interval polynomial. A theorem
was given in reference to the extreme point results
which corresponds to the weak-Kharitonov’s theorem
for interval polynomials. The theorem can be used
as an invariant condition of the number of charac-
teristic roots in the specified circle. In particular, in
this paper, the invariance of the dominant roots in
the circlar area and the realization of control systems
with robust performance using model reference feed-
back were examined.

: Realization of Robust Performance for Interval

u(2)

Fig. 10 Step responses for Example 5.2, when model
reference feedbak was used.
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